
Citation:  

Dietz, E. & Weist, K. (2003). Meta-analysis in hospital and clinical epidemiology based on 
mixed generalized linear models. In R. Schulze, H. Holling & D. Böhning (Eds.), Meta-
analysis: New developments and applications in medical and social sciences (pp. 179-195). 
Hogrefe & Huber. 

 



12
Meta-Analysis in Hospital and Clinical

Epidemiology based on Mixed Generalized
Linear Models

Ekkehart Dietz
Working Group: Biometry and Epidemiology
Institute for International Health, Joint Center for Humanities and Health Sciences
Free University Berlin

Klaus Weist
Institute of Hygiene and Environmental Health
Free University Berlin

Summary

Meta-analyses in the area of hospital and clinical epidemiology have been
done for quite some time. Typically, the quantitative part of such analy-
ses is to provide pooled estimators of new hygiene measures or clinical
interventions, respectively. If the sizes of the effect in the studies of a
meta-analysis were considered to be nearly identical, then the respective
pooled estimator could be interpreted as an estimate of the common ef-
fect of the new measure. Otherwise, it could be interpreted as an estimate
of a mean effect. To draw practical consequences from a mean effect es-
timation, a description of the heterogeneity of effects is necessary. Such
a description is not provided by the standard random effect estimator,
which assumes normal distributed study specific effects. As an alterna-
tive, a non-parametrical random effect estimator is suggested. This esti-
mator is based on a finite mixed generalized linear model. These models
have proven to be very flexible and useful to estimate mean effect sizes
and to explain heterogeneity, because they allow for non-normal random
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effects and to use covariables to explain baseline and effect heterogeneity
for several effect measurements. The method is illustrated using data of
two meta-analyses, which have been published recently by Thompson
and Sharp (1999) as well as Veenstra, Saint, Saha, Lumley, and Sullivan
(1999).

12.1 INTRODUCTION

A main task of hospital epidemiology is to evaluate the hygiene regulations
in hospitals with respect to hospital acquired or nosocomial infections. For ex-
ample, hospital epidemiological studies have to justify certain infection control
measures such as modification of central venous catheters to reduce catheter
related blood stream infections. For several reasons, hospital epidemiologi-
cal studies are usually small with respect to the number of patients. Hence,
a single study provides only little evidence to indicate that a certain hygiene
regulation is better than a standard one. Therefore, meta-analyses in this area
have been done for quite some time. The quantitative part of such an analysis
is to provide a pooled estimator of the effect of the new hygiene measure. If
the sizes of the effect in several studies of a meta-analysis were considered to
be nearly identical, such a pooled estimator could be interpreted as an estimate
of the common effect of the new measure. It could otherwise be interpreted as
an estimate of a mean effect. To draw practical consequences from a mean effect
estimation, a description of the heterogeneity of effects is necessary.

12.1.1 The Data Base

Meta-analyses in hospital epidemiology are typically based on count data ob-
tained in several studies. These are mostly intervention studies. The nature of
the count data that can be used does not only depend on the study design but
also on the available study report. Two typical types of data layout of studies
are shown in Tables 12.1 and 12.2.

Table 12.1 Prevalence Data

Hygiene Regulations Number of Patients Infected Number of Patients

Standard n0 N0
New n1 N1

Σ n N

Incidence data are published from cohort studies, whereas prevalence data
are published either from cohort studies or from cross-sectional studies. In ad-
dition to this count data, characteristics of the studies like “year of the study”
and “type of hospital” are also available. Mostly, the count data are also avail-
able for subgroups of the study populations. Such subgroups are defined by
cross classifications by characteristics like “hospital ward”, “gender”, “sever-
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Table 12.2 Incidence Data

Hygiene Regulations Number of Infections Patient Days

Standard n0 N0
New n1 N1

Σ n N

ity of disease”, and “age group”. These groups are called “units of the study”.
Their defining characteristics are called “first order variables”, whereas charac-
teristics of the studies are called “second order variables”. The binary indicator
variable “hygiene regulations” (1 = new regulations, 0 = standard regulations)
is an example of a first order variable. This is usually the variable of main inter-
est. Of course, it always has to be available. Sometimes, but very rarely, both
outcome and explanatory variables of individuals (patients) can be obtained,
that is, units are individuals. The meta-analysis can be considered then as the
evaluation of a multi-center study.

12.1.2 Effect Measurements and Baseline Heterogeneity

Let
RS =

n0

N0
and RN =

n1

N1

denote the infection rates under the standard and the new hygiene regulations,
respectively. These two quantities can be used to measure the effectiveness of
the new regulations. An overview of measures that are in some use is given
in Olkin (1999). The most popular ones are the logarithm of the relative risk
(log(RR)), the logarithm of the odds ratio (log(OR)) and the risk difference
(RD):

log(RR) = log(RN)− log(RS)
log(OR) = log(RN/(1− RN))− log(RS/(1− RS))

RD = RS − RN.

Another often used measure and one which can be derived from the risk dif-
ference is the number needed to treat (NNT):

NNT = 1/(RS − RN).

In cohort studies, an intuitively appealing measure of efficacy of new hygiene
regulations is

e f = RD/RS. (12.1)

It is just the probability that a certain patient who would be infected in a certain
period of time under standard hygiene regulations will not be infected in the
same period of time under the new hygiene regulations. From Equation 12.1 it
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follows that

OR =
1− e f − RS · (1− e f )

1− RS · (1− e f )
RR = 1− e f ,
RD = RS · e f ,

and

NNT = 1/(RS · e f ).

Thus, one reason for heterogeneity of OR, RD, and NNT in the several studies
could be baseline heterogeneity, which is the heterogeneity of the rates under
standard regulations RS. Baseline heterogeneity is very common in hospital
epidemiologic meta-analyses. The advantage of relative risk RR is that it does
not depend on baseline rates. The common efficacy e f can be estimated by the
common relative risk RR without considering the baseline heterogeneity and
explanatory variables of baseline heterogeneity.

In the case of cross-sectional studies, the odds ratio is preferred. Thereby, the
odds ratio is considered as an estimation of the relative risk. This is justified by
assuming the mean duration of an infection under the new regulations to be
about the same as under the standard regulations. Let D denote the common
mean duration of an infection and R

′
S and R

′
N the underlying incidence under

the standard regulations and the new regulations, respectively. Under steady
state conditions it holds

RS

1− RS
= R

′
S · D

and

RN

1− RN
= R

′
N · D.

Therefore,

RR
′
=

R
′
N

R′
S

=
RN · (1− RS)
(1− RN) · RS

= OR.

Thus, in the case of cross-sectional studies, we have an estimation of the odds
ratio OR, which is an estimation of the relative risk RR in the study popula-
tion. To compute asymptotical confidence intervals in the case of small sample
sizes, it is advantageous to use log(RR) and log(OR) instead of RR and OR,
respectively.
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12.1.3 Heterogeneity of Effect Size and Standard Methods of
Meta-Analysis

Let b̂1, b̂2, . . . , b̂J denote the effect size estimates in the J studies considered and
let w1, w2, . . . , wJ denote their respective inverse variances. Common effect size
(m) and its standard error (SE) are usually estimated by

m̂ =

J
∑

j=1
wjb̂j

J
∑

j=1
wj

and

SE(m̂) =

(
J

∑
j=1

wj

)− 1
2

,

respectively. The null hypothesis H0 : m = 0 is rejected if the absolute value
of

T =

J
∑

j=1
wjb̂j√
J

∑
j=1

wj

is larger than the (1− α)-quantile of the standard normal distribution, where
α is the test level chosen (Thompson, 1993). If the assumption of a common
effect size does not hold, a random effect has to be assumed. The standard
random effect model is

bj ∼ N (m, τ2)

and

b̂j ∼ N (bj, w−1
j ).

It is assumed that the effect sizes of the selected studies are normally dis-
tributed with a certain unknown mean value m and a certain unknown vari-
ance τ2. As a respective estimate of the mean effect size m,

m̂∗ =

J
∑

j=1
w∗

j b̂j

J
∑

j=1
w∗

j
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is used, where w∗
j = (w−1

j + τ̂2)−1 and τ̂2 is a suitable estimator of effect vari-
ance τ2. Confidence intervals and significance tests of the mean effect size can
be obtained in a similar fashion as for the common effect estimation. One has
simply to replace the wj by the w∗

j in the respective formulas above. As an
estimator of τ2,

τ̂2 = max

(
Q− J + 1

∑ wj −∑ w2
j / ∑ wj

, 0

)
(12.2)

can be used (DerSimonian & Laird, 1986). The quantity

Q =
J

∑
j=1

wj(b̂j − b̂)2

in Equation 12.2 can also be used as a test statistic of heterogeneity. If the null
hypothesis is true (no heterogeneity), then Q is distributed as χ2 with J − 1
degrees of freedom.

The assumption of a normal distribution of the effect size in the standard
random effect model is needed to theoretically justify the mean and variance
estimator of the effect size. On the other hand, this assumption provides the
“mean effect size” with a certain statistical meaning. However, this assump-
tion is rather restrictive. It is usually not provable, because of the relative
small number of studies in a meta-analysis. Consequently, the scientific value
and the clinical relevance of the result of meta-analysis based on the standard
model are limited. Therefore, more general approaches have been considered
recently (Thompson & Sharp, 1999; Aitkin, 1999a; Böhning, 2000a).

In this chapter, a certain generalization of the standard method above is
presented and applied to example data. The generalizations are

1 the allowance for non-normal random effects, and

2 the use of covariables to explain baseline and effect heterogeneity.

12.2 THE MODEL

Let yij denote the value of the count number observed at the ith unit in the jth
study, j = 1, 2, . . . , J; i = 1, 2, . . . , nj. The observations yij are assumed to be
independent random variables having expectations

E(yij) = µij, i = 1, . . . nj; j = 1, . . . , J.

In the case of prevalence data

yij ∼ Binomial(µij, Nij)
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is assumed. If the units are individuals, Nij = 1 ∀i, j. In the case of incidence
data

yij ∼ Poisson(µij)

is assumed. In both cases, the mean parameter µij is linked with a linear pre-
dictor LP

g(µij) = LPij

by a suitable link function g(·), as usual in generalized linear models. For
prevalence data (binomial models), we consider the linear predictor

LPij = βT
1 Xij + βT

2 Xj + zj + bjxij,

where Xij is a vector of first order variables, Xj is a vector of second order
variables, xij is the binary indicator of the new hygiene regulations (1 = new
hygiene regulations, 0 = standard hygiene regulations), and β1 and β2 are un-
known parameter vectors. zj and bj are random effects with a joint distribution(

zj
bj

)
∼ φ(z, b) ∀j.

φ remains completely unspecified. The expectation of bj is the mean effect size
m∗, which we are particularly interested in. If there is no effect heterogeneity,
then the linear predictor can be simplified by replacing bj by the fixed effect
parameter m in the linear predictor above. If the logit link function g(µij) =
log(µij/(1− µij)) is used, then m∗ is just the mean log odds ratio.

This model is very flexible and more general than the standard random ef-
fect model of meta-analysis. Baseline heterogeneity is explained by the covari-
ables and by the random effect zj. Effect heterogeneity is explained by first
level covariables and by the random effect bj of this model. Note, that in case
of the logit link the log odds ratio of the r1th unit versus r0th unit of the jth
study is

logit(µr1 j)− logit(µr0 j) = βT
1 (Xr1 j − Xr0 j) + bj(xr1 j − xr0 j),

where the second term of the right side simplifies to bj if the r1th unit is a
treatment unit and the r0th unit is a control unit. Another possibility to explain
effect heterogeneity is to augment the linear predictor by interaction terms of
second level explanatory variables and the treatment indicator xij.

For Poisson models, we consider the linear predictor

LPij = βT
1 Xij + βT

2 Xj + zj + bjxij + log(Nij).

The difference to the former linear predictor is the additional offset term
log(Nij). Using the log link g(·) = log(·) leads immediately to

m∗ = E(log(RR)).
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12.3 ML-ESTIMATION

To obtain maximum likelihood estimates of β1, β2, and the parameter vector θ
of φ, the likelihood function

L(β1, β2, θ) =
J

∏
j=1

∫ { nj

∏
i=1

f (yij | zj, bj, β1, β2, Xj, Xij)

}
φ(zj, bj)∂zj∂bj (12.3)

has to be maximized , where

f (yij | zj, bj, β1, β2, Xj, Xij) = f (yij | LPij)

denotes the respective conditional probability density distribution of yij given
the linear predictor. Because we have not specified the distribution φ(zj, bj), we
have to look for its nonparametric estimate. For this purpose, it is sufficient
to consider two-dimensional discrete distributions with less than J + 1 mass
points

φ(z, b) =

pk if

(
z
b

)
=

(
zk

bk

)
,

0 otherwise.

k = 1, . . . , K; K ≤ J.

(see Aitkin, 1999a, 1999b). This distribution has (3 · K − 1) parameters, which
are z = (z1, z2, . . . , zK), b = (b1, b2, . . . , bK), and p = (p1, p2, . . . , pK−1), where
pK = 1−∑K−1

k=1 pk. When using such a distribution, Equation 12.3 simplifies to

L(β1, β2, p, b, z) =
J

∏
j=1

K

∑
k=1

pk

nj

∏
i=1

f (yij | LPijk)

and the respective log likelihood function is obtained as

LL(β1, β2, p, b, z) =
J

∑
j=1

log
K

∑
k=1

pk

nj

∏
i=1

f (yij | LPijk),

where

LPijk = βT
1 Xij + βT

2 Xj + zk + bkxij

or

LPijk = βT
1 Xij + βT

2 Xj + zk + bkxij + log(Nij)

for the binomial model and for the Poisson model, respectively. These are the
likelihood function and the log likelihood function of a finite mixed general-
ized linear model. An EM-algorithm and respective GLIM programs to com-
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pute the ML-estimation of such models are described in Dietz and Böhning
(1994, 1995) as well as in Aitkin (1999b).

Note that K is an unknown parameter of the log likelihood function above.
To find the ML-estimate of K, we maximize LL for a fixed sufficiently large
value K. Next, we systematically reduce the value of K to that value K−, where
the maximum of LL decreases for the first time. Then, we consider K̂ = K− + 1
as the ML-estimate and the respective estimates of p = (p1, p2, . . . , pK̂), z =
(z1, z2, . . . , zK̂), and b = (b1, b2, . . . , bK̂) as the nonparametric estimate of φ. An
estimate of the mean effect can be obtained by

m̂∗ =
K̂

∑
k=1

p̂kb̂k

and its variance by

τ̂2 =
K̂

∑
k=1

p̂kb̂2
k −

(
K̂

∑
k=1

p̂kb̂k

)2

.

The posterior probability that the jth study comes from the kth mixture com-
ponent (C) can be computed by

pr(j ∈ Ck | y1j, y2j, · · · , ynj j, p̂, ẑ, b̂, β̂1, β̂2) =
p̂k ∏

nj
i=1 f (yij | L̂Pijk)

∑K̂
r=1 p̂r ∏

nj
i=1 f (yij | L̂Pijr)

, (12.4)

where
L̂Pijr = β̂T

1 Xij + β̂T
2 Xj + ẑr + b̂rxij + log(Nij)

for the Poisson models and without the last term for the binomial models.
These probabilities can be used to obtain a classification of the studies. Such a
classification is useful not only for a description of the heterogeneity but also
for identification of further explanations of the heterogeneity in addition to the
explanatory variables in the model. We now illustrate the method on data of
two recently published meta-analyses.

12.4 EXAMPLES

12.4.1 Central Venous Catheters

The first example is a meta-analysis to assess the efficacy of chlorhexidine-
silver sulfadiazine-impregnated central venous catheters for the prevention of
nosocomial catheter colonization (NCC) and catheter-related bloodstream in-
fection, described in Veenstra et al. (1999). We will reanalyze the published
NCC data. Table 12.3 contains the count data of the 12 studies included in this
meta-analysis. Here, the units are the sets of impregnated catheters and the
sets of non-impregnated catheters in the studies. Thus, we have two units per
study, totaling 24 units. The outcome variable is the number of catheter col-
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onizations identified by the same culture techniques of intravascular catheter
segments.

Table 12.3 Count Data and Characteristics of 12 Studies on the Efficacy of
Chlorhexidine-Silver Sulfadiazine-Impregnation of Central Venous Catheters for
the Prevention of Nosocomial Catheter Colonization

Impregnated Non-Impregnated Study Characteristics

Study n1 N1 MCD n0 N0 MCD YEAR CEX PP

1 8 137 5.1 32 145 5.3 1997 0 0
2 28 208 6.0 47 195 6.0 1997 1 0
3 4 28 6.6 10 26 6.8 1996 0 0
4 22 68 7.0 22 60 8.0 1996 - 0
5 0 14 7.0 4 12 7.0 1994 0 0
6 2 116 7.7 16 117 7.7 1996 0 2
7 60 151 8.5 82 157 9.0 1988 1 0
8 2 98 9.0 25 139 7.3 1999 1 3
9 15 124 9.6 21 127 9.1 1996 1 0

10 45 199 10.9 63 189 10.9 1994 0 0
11 16 123 11.2 24 99 6.7 1995 1 0
12 10 44 8.0 25 35 7.6 1997 1 1

Note. n1 = number of colonized impregnated catheters, N1 = number of impregnated
catheters, MCD = mean catheter duration, n0 = number of colonized non-impregnated
catheters, N0 = number of non-impregnated catheters, YEAR = year of study, CEX =
catheter exchange, PP = patient population.

Besides the count data, several characteristics of the studies and of the units
were obtained and could be used as first and second level variables in our anal-
ysis. Table 12.3 contains one first level variable, which is the mean catheter du-
ration (MCD) in the unit, and three second level variables, which are “year of
the study”, a binary variable, which indicates whether catheter exchange took
place within the study (CEX), and a 4-categorical characteristic of the patient
population of the study (PP). Their categories are: 1 = transplant ward, 2 = sur-
gical ward, 3 = emergency department, and 0 = other wards. The count data
in Table 12.3 yield prevalence rates. Therefore, it is reasonable to use the odds
ratio as measure of efficacy. Application of the standard method described in
Section 12.1.3 yields an estimate of a common odds ratio OR = 0.47 (0.38, 0.57),
where the numbers within the brackets are the lower and the upper bound of
its 95% confidence interval.

Since the heterogeneity of the 12 studies is highly significant (Q = 26.7,
p = .005), a common efficacy of all studies cannot really be assumed. There-
fore, confidence intervals cannot be interpreted. One has to switch to a ran-
dom effect model. After computing the effect heterogeneity as τ2 = 0.202
on the basis of the standard random effect model assumptions, the odds ratio
estimate OR∗ = 0.39 (0.27, 0.55) as a mean effect estimate is obtained. This es-
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timate indicates an even higher effect of the chlorhexidine-silver sulfadiazine-
impregnation than the common effect size estimate because its value and also
its upper confidence bound is lower.

Nevertheless, the standard random effect estimate is doubtful because its
assumption of a normal distributed random effect cannot be verified by the
data available. If this assumption is not true, and if nothing is known about
the real distribution of the odds ratios, then few practical conclusions can be
drawn from this result. Generally, it holds that a mean prevention effect does
not contradict the possibility that the prevention measure actually increases
the infection risk in some of the studies. So, a general recommendation of the
measure cannot be given.

To overcome the drawback of the standard method, the nonparametric max-
imum likelihood approach described in Sections 12.2 and 12.3 is used. In a
first step, mixed logistic regression models with a fixed treatment effect (bk =
m, ∀k) and without further covariables were fitted. The intercept was the only
random effect in these models. We call this step “analysis of baseline heteroge-
neity”. We started with K = 8 mixture components and reduced this number
systematically. The first increase of the deviance (decrease of log likelihood)
can be observed from K = 4 (deviance = 69.4) to K = 3 (deviance = 78.3). So
4 was considered as the maximum likelihood estimate of K. The mean treat-
ment effect estimate in this 4-component mixture model is OR∗ = 0.44 (0.33,
0.59).

In a second step, called “analysis of effect heterogeneity”, the fixed treat-
ment effect in the model is replaced by a random effect. Again, the respective
nonparametric maximum likelihood estimate of this model can be obtained by
the maximum likelihood estimation of a finite mixture model. As an estimate
of the number of components, K̂ = 5 with a deviance 49.1 is obtained. On
the basis of the 5-component mixture model, the mean effect size estimate is
OR∗ = 0.33 (0.22, 0.49). Note that, although this approach uses weaker model
assumptions, its effect estimator indicates a slightly stronger treatment effect
than those obtained as fixed model estimate and as standard random effect es-
timate. However, as already mentioned above, it is difficult to interpret a mean
effect size if nothing is known about the distribution of the random effect. One
nice property of our approach is that we have an estimate of the whole random
effect distribution as a byproduct. This is a finite mixture distribution with 5
components in this case. Each component has its own effect size estimate and
each study can be classified into one of these components by Equation 12.4.
The results are shown in Table 12.4.

Each of the 5 component effect size estimates are smaller than one, although
they are not statistically significant in the third and fourth component. Thus,
our meta-analysis provides some evidence that the use of chlorhexidine-silver
sulfadiazine-impregnation generally reduces the risk of catheter colonization.

There are two mixture components (1 and 5) with an especially high treat-
ment efficacy. Their odds ratio estimates are OR1 = 0.1 and OR5 = 0.11,
respectively, whereas the odds ratios of the other components are about 0.5.
Three studies (6, 8, 12) are allocated to these components. In order to describe
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Table 12.4 Nonparametric ML-Estimate of the Treatment Effect Distribution and
Classification of the Studies by Their Posteriori Component Membership Probabil-
ity

Component (k) ORk = exp(bk) CI pk Allocated Studies

1 0.10 (0.03, 0.42) .19 6, 8
2 0.44 (0.28, 0.69) .42 1, 2, 5, 9, 11
3 0.62 (0.36, 1.04) .21 3, 4, 10
4 0.60 (0.32, 1.14) .09 7
5 0.11 (0.03, 0.50) .08 12

Note. ORk = odds ratio as effect size estimate, CI = confidence interval, pk = posteriori
component membership probability.

situations where the efficacy of the prevention measure is particularly high,
one should try to characterize their study population. Study 12 is the only
study which was exclusively performed in a transplant ward. The patients
of the studies 6 and 8 were from a surgical ward and an emergency depart-
ment, respectively. Thus, if the patient population of the studies could be con-
sidered as a representative sample of the all patients in the respective wards,
then there would be some evidence that the chlorhexidine-silver sulfadiazine-
impregnation should be recommended especially in transplant, surgical, and
emergency wards. In order to obtain a more complete picture, we tried to ex-
plain the two kinds of heterogeneity in the studies not only by the variable
“patient population” but also by all covariables available. Only two second
level variables turned out to provide some significant explanation. These are
the mean catheter duration in the control group (MCD0) and the binary indi-
cator of the transplant ward (TU). In order to explain not only the baseline
heterogeneity but also the effect heterogeneity, we additionally included the
interaction terms TU · xij and ∆MCD · xij into the model, in which xij is the
treatment indicator and ∆MCD denotes the difference of the mean catheter
duration between control group and treatment group. The latter quantity is a
derived second level variable which serves to adjust the effect estimate for the
potential bias introduced by non-zero differences.

The inclusion of these variables explains a great deal of the heterogeneity
in the data. The respective nonparametric ML-estimate of the random effect
model is only a two-component mixture. Table 12.5 shows the effect estimates
of the covariables in this model.

Both TU and its interaction with the treatment are significant. Consequently,
the transplant ward study is a main source of both baseline heterogeneity and
effect heterogeneity.

Also, the baseline mean catheter duration has a significant positive effect.
That is, the larger the catheter duration, the higher the risk of catheter colo-
nization. The variable MCD0 can only explain baseline heterogeneity. The
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Table 12.5 ML-Estimates of the Coefficients of the Covariables in a 2-Component
Mixed Logistic Regression Model

Variable Estimate Standard Error

TU 1.156 0.531
MCD0 0.134 0.040
TU · xij −1.698 0.722

∆MCD · xij 0.010 0.086

Note. TU = binary indicator of the transplant ward, MCD0 = mean catheter duration
in the control group, xij = treatment indicator, ∆MCD = difference of the mean catheter
duration between control group and treatment group.

term ∆MCD · xij is not significant and provides only inconsiderable explana-
tion of effect heterogeneity.

Table 12.6 shows the nonparametric ML-estimate of the treatment effect and
the respective classification of the studies. Now, most of the studies are classi-
fied into one component with an adjusted effect estimate of OR = 0.43 (0.30,
0.62). Thus, some evidence has been obtained to recommend the prevention
measure in the patient population of all studies in this component. The high
efficacy of the catheter impregnation in the study 12 is already shown by the
significance of the term TU · xij of the model.

Table 12.6 Nonparametric ML-Estimate of Treatment Effect Distribution Adjusted
for Covariables and Classification of the Studies by Their Posteriori Component
Membership Probability

Component (k) ORk = exp(bk) CI pk Allocated Studies

1 0.43 (0.30, 0.62) .73 1, 2, 3, 5, 6, 8, 9, 10, 11
2 0.64 (0.37, 1.10) .27 4, 7, 12

Note. ORk = odds ratio as effect size estimate, CI = confidence interval, pk = posteriori
component membership probability.

The only populations where the efficacy of the prevention measure remains
questionable are those of studies 4 and 7, which are allocated to the second
component. The strategy of further research could be to look for specific char-
acteristics of these two studies, which can explain their worse results.

12.4.2 Ischaemic Heart Disease Events

The data of the second example are given by Thompson and Sharp (1999).
They are taken from 28 randomized trials in which ischaemic heart disease
events are considered as a response variable. An ischaemic heart disease event
is defined as a fatal ischaemic heart disease or a non-fatal myocardial infarc-
tion. Another response variable of these trials is the average serum cholesterol
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reduction. However, this variable will be used as an explanatory variable of
the effect and baseline heterogeneity.

This meta-analysis is not a very typical one in hospital and clinical epidemi-
ology because the prevention measures studied within the trials are very dif-
ferent. The spectrum of applied prevention measures includes dietary inter-
ventions, drugs, and even surgery. However, this meta-analysis is very suit-
able to demonstrate certain potentials of our method. It will be shown that a
meta-analysis can be accomplished sensibly even when the studies considered
have different study factors.

Trial-specific count data and cholesterol reductions are given in Table 12.7.
Also, the count data in Table 12.7 are prevalence-type data. Therefore, the
odds ratio is used again as measure of the efficacy. By applying the standard
method, an estimate of a common odds ratio OR = 0.82 (0.77, 0.88) can be
obtained.

The heterogeneity of the 28 studies is highly significant (Q = 49.1, p = .006),
which is expected because of the different study factors of the studies. The
estimated effect variance is τ2 = 0.202 and the respective mean odds ratio
estimate based on the standard random effect model is OR∗ = 0.81 (0.72, 0.90).

Now, one could proceed as in the previous example and estimate the ran-
dom effects distribution. The aim of this study is not to describe the random
effect distribution but to explain the variation of the odds ratios by the vari-
able “mean cholesterol reduction”. Therefore, we computed the nonparamet-
ric ML-estimation of a random effect model with the explanatory variables
“study” and “mean cholesterol reduction” and with a random treatment ef-
fect.

By assuming that the value of the mean serum cholesterol reduction is equal
to zero in the control groups, this variable can be considered a first level vari-
able. The categorical variable “study” provides the complete explanation of
baseline heterogeneity. K̂ = 1 is obtained as estimate of the number of mix-
ture components. Consequently, the respective table of the effect distribution
estimate and of the study classification has one line only (see Table 12.8).

Thus, the whole effect heterogeneity is explained by the variable mean cho-
lesterol reduction. Its estimated logistic regression coefficient is −0.479 (0.14),
where the number within the brackets is the respective standard error. The
adjusted common treatment effect estimate is ln(OR) = 0.122 (0.10). It is not
significant. The following conclusions can be drawn from these results now:

1 The heterogeneity of the effect sizes in this meta-analysis can be explained
by the variable “mean cholesterol reduction”.

2 The significant mean treatment effect size estimate can be explained by
the cholesterol reduction attained by the prevention measures.

3 The heterogeneity of the effect size can be explained by the heterogenous
effects of the several prevention measures on cholesterol reduction.

4 Serum cholesterol reduction should be a main goal for ischaemic heart
disease prevention.
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Table 12.7 Count Data and one Study Characteristic of 28 Clinical Trials on the
Efficacy of Diverse Prevention Measures to Reduce the Risk of Ischaemic Heart
Disease

Control group Treatment Group Cholesterol

Trial n0 N0 − n0 n1 N1 − n1 Reduction(mmol/l)

1 210 5086 173 5158 0.55
2 85 168 54 190 0.68
3 75 292 54 296 0.85
4 936 1853 676 1546 0.55
5 69 215 42 103 0.59
6 101 175 73 206 0.84
7 193 1707 157 1749 0.65
8 11 61 6 65 0.85
9 42 1087 36 1113 0.49

10 2 28 2 86 0.68
11 84 1946 56 1995 0.69
12 5 89 1 93 1.35
13 121 4395 131 4410 0.70
14 65 357 52 372 0.87
15 52 142 45 154 0.95
16 81 148 61 168 1.13
17 24 213 37 184 0.31
18 11 41 8 20 0.61
19 50 84 47 83 0.57
20 125 292 82 339 1.43
21 20 1643 62 6520 1.08
22 0.5 52.5 2 92 1.48
23 0.5 29.5 1 22 0.56
24 5 25 3 57 1.06
25 144 871 132 886 0.26
26 24 293 35 276 0.76
27 4 74 3 76 0.54
28 19 60 7 69 0.68

Note. IHD events = fatal ischaemic heart disease and non-fatal myocardial infarction,
n0 = number of patients with an IHD event in the control group, N0 = number of
patients in the control group, n1 = number of patients with IHD event in the treatment
group, N1 = number of patients in the treatment group.
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Table 12.8 Nonparametric ML-Estimate of Treatment Effect Distribution Adjusted
for Covariables and Classification of the Studies by Their Posteriori Component
Membership Probability

Component (k) ORk = exp(bk) CI pk Allocated studies

1 1.13 (0.92, 1.37) 1.00 all studies

Note. ORk = odds ratio as effect size estimate, CI = confidence interval, pk = posteriori
component membership probability.

12.5 CONCLUSION

Baseline and effect heterogeneity are almost always present in hospital and
clinical epidemiological meta-analyses. This makes the evaluation of a treat-
ment effect difficult and the use of some standard methods questionable. At-
tempts to restrict the meta-analysis on a homogenous selection of studies can
never be completely successful. On the other hand, such attempts usually
mean renouncing valuable information. It is now generally agreed that meta-
analysis can and should go further than simply producing overall summaries
of effects. In particular, understanding the possible causes of any heteroge-
neity can increase both the scientific value and clinical and epidemiological
relevance of the results from a meta-analysis. In this chapter, an appropriate
method for addressing this issue is presented. This method is based on finite
mixed generalized linear models (FMGLMs), which have proven to be very
flexible tools to estimate mean effect sizes and explain heterogeneity. Different
effect measurements can be considered simply by changing the link function
of the model. For example, using the identity link instead of the logit link leads
to meta-analyses of risk differences instead of odds ratios.

The analysis of the example data shows that much more information can be
gained by this approach than by the standard method. The second example
clearly shows that the heterogeneity itself can be the most interesting subject
of analysis.

There are of course some disadvantages and limitations to this approach.
The first limitation is the fact that the count data of the studies must be avail-
able, which is not always the case. A second limitation is that the number of
studies in the meta-analysis should be larger then 10. Otherwise, the nonpara-
metric maximum likelihood estimation will be doubtful. A third limitation
concerns the number of covariables. This number should not be too large in
comparison to the number of studies. Finally, it should be noted that misin-
terpretation of the effect of second level variables is possible, especially if they
are mean values of the study population.
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