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Summary

In this chapter, we show that a meta-analysis carried out in the random
effects model is preferable to the fixed effects model. Especially in the
normal mean case, as our simulation study indicates, the test of associ-
ation in the FE model does not yield satisfactory results. If one prefers
to use the commonly used methods, the choice between the FE and the
RE model, which leads to the choice of the test statistic for the hypothesis
of no association, is better based on the sign of the method of moments
estimator of the between-study variance than on the test of homogeneity.
But the use of the alternative test statistic originally proposed in (Hartung,
1999) is preferable concerning the significance level to all commonly used
methods. The test is always carried out in the RE model, but it yields suf-
ficiently good results if no heterogeneity is present. So, one does not have
to choose between the FE and the RE model in advance. In the case of a
small between-study variance, a combined test procedure involving the
commonly used test in the FE model and Hartung’s alternative test statis-
tic may still improve the actual significance level of the test towards the
prescribed one.

†Project “Meta-Analysis in Biometry and Epidemiology“ (SFB 475) of the Deutsche Forschungs-
gemeinschaft (DFG).
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4.1 INTRODUCTION

In this chapter, we focus our attention on the tests of association in the meta-
analytic framework, that is, we want to judge if an overall treatment effect ex-
ists given the stochastically independent study-specific estimates of the treat-
ment effect. This test is carried out either in the fixed effects model of meta-
analysis assuming a homogeneous treatment effect over the studies or in the
random effects model if heterogeneity of the study-specific treatment effects is
present. Before applying the test of association one usually decides which of
the two models one takes. Even in recent literature one can find the proposal
that the choice of the model should be based on the test of homogeneity, cf. for
instance Normand (1999). But the test of homogeneity in this context often has
too low power to detect a deviation from the hypothesis of homogeneity and
the false use of the fixed effects model, if heterogeneity is present, can lead to
a dramatic increase of the Type I error rate of the commonly used test of as-
sociation as pointed out for instance in Ziegler and Victor (1999). Moreover,
the commonly used tests of association in the fixed effects model and in the
random effects model, respectively, may lead to a large number of unjustified
significant evidences even if one carries out the analysis in the correct model.
In the fixed effects model this was shown by Li, Shi, and Roth (1994) and also
Böckenhoff and Hartung (1998) in the normal mean case.

We will now consider an alternative test statistic for the test of association
in the random effects model of meta-analysis proposed by Hartung (1999) and
show that this test provides satisfactory results concerning the actual signifi-
cance level in the fixed effects model as well as in the random effects model, so
that with this test a choice between the two models, in advance, is unnecessary.
Furthermore, we will discuss decision rules for the test of association, which
combines the commonly used tests and this alternative test, and investigate
these decision rules, whether they yield a further improvement with respect to
the prescribed significance level.

The outline of the chapter is as follows: In the next two sections we first
describe the theoretical foundations of the meta-analysis in a fixed effects and
a random effects approach, respectively. In Section 4.4, the commonly used
methods for a practical application in the fixed effects and random effects
model are presented. Section 4.5 contains some results of the theoretical de-
ficiency of the commonly used tests in the both models. In Section 4.6, the al-
ternative test statistic in the random effects model proposed by Hartung (1999)
is presented and in Section 4.7 some decision rules are discussed, which com-
bine the commonly used tests and the alternative test. In a simulation study,
of which the results are given in Section 4.8, the discussed tests are compared
concerning their actual significance levels in the normal mean case. Finally,
some conclusions are given.
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4.2 THE HOMOGENEOUS FIXED EFFECTS MODEL

Let us consider k independent studies and let us denote by θ1, . . . , θk the (one-
dimensional) parameters of interest, where each parameter stands for the treat-
ment effect in a study. For example, the parameter θi, i = 1, . . . , k, may rep-
resent the mean and the standardized difference of means, respectively, for
continuous outcome variables or the risk difference, the logarithmic odds ra-
tio, and the relative risk, respectively, for binary outcome variables. In each
study an estimate of the parameter θi, say θ̂i, is available, and all study-specific
estimators θ̂i, i = 1, . . . , k, are stochastically independent. Assuming that the
parameters of interest are fixed and homogeneous, that is, it holds θ1 = · · · =
θk = θ, and the study specific estimators θ̂i are at least approximately normally
distributed and unbiased or at least consistent, then the so-called (homoge-
neous) fixed effects model (FE model) of meta-analysis is given by

θ̂i ∼ N
(

θ, σ2(θ̂i)
)

, i = 1, . . . , k, (4.1)

where σ2(θ̂i) denotes the variance of the estimator θ̂i in the ith study.
In model 4.1, the best linear unbiased estimator of the common mean θ is

given by

θ̃FE =
k

∑
i=1

vi

v
θ̂i, v =

k

∑
i=1

vi, (4.2)

with vi = [σ2(θ̂i)]−1 the inverse of the variance of the study-specific estimator
θ̂i in the ith study. The estimator θ̃FE is also the maximum likelihood estima-
tor (MLE) of θ in model 4.1 if the normal distribution exactly holds and the
variances σ2(θ̂i) are known.

The assumption of homogeneity of the parameters can formally be checked
using the test statistic

Q =
k

∑
i=1

vi
(
θ̂i − θ̃FE

)2
, (4.3)

which is at least approximately χ2-distributed with (k− 1) degrees of freedom
under the hypothesis of homogeneity (Cochran, 1954; Normand, 1999).

If all assumptions in model 4.1 are fulfilled, the estimator θ̃FE from Equation
4.2 has the following distributional property:

θ̃FE ∼ N
(

θ,
1
v

)
. (4.4)

So, from 4.4 an (approximate) (1− α)-confidence interval for the common pa-
rameter θ is given by θ̃FE ∓ u1−α/2/

√
v, where uγ denotes the γ-quantile of

the standard normal distribution. Furthermore, the two-sided test rejects the
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hypothesis of no association H0 : θ = 0 at level α if

(
θ̃FE
)2

1/v
=

(
∑k

i=1 vi θ̂i

)2

v
> χ2

1;1−α,

where χ2
ν;γ denotes the γ-quantile of the χ2-distribution with ν degrees of free-

dom.
If the assumption of homogeneity is not valid in model 4.1, that is, it exists

at least one pair θi 6= θj, i 6= j, then the estimator θ̃FE from Equation 4.2 is still
an unbiased estimator of a weighted average of the θi’s, namely of ∑k

i=1 viθi/v.
So, the above described confidence interval and test can always be used for
this weighted average of the parameters. But the usual proceeding, if the
hypothesis of homogeneity is not valid, is either to try to identify covariates
which stratify studies into homogeneous populations or to carry out the meta-
analysis in a random effects model (Normand, 1999). In the next section we
will consider the latter proposal.

4.3 THE RANDOM EFFECTS MODEL

In contrast to the homogeneous fixed effects model 4.1, we first allow that the
study-specific estimators θ̂i, i = 1, . . . , k, may possess different expected values
θi, i = 1, . . . , k, that is, it holds approximately

θ̂i
∣∣θi, σ2(θ̂i) ∼ N

(
θi, σ2(θ̂i)

)
, i = 1, . . . , k,

and for each study-specific mean θi we assume that it is drawn from some
superpopulation of effects with mean θ and variance τ2, that is,

θi
∣∣θ, τ2 ∼ N

(
θ, τ2

)
.

The parameters θ and τ2 are referred to as hyperparameters, θ represents the
average treatment effect and τ2 the between-study variation. Given the hyper-
parameters, the marginal distribution of the estimators θ̂i is given by

θ̂i ∼ N
(

θ, τ2 + σ2(θ̂i)
)

, i = 1, . . . , k, (4.5)

(cf. Whitehead & Whitehead, 1991; Normand, 1999). If the between-study
variance τ2 is equal to zero then the random effects model (RE model) 4.5 re-
duces to the FE model 4.1.

In the RE model 4.5, the best linear unbiased estimator of the average treat-
ment effect θ is given by

θ̃RE =
k

∑
i=1

wi

w
θ̂i, w =

k

∑
i=1

wi
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with wi = [τ2 + σ2(θ̂i)]−1 the inverse of the variance of the estimator θ̂i in the
RE model. The estimator θ̃RE is also the MLE of θ if the variance components
are known and the normal distribution in 4.5 exactly holds.

The estimator θ̃RE in model 4.5 possesses the following distributional prop-
erty:

θ̃RE ∼ N
(

θ,
1
w

)
.

Thus, an (1 − α)-confidence interval for the average treatment effect θ in the
RE model is given by θ̃RE ∓ u1−α/2/

√
w and the hypothesis of no association,

that is, H0 : θ = 0, is rejected at level α if

(
θ̃RE
)2

1/w
=

(
∑k

i=1 wi θ̂i

)2

w
> χ2

1;1−α.

4.4 THE COMMONLY USED METHODS IN THE FE AND RE
MODEL

In the previous two sections we have summarized the theoretical aspects of the
FE and RE model of meta-analysis. For a practical application of the just de-
scribed inference the involved variances τ2 and σ2(θ̂i), i = 1, . . . , k, are hardly
ever known. So, they have to be replaced by appropriate estimators.

Let us first consider the FE model. Normally, an estimator of the variance of
θ̂i, say σ̂2(θ̂i), is available in each study. We assume that these estimators σ̂2(θ̂i),
i = 1, . . . , k, are jointly stochastically independent and at least nearly unbiased
for the corresponding variances σ2(θ̂i). Using these variance estimators, the
feasible estimator of θ in model 4.1 is given by

θ̂FE =
k

∑
i=1

v̂i

v̂
θ̂i, v̂ =

k

∑
i=1

v̂i, v̂i =
[
σ̂2(θ̂i)

]−1
, i = 1 . . . , k.

In general, this estimator is not an unbiased one of θ. If the estimators θ̂i and
the variance estimators σ̂2(θ̂i) are stochastically independent, which implies
that v̂i/v̂ as a function of σ̂2(θ̂i), i = 1, . . . , k, is also stochastically independent
of θ̂i, then the estimator θ̂FE is unbiased for θ in model 4.1. This can be readily
seen with ∑k

i=1 v̂i/v̂ = 1.
For further inference in the FE model, the variance estimators are commonly

inserted in the test statistics and the confidence interval given in Section 4.2.
Thus, the assumption of homogeneity of the treatment effects in model 4.1 is
checked in practice with the test statistic

Q1 =
k

∑
i=1

v̂i
(
θ̂i − θ̂FE

)2
. (4.6)
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The test statistic for testing the hypothesis of no association is given by

T1 =
(
θ̂FE
)2

1/v̂
=

(
∑k

i=1 v̂i θ̂i

)2

v̂
, (4.7)

and the hypothesis is rejected at level α if the observed value of T1 exceeds the
(1− α)-quantile of the χ2-distribution with one degree of freedom.

In the RE model, besides the estimates of the within-study variances σ2(θ̂i),
i = 1, . . . , k, an estimator of the between-study variance τ2 has to be deduced.
One approach is to use the method of moments estimator, which is derived
using the test statistic of homogeneity Q from Equation 4.3. The expected value
of Q in the RE model is given by

E(Q) = (k− 1) + τ2

(
v−

k

∑
i=1

v2
i /v

)
(cf. DerSimonian & Laird, 1986; Whitehead & Whitehead, 1991). So, the
method of moments estimator reads

τ̃2 =
Q− (k− 1)

v−∑k
i=1 v2

i /v
. (4.8)

Due to its construction, the estimator τ̃2 is unbiased but it can yield negative
estimates with positive probability. Moreover, the estimator depends on the
unknown variances σ2(θ̂i). Thus, for a practical application the feasible esti-
mator of τ2 is given by

τ̂2 =
Q1 − (k− 1)

v̂−∑k
i=1 v̂2

i /v̂
, (4.9)

with Q1 from Equation 4.6, and usually the truncated version of this estimator
is used, namely,

τ̂2
+ = max{0, τ̂2}. (4.10)

The larger the between-study variance τ2, the less the probability of τ̂2 yield-
ing negative estimates. So, for large τ2 both estimators in Equations 4.9 and
4.10 are nearly identical. Note that feasibility in this sense does not mean un-
biasedness for all τ2.

Other approaches of estimating the between-study variance τ2 are to use the
restricted maximum likelihood approach or a Bayesian approach (Normand,
1999). But we will not consider these approaches in the context of this chapter.

With the between-study variance estimator τ̂2
+ and the within-study vari-

ance estimators σ̂2(θ̂i), i = 1, . . . , k, the feasible estimator of the average treat-
ment effect θ in the RE model is given by

θ̂RE =
k

∑
i=1

ŵi

ŵ
θ̂i, ŵ =

k

∑
i=1

ŵi, ŵi =
[
τ̂2
+ + σ̂2(θ̂i)

]−1
, i = 1 . . . , k.
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So, the test statistic for testing the hypothesis of no association in the RE model
is given by

T2 =
(
θ̂RE
)2

1/ŵ
=

(
∑k

i=1 ŵi θ̂i

)2

ŵ
, (4.11)

and the hypothesis is rejected at level α if the observed value of T2 is larger
than the (1− α)-quantile of the χ2-distribution with one degree of freedom.

4.5 THE THEORETICAL DEFICIENCY OF THE COMMONLY
USED TESTS IN THE FE AND RE MODEL

In the previous section, we have presented the commonly used test statistics in
the FE and RE model (see Equations 4.7 and 4.11) for testing the hypothesis of
no association as well as the rule of rejection at a prescribed significance level
α. But as already pointed out in Li et al. (1994) and Böckenhoff and Hartung
(1998), the actual significance level of the commonly used test in the FE model
with normally distributed responses is often much larger than the prescribed
level α due to underestimation of the variance of the combined estimator θ̃FE
so that this phenomenon results in a large number of unjustified significant
evidences.

We now summarize the main theoretical results of the work of Böckenhoff
and Hartung in the FE model and indicate that the same deficiency also holds
in the RE model. First, we need some mathematical tools from Hartung (1976).

Definition 4.5.1. A function f : Rk → R` is called convex if(
x, y ∈ Rk, λ ∈ [0, 1] ⇒ f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

)
with the natural semi-ordering, that is,ordering by components.

Definition 4.5.2. A function f : Rk → R` is called quasi-convex if(
y ∈ R` ⇒ {x ∈ Rk| f (x) ≤ y} is convex

)
.

Definition 4.5.3. A function f is called (quasi-)concave if (− f ) is (quasi-)convex.

Lemma 4.5.1. Let f : Rk → R` be convex [concave] and T : R` → Rm be (quasi-)
convex [(quasi-)concave] and increasing by the natural semi-ordering in Rm. Then
the composed function T ◦ f is (quasi)-convex [(quasi)-concave].

Lemma 4.5.2. Let f : Rk → R` be convex [concave] and T : R` → Rm be (quasi-)
concave [(quasi-)convex] and decreasing by the natural semi-ordering in Rm. Then
the composed function T ◦ f is (quasi)-concave [(quasi)-convex].

Lemma 4.5.3. If f : R`
+ → R+ is quasi-convex [quasi-concave] and f (λ x) =

λ f (x), λ > 0, x 6= 0, then f is also convex [concave].



60 An Alternative Test Procedure for Meta-Analysis

Jensen’s Inequality. For a random variable ϑ̂ it holds
E( f (ϑ̂)) ≥ f (E(ϑ̂)) if f is convex, and
E(g(ϑ̂)) ≤ g(E(ϑ̂)) if g is concave.

We now return to the meta-analysis and consider the variance estimator
1/v̂ in the FE model. Note, that in the previous section we have assumed
that the within-study estimators σ̂2(θ̂i), i = 1, . . . , k, are (nearly) unbiased for
σ2(θ̂i), that is, E(σ̂2(θ̂i)) = σ2(θ̂i), i = 1, . . . , k. So, we can prove the following
theorem.

Theorem 4.5.4. In the FE model the variance estimator 1/v̂ in average underesti-
mates the variance 1/v, that is, E(1/v̂) ≤ 1/v.

Proof. First consider σ̂2(θ̂i) > 0, i = 1, . . . , k, then 1/σ̂2(θ̂i), i = 1, . . . , k, is a
convex function in σ̂2(θ̂i).

Furthermore, ∑ : Rk → R is a convex and increasing function. So, with
Lemma 4.5.1 the function ∑k

i=1 1/σ̂2(θ̂i) is convex in σ̂2(θ̂i), i = 1, . . . , k.

With Lemma 4.5.2, we yield that the function v̂−1 =
(

∑k
i=1 1/σ̂2(θ̂i)

)−1
is

quasi-concave, because every monotone function is quasi-convex as well as
quasi-concave.

Now, it holds for λ > 0 that(
k

∑
i=1

1
λσ̂2(θ̂i)

)−1

=

(
1
λ

k

∑
i=1

1
σ̂2(θ̂i)

)−1

= λ

(
k

∑
i=1

1
σ̂2(θ̂i)

)−1

,

that means with Lemma 4.5.3 that the function
(

∑k
i=1 1/σ̂2(θ̂i)

)−1
is concave.

Applying Jensen’s inequality, we obtain

E
(

v̂−1
)

= E

(
k

∑
i=1

1
σ̂2(θ̂i)

)−1

≤
(

k

∑
i=1

1
E(σ̂2(θ̂i))

)−1

=

(
k

∑
i=1

1
σ2(θ̂i)

)−1

= v−1,

which completes the proof.

As a consequence of Theorem 4.5.4, we obtain that the distribution of the test
statistic T1 from Equation 4.7 under H0 : θ = 0 may not be well approximated
by a χ2-distribution with one degree of freedom. Suppose that the feasible
estimator θ̂FE has variance near 1/v under H0, then the probability of T1 under
H0 to exceed the (1 − α)-quantile of the χ2

1-distribution is larger than α, so
that the actual significance level of the test is larger than the prescribed one.
Such an attitude of the test based on T1 has been observed in the normal mean
case as already mentioned by Li et al. (1994) as well as by Böckenhoff and
Hartung (1998). In the latter work, some alternative estimators of the variance
of θ̃FE are discussed in the normal mean case, which in average overestimate
the variance of θ̃FE and thereby lead to a correction of the actual significance
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level towards the prescribed one. This procedure does not, in general, result
in a conservative attitude of the test, as one may expect at first sight, because
one has to keep in mind that the variance of the theoretical estimator θ̃FE is
estimated and not the variance of the feasible estimator θ̂FE. Thus, even with an
overestimation of the variance σ2(θ̂i) in each study one may obtain too many
unjustified significant results but in a smaller number than with the commonly
used method (Böckenhoff & Hartung, 1998).

The above argumentation mainly holds if the variance estimator 1/v̂ un-
derestimates the variances of the feasible estimator θ̂FE. But if the variance
estimator 1/v̂ overestimates the variance of θ̂FE, the resulting test can be very
conservative as Hartung and Knapp (2001) have observed, for example, in the
log odds ratio case.

It is worthwhile to note that the just described deficiencies of the commonly
used test statistic in the FE model are most striking if the sample sizes in the
studies are small to moderate depending on the choice of the parameter of
interest.

In the RE model, a similar result as in Theorem 4.5.4 can be stated for testing
the hypothesis of no association using the test statistic T2 from Equation 4.11.
Suppose we use the untruncated unbiased estimator τ̃2 from Equation 4.8 of
the between-study variance in T2, then we can prove, following the lines of the
proof of Theorem 4.5.4, that the variance estimator 1/w̃, w̃i = [τ̃2 + σ̂2(θ̂i)]−1,
i = 1, . . . , k, w̃ = ∑k

i=1 w̃i, in average underestimates the variance of the theo-
retical estimator θ̃RE. Thus, the test in the RE model may be rather anticonser-
vative if the variance of the feasible estimator θ̂RE is near 1/w. But on the other
hand, the test can be very conservative if 1/w̃ overestimates the variance of
θ̂RE. If the truncated estimator τ̂2

+ from Equation 4.10 is used in the test statis-
tic T2 in practice, the expected value of the variance estimator is larger than
the expected value of the variance estimator with the untruncated estimator
τ̂2 from Equation 4.9, but for growing τ2 this difference diminishes.

4.6 AN ALTERNATIVE TEST STATISTIC IN THE FE AND RE
MODEL

In Section 4.4, we have estimated the variances of the theoretical estimators θ̃FE
and θ̃RE in the FE and RE model by estimating their components separately.
Now we consider an estimator of the variance of θ̃RE in the RE model 4.5 fol-
lowing the theory of variance components estimation (cf. Rao, 1972; Hartung,
1981). This estimator is a quadratic function of the study-specific estimators θ̂i,
i = 1, . . . , k, and is given in the RE model 4.5 as

σ̃2(θ̃RE) =
1

k− 1

k

∑
i=1

wi

w
(
θ̂i − θ̃RE

)2
,



62 An Alternative Test Procedure for Meta-Analysis

(cf. Hartung, 1999). Note that for τ2 = 0 the quadratic function w · (k − 1) ·
σ̃2(θ̃RE) coincides with the statistic Q from Equation 4.3, which is formally
used in the FE model for checking the assumption of homogeneity.

Theorem 4.6.1. The estimator σ̃2(θ̃RE) is an unbiased estimator of the variance of
θ̃RE in the RE model 4.5.

Proof. It holds

E
(
θ̂i
)2 = Var

(
θ̂i
)
+
[
E
(
θ̂i
)]2 = w−1

i + θ2,

E
(
θ̃RE
)2 = w−1 + θ2,

E
(
θ̂i θ̃RE

)
=

wi

w
E
(
θ̂i
)2 +

k

∑
j 6=i

wj

w
E
(
θ̂i
)

E
(
θ̂j
)

= w−1 + θ2.

Then it follows

E
(
θ̂i − θ̃RE

)2 = w−1
i + θ2 − 2w−1 − 2θ2 + w−1 + θ2 = w−1

i − w−1

and

E
(

σ̃2 (θ̂RE
))

=
1

k− 1

k

∑
i=1

wi

w
(w−1

i − w−1) =
1

k− 1
(kw−1 − w−1) =

1
w

.

Moreover, it is shown in Hartung (1999) that the quadratic form w · (k− 1) ·
σ̃2(θ̃RE) is χ2-distributed with (k − 1) degrees of freedom and stochastically
independent of θ̃RE in the RE model if the study-specific estimators θ̂i, i =
1, . . . , k, are exactly normally distributed. Thus, we now consider the random
variable (

θ̃RE − θ
) /√

σ̃2(θ̃RE),

which under the above assumption is exactly t-distributed with (k− 1) degrees
of freedom. Therefore, an alternative test of H0 : θ = 0 is given by∣∣θ̃RE

∣∣√
σ̃2(θ̃RE)

> tk−1;1−α/2, (4.12)

where tν;γ stands for the γ-quantile of the t-distribution with ν degrees of free-
dom.

The alternative test in 4.12, however, depends on the unknown between-
study variance τ2 and the unknown within-study variances σ2(θ̂i), i = 1, . . . , k.
Thus, for a practical application of this test we replace the unknown variance
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components by appropriate estimators. Then, the feasible test statistic reads

T3 =

∣∣θ̂RE
∣∣√

σ̂2(θ̃RE)
(4.13)

and the hypothesis of no association is rejected if the observed value of T3
exceeds the (1 − α/2)-quantile of the t-distribution with (k − 1) degrees of
freedom.

4.7 COMBINED DECISION RULES

In the previous sections, we have always distinguished between the FE and
the RE model. For practically conducting a meta-analysis one usually has to
choose in advance between these two models. In the literature, there exist
different opinions how to deal with this decision problem.

A widespread procedure is to make first a test of homogeneity using the
test statistic Q1 from Equation 4.6 and, if the hypothesis of homogeneity is
rejected, one uses the RE model, otherwise the FE model (Normand, 1999).
Note that the hypothesis of homogeneity in the FE model, that is, H0 : θ1 =
. . . = θk, is equivalent to the hypothesis that the between-study variance τ2

in the RE model is equal to zero. But the test of homogeneity often has low
power against the alternative τ2 > 0 so that one cannot satisfactorily avoid the
false use of the FE model if a between-study variance is present. The effect of a
dramatically increasing Type I error by using the test statistic T1 from Equation
4.7, if heterogeneity is present, is, for example, shown in Ziegler and Victor
(1999) and in our simulation study described in the next section.

Whitehead and Whitehead (1991) propose a similar decision making at first
sight. They consider the method of moments estimator τ̂2 from Equation 4.9
of the between-study variance and suggest to use the FE model if τ̂2 yields a
negative estimate, otherwise the RE model. But this procedure is identical to
the principle to always use the RE model with the truncated variance estimator
τ̂2
+ from Equation 4.10.

Both procedures have in common that the decision for an analysis in a corre-
sponding model depends on a judgement of the variation between the studies.
If one is mainly interested in testing the hypothesis H0 : θ = 0, the “pre-
test” determines the test procedure which has to be used, but a false decision
of the “pre-test” may considerably affect the properties of the test procedure.
The most crucial point in the just described choice between the two models is
given if the true between-study variance τ2 is relatively small. In this situation
one may expect the most false decisions between the models. For growing τ2

the decision for the RE model becomes more and more certain. Thus, we will
consider decision rules for tests of the hypothesis H0 : θ = 0, which incorpo-
rate the test procedure in the FE model as well as in the RE model and depend
only in part on a variance estimate of the between-study variance. Moreover,
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we make always use of the alternative test statistic T3 from Equation 4.13 in
the RE model.

The first combined decision rule is that the hypothesis H0 : θ = 0 is rejected
if T1 > χ2

1;1−α and |T3| > tk−1;1−α/2, that means, we require that the commonly
used test in the FE model as well as the alternative test in the RE model has
to reject H0. The idea behind this decision rule is that for a small between-
study variance one may correct the significance level of the anticonservative
test based on T1 in the FE model towards the prescribed one, because the al-
ternative test based on T3 in the RE model may possess a smaller significance
level. If the between-study variance grows, the role of the test based on T1
becomes more and more ignorable and the combined decision rule is nearly
identical to the decision rule simply based on the alternative test.

Furthermore, we consider two additional combined decision rules which
include the estimation of the between-study variance. The first combined de-
cision rule rejects H0 : θ = 0 if (|T3| > tk−1;1−α/2 and τ̂2

+ > 0) or (T1 > χ2
1;1−α

and |T3| > tk−1;1−α/2, and τ̂2
+ = 0), that is, we always require that the alter-

native test in the RE model rejects the hypothesis H0 irrespective of the esti-
mated value of τ2, but if the truncated estimator τ̂2

+ is equal to zero, that is,
the usual method of moments estimator yields a negative estimate, the com-
monly used test in the FE model has also to reject H0. This combined decision
rule is motivated to correct a possible anticonservative attitude of the alterna-
tive test statistic in the RE model if the between-study variance is small and
the test is anticonservative, while the commonly used test in the FE model is
rather conservative in this situation. But if the alternative test statistic in the RE
model performs better in case of small τ2, this decision rule is nearly identical
to the previous combined decision rule. Again, for growing τ2 this decision
rule becomes more and more similar to the decision rule based solely on the
alternative test statistic T3 in the RE model.

The second combined decision rule, which incorporates an estimation of
τ2, rejects H0 : θ = 0 if (T1 > χ2

1;1−α and τ̂2
+ = 0) or (T1 > χ2

1;1−α and
|T3| > tk−1;1−α/2 and τ̂2

+ > 0), that means, we always require that the com-
monly used test in the FE model rejects the hypothesis H0 irrespective of the
estimated value of τ2, but if the truncated estimator τ̂2

+ is greater than zero,
the alternative test in the RE model has also to reject the hypothesis. This deci-
sion rule is similar to the proposal of Whitehead and Whitehead (1991), except
that we use the alternative test statistic T3 instead of the commonly used T2 in
the RE model. Since we also require to carry out the commonly used test in
the FE model if the variance estimate of τ2 is positive, this combined decision
rule reduces the anticonservative attitude of this test for growing τ2 as well
as a possible anticonservative attitude of the test based on the alternative test
statistic for small between-study variances.
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4.8 SIMULATION STUDY

In a small simulation study, we compare the decision rules according to their
actual Type I error rate. Table 4.1 summarizes all seven different decision rules
we have already discussed and which are considered in the simulation study.

Table 4.1 Tests and Corresponding Decision Rules for Rejecting the Hypothesis
H0 : θ = 0 at Level α With the Test Statistics T1, T2, and T3

Test Decision Rule: Reject H0 : θ = 0 if

ψ1 T1 > χ2
1;1−α

ψ2 T2 > χ2
1;1−α

ψ3 |T3| > tk−1;1−α/2

ψ4 T1 > χ2
1;1−α, if Q1 ≤ χ2

k−1;1−α

T2 > χ2
1;1−α, if Q1 > χ2

k−1;1−α

ψ5 T1 > χ2
1;1−α and |T3| > tk−1;1−α/2

ψ6 |T3| > tk−1;1−α/2, if τ̂2
+ > 0

T1 > χ2
1;1−α and |T3| > tk−1;1−α/2, if τ̂2

+ = 0

ψ7 T1 > χ2
1;1−α, if τ̂2

+ = 0
T1 > χ2

1;1−α and |T3| > tk−1;1−α/2, if τ̂2
+ > 0

Note. For a definition of T1, T2, and T3 see Equations 4.7, 4.11, and 4.13, for Q1 see
Equation 4.6, and for τ̂2

+ see Equation 4.10.

As an example, we choose the random one-way ANOVA model with het-
eroscedastic error variances, which is given by

yij = µ + ai + eij, i = 1, . . . , k; j = 1, . . . , ni, (4.14)

with ai ∼ N (0, τ2) and eij ∼ N (0, σ2
i ), and all random effects are stochastically

independent. Instead of the individual data, usually summary statistics are
given in publications. We consider the arithmetic mean µ̂i = ∑ni

j=1 yij/ni as
the estimator of µ in each study. For this estimator, we have the following
distributional property:

µ̂i ∼ N
(

µ, τ2 + σ2 (µ̂i)
)

, σ2(µ̂i) = σ2
i /ni, i = 1, . . . , k. (4.15)

Furthermore, an unbiased estimator of the error variance in model 4.14 is given
by σ̂2

i = s2
i = ∑ni

j=1(yij − µ̂i)2/(ni − 1), i = 1, . . . , k, so that an unbiased es-
timator of the within-study variance σ2(µ̂i) is σ̂2(µ̂i) = s2

i /ni. This estima-
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tor is stochastically independent of µ̂i and it holds that (ni − 1)s2
i /σ2

i is χ2-
distributed with (ni − 1) degrees of freedom.

In the simulation study, we consider four different patterns of sample sizes
and error variances, which are given in Table 4.2 for k = 3 studies. The first
pattern has equal sample sizes and equal error variances, whereas in the sec-
ond pattern the sample sizes are doubled in each study. In the last two patterns
we consider different sample sizes in each study. In pattern 3, the error vari-
ances are increasing with growing sample sizes, but the within-study variance
σ2

i /ni, i = 1, 2, 3, is always 0.1. In pattern 4, the error variances are decreasing
with growing sample sizes so that the study with the largest sample size has
the smallest within-study variance.

Table 4.2 Sample Sizes and Error Variances Used in the Simulation Study

Pattern Sample Sizes Error Variances
for k = 3 (n1, n2, n3) (σ2

1 , σ2
2 , σ2

3 )

1 (5, 5, 5) (4,4,4)
2 (10, 10, 10) (4,4,4)
3 (10, 20, 40) (1,2,4)
4 (10, 20, 40) (4,2,1)

Patterns for k = 9: Replicated Twice the Patterns for k = 3

In Table 4.3, the results of our simulation study are put together. We present
the results for k = 3 and k = 9 studies, where the patterns for k = 9 stud-
ies have been constructed by replicating the patterns for k = 3 studies twice.
As different values of the between-study variance we choose τ2 = 0, 0.1, 1, 10,
and as the estimator of τ2 we always use τ̂2

+ from Equation 4.10. Besides the
estimated Type I error rates of the test given a prescribed significance level of
α = .05, the table also contains the estimated proportion of negative estimates
of τ2 using τ̂2 from Equation 4.9 and the estimated power of the test of homo-
geneity based on Q1 from Equation 4.6. Each estimated value in the table is
based on 10,000 replications of the corresponding model.

From Table 4.3, we see that the commonly used test ψ1 in the FE model is
rather anticonservative in the normal mean case if the between-study variance
is equal to zero, that is, the FE model is the theoretically correct one. Moreover,
the Type I error rates increase if the number of studies grows, but if the sam-
ple sizes increase for fixed k the Type I error rates decrease. If between-study
variation is present, the estimated Type I error rates become still larger and
they increase for growing between-study variance. Consequently, one should
be very careful in the normal mean case to apply the test ψ1.

The commonly used test ψ2 in the RE model, which coincides with the pro-
posal of Whitehead and Whitehead how to deal with the choice between FE
and RE model, yields its best results in comparison to the prescribed level if
the between-study variance is equal to zero. From the estimated proportions
of negative estimates of τ2, we observe that for k = 3 in approximately 60 % of
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Table 4.3 Estimated Type I Error Rates (in %) for the Seven Different Two-Sided
Tests of H0 : µ = 0 in Model 4.15, Given α = .05, the Estimated Proportion (in %)
of Negative Estimates of τ2, the Estimated Power (in %) of the Test of Homogeneity
for k = 3 and k = 9 Studies

τ̂2 Power
k Pattern τ2 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 neg. (Q1)

3 1 0 19.4 10.3 7.2 14.8 3.7 3.7 7.8 56.4 12.6
0.1 21.3 11.0 7.2 15.9 4.2 4.2 8.4 53.2 14.6

1 36.3 14.8 6.8 20.9 5.2 5.2 9.1 32.4 33.8
10 69.3 18.6 5.1 20.5 5.0 5.0 5.8 6.3 82.7

2 0 10.6 6.4 5.5 8.9 2.2 2.2 5.1 60.9 8.0
0.1 14.8 8.2 5.9 11.7 2.8 2.8 6.2 51.7 13.4

1 37.5 15.6 5.7 19.9 4.7 4.7 8.3 23.5 45.5
10 73.7 18.7 5.2 19.3 5.2 5.2 5.7 3.7 89.4

3 0 10.0 5.1 5.5 7.3 1.7 1.7 4.2 57.1 11.8
0.1 26.4 13.7 7.7 20.1 5.2 5.2 10.7 44.4 20.6

1 64.0 21.1 8.4 27.0 7.8 7.8 10.8 16.5 61.0
10 87.7 21.0 6.1 21.5 6.1 6.1 6.2 2.2 93.7

4 0 6.6 4.1 4.7 5.7 1.3 1.3 3.4 59.7 8.5
0.1 35.2 16.6 9.1 25.2 6.8 6.8 12.3 38.7 24.9

1 73.7 21.6 8.0 25.5 7.6 7.6 9.3 10.5 73.5
10 91.1 22.2 5.8 22.5 5.7 5.7 5.8 1.4 96.0

9 1 0 26.9 9.8 9.4 15.3 7.6 7.7 8.1 32.9 29.8
0.1 28.9 9.7 9.0 14.9 7.6 7.7 8.0 26.3 35.9

1 44.5 9.8 6.8 12.8 6.7 6.7 6.7 5.5 74.7
10 74.9 9.8 5.3 9.8 5.3 5.3 5.3 0.0 99.9

2 0 12.1 6.5 6.6 9.3 4.6 4.6 5.2 44.7 14.1
0.1 17.2 8.1 7.2 11.6 5.9 5.9 6.3 30.5 26.4

1 39.7 8.6 5.4 10.0 5.3 5.3 5.4 2.2 86.2
10 76.1 9.3 5.4 9.3 5.4 5.4 5.4 0.0 100

3 0 11.2 5.4 5.3 7.5 3.7 3.7 4.1 40.8 19.5
0.1 27.8 9.4 6.6 13.8 6.2 6.2 6.5 14.8 51.8

1 66.7 10.3 6.0 10.7 6.0 6.0 6.0 0.3 97.7
10 88.3 10.5 5.3 10.5 5.3 5.3 5.3 0.0 100

4 0 7.5 4.9 5.4 6.6 3.3 3.3 3.8 49.1 11.4
0.1 36.1 10.4 7.4 14.7 7.2 7.2 7.4 8.0 65.8

1 73.9 10.0 5.5 10.0 5.5 5.5 5.5 0.1 99.6
10 91.8 10.7 5.3 10.7 5.3 5.3 5.3 0.0 100
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the simulated cases and for k = 9 in still approximately 40 % of the cases one
actually performs the commonly used test in the FE model. If between-study
variation is present, the estimated Type I error rates in the normal mean case
increase to more than four times the prescribed level for k = 3 studies and to
nearly twice the prescribed level for k = 9 studies. But this indicates that for
an increasing number of studies the actual Type I error rate diminishes.

The alternative test ψ3 in the RE model yields the best results concerning the
actual significance level in comparison to the tests ψ1 and ψ2. If τ2 = 0 is not
present, the tests ψ2 and ψ3 have rather similar estimated Type I error rates, but
if a positive between-study variance exists, the alternative test has estimated
Type I error rates often near the prescribed level and only in some cases goes
beyond 7 %.

The test ψ4, which has a decision rule depending on the test of homogene-
ity, always has an estimated Type I error rate which is greater or equal to the
estimated Type I error rate of the test ψ2. Thus, this combined decision rule
does not yield an improvement concerning the actual significance level.

The test ψ5, which requires the rejection of the hypothesis with the test ψ1
and with the alternative test ψ3, has always estimated Type I error rates which
are less or equal to the estimated Type I error rates of the test ψ3. The test ψ5
is often an essential improvement in comparison to the test ψ3 if the between-
study variance τ2 is equal to 0.1 or 1, but for τ2 = 0 the test ψ5 may become
rather conservative.

Due to the fact that the test ψ1 is anticonservative the test ψ6 yields nearly
the same results as the test ψ5, as we have pointed out in Section 4.7.

The test ψ7 yields rather similar results like the test ψ5 if k = 9 studies are
considered. The estimated Type I error rates of ψ7 are slightly greater or equal
to the estimated Type I error rates of ψ5. The relationship between these two
tests also holds for k = 3 studies, but the difference between the estimated
Type I error rates of the tests is much larger. Often, the estimated Type I error
rates of ψ7 are twice as large as the estimated ones of ψ5.
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