
Citation:  

Malzahn, U. (2003). Meta-analysis: A general principle for estimating heterogeneity variance 
in several models. In R. Schulze, H. Holling & D. Böhning (Eds.), Meta-analysis: New 
developments and applications in medical and social sciences (pp. 41-52). Hogrefe & Huber. 

 



3
Meta-Analysis: A General Principle for

Estimating Heterogeneity Variance in
Several Models

Uwe Malzahn
Working Group: Biometry and Epidemiology
Institute for International Health, Joint Center for Humanities and Health Sciences
Free University Berlin

Summary

A main question in meta-analysis is the comparability of studies in con-
sideration. This relates and leads inevitably to the investigation of prob-
lems of heterogeneity. In this chapter, we deal with the one-dimensional
case, represented by four examples, and propose a nonparametric mo-
ment estimator for the heterogeneity variance in the corresponding ran-
dom effects model. The principle is based on decomposing the variance
of the study estimator, that is, the total (unconditional) variance is com-
posed of the mean conditional variance and the heterogeneity variance, or
an expression containing the latter. We also hint to problems concerning
the use of the DerSimonian-Laird estimator, which is a frequently used
nonparametric estimator of general application. Finally, based on expres-
sions for the conditional variances in several models for effect parameters
and quality scores we demonstrate our principle.
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3.1 INTRODUCTION AND EXAMPLES

We denote by θ ∈ R the measure of the effect of interest. Given population
heterogeneity, there is an increase of the variance for the study estimator. It
appears an additional variance term, the heterogeneity variance τ2. An esti-
mation τ̂2 for τ2 can be used to adapt the inference regarding the overall mean
of θ.

We suppose that the meta-analysis is based on k studies, or charges of a
pharmaceutical product (solution, powder), respectively. Let us consider four
examples for an effect measure or quality score θ.

Standardized difference This effect size measure is used for comparisons of
groups based on continuous measurement variables with (possibly) different
scales of measurement:

θ =
(µT − µC)

σT,C
.

Here, µT and µC denote the mean values in a treatment and control group, σT,C
denotes the variance of the response variables in the two groups. That means
equal variances of the two groups within each study are assumed.

Standardized mortality ratio Here, we are interested in the expected num-
ber of counts for a case event in a region or area in comparison to the corre-
sponding number in a reference population with the same population struc-
ture:

θ =
µ

e
.

At this µ is the mean number of mortality or morbidity cases for a geographic
region or area, and e is the corresponding value for this area calculated on the
basis of an external reference population. Clearly, both values depend on the
population size for the area considered.

Log relative risk in Cox regression with random censorship We consider the
log-linear Cox-model with only one covariate. This covariate is a dichotomous
variable which indicates some grouping membership (new therapy/treatment
– standard therapy/placebo). Here, the parameter θ can be interpreted as the
logarithm of the relative risk (ln(RR)):

θ = ln(RR) = ln
(

λ(t|Z = 1)
λ(t|Z = 0)

)
= ln

(
λT(t)
λC(t)

)
,

where λ(·|Z) = λ0(·)eθZ denotes the hazard rate function. We suppose that
the distribution function F0(t) =P(T ≤ t|Z = 0) is continuous.

S0(t) = exp
(
−
∫ t

0
λ0(z)dz

)
is the survival function corresponding to λ0(·).
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Quality scores (in pharmaceutical technology) This type of scores is used
for in-process control detecting polluting particles in solutions and powders:

θ =
1
n

c0
(
λl + cmλm + cgλg

)
.

Here, n denotes the size of the sample which is drawn from each charge of
the product; λl, λm, and λg denote the expected numbers of slight, moderate,
and severe faults (pollutions, contaminations) in the sample; cm and cg are
coefficients to weigh the kinds of fault.

The (unknown) study-/charge-specific values of the effect-/score parame-
ter are denoted by θi; θ̂i is the estimate in the study number i. Homogeneity
means that θ1 = θ2 = · · · = θk.

In the random effects model (RE model) we have to distinguish between the
conditional distribution of the random variable θ̂, given a fixed study-specific
parameter value θ, Pθ̂, and the distribution of the parameter θ in the popu-
lation of study parameters. In the context of heterogeneity analysis the latter
distribution is called the heterogeneity distribution, say G.

We will assume that θ̂ is a conditional unbiased estimator1, and θ̂ is regarded
as the bias corrected version of an estimator θ̃. In the following, we give the
study estimators for our four examples.

Standardized difference

θ̂i = [H(Ni/2)]−1

(
XT

i − XC
i

)
s2

i
.

Here, s2
i denotes the pooled sample variance, and H(Ni/2) is the bias correct-

ing factor:

H(a) =
√

a
Γ(a− 1

2)
Γ(a)

, and furthermore, Ni = nT
i + nC

i − 2,

in which nT
i and nC

i are the group sizes in study i, and Γ(·) denotes the gamma
function.

Standardized mortality ratio

θ̂i =
Yi

ei
.

Here, Yi is the observed number of mortality or morbidity cases in region i, and
ei is the corresponding expected number calculated on the basis of an external
reference population.

1More precisely, we only need that E
(
θ̂|θ
)

= θ + C, in which the constant C does not depend
on θ.
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Log relative risk in Cox regression with random censorship Here, θ̂i is the
maximum partial likelihood estimator (MPLE), which is asymptotically unbi-
ased:

θ̂i = argmaxθ

Li

∏
j=1

exp(θiZi(j))

∑l∈Rij
exp (θiZil)

and ni denotes the number of individuals at the beginning of study i, T0
i1 <

· · · < T0
iLi

are the failure times, and Zi(j) is the covariate value for the individual
failed at time T0

ij. Furthermore, Rij is the risk set immediately before time T0
ij

in study i. The data are (Xil, δil), Xil = min(Til, Uil), in which Til and Uil are
the variables for the failure time and censoring time for individual l in study i,
and δil = I{Til≤Uil}.

Quality scores
θ̂i =

c0

ni

(
li + cmmi + cggi

)
,

where li, mi and gi are the observed numbers of slight, moderate, and severe
faults in charge i. Here, we usually have ni ≡ n.

Let us summarize the assumptions of the RE model:

θ̂i = θi + εi, θi = µG + ξi, (3.1)

in which the εi are independent random variables with

E (εi) = 0, ν2
i = Var (εi) = EG

(
σ2

i (θi)
)

, with σ2
i (θi) = Var

(
θ̂i|θi

)
,

ξi i.i.d., E (ξi) = 0, Var (ξi) = VarG (ξ) = τ2, µG = EG (θi) .

The conditional variances possibly depend both on the study design in study i
and on the parameter θi. We consider the problem of estimating the heteroge-
neity variance τ2.

3.2 A VARIANCE DECOMPOSITION

In this section, we generally denote by θ̂ a study-/charge-estimator with

µ(θ) = E
(
θ̂|θ
)

,

σ2(θ) = Var
(
θ̂|θ
)

.

Note, that more precisely we have to denote σ2(θ; Ξ; α1, · · · , αp), in which Ξ
stands for the study design or, more generally, for characteristics of the exper-
iment, for instance N = nT + nC − 2 for the standardized difference. Under
the assumption θ random, θ ∼ G, we can decompose the total (unconditional)
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variance:

Var
(
θ̂
)

= EG
(
Var

(
θ̂|θ
))

+ VarG
(
E
(
θ̂|θ
))

=
∫

σ2 (θ) g (θ) dθ +
∫

(µ (θ)− µG)2 g (θ) dθ,
(3.2)

where g(·) is the density or the probability mass function (which gives the
single probabilities) in the case of a discrete heterogeneity distribution.

In the case that θ̂ is conditionally unbiased: µ(θ) = θ, or if µ(θ) = θ + const.,
it follows that VarG

(
E
(
θ̂|θ
))

= VarG (θ) = τ2, and

τ2 = Var
(
θ̂
)
− EG

(
Var

(
θ̂|θ
))

(3.3)

(see Equation 3.2). Equation 3.3 will motivate a principle for estimating τ2.
The advantages of the method are:

• the resulting estimator is very easily calculated,

• we avoid any parametric assumption about G,

• using Var
(
θ̂|θ
)
, it is possible to take the special statistical model into ac-

count, that is, the special estimating problem.

This method is applicable under the supposition that we can express

EG
(
Var

(
θ̂|θ
))

= F
(

Λ; µ
(l)
G ; EG (αr

s)
)

, (3.4)

in which Λ comprises known quantities from the study design. Examples for
αs are α1 = pl, α2 = pm, and α3 = pg in the case of quality scores. σ2(θ) =
F̃(Λ; θl; αr

s) is sufficient for Equation 3.4.

3.3 THE DERSIMONIAN-LAIRD ESTIMATOR

A simple, general, and frequently used method to estimate τ2 is the DerSimon-
ian-Laird estimator. Generally, this estimator can be derived without normality
assumptions by means of the weighted least squares principle. For this, it is
assumed that the conditional variances are known, the so-called study specific
variances. We write ν2

i instead of σ2
i (θi) because it makes no sense to assume

on the one side that θi is an unknown realization of a random variable, fur-
thermore σ2

i is known exactly, and on the other side, that we have a structural
dependence of σ2

i on θi : σ2
i (θi).

Now we can write the model (see Equations 3.1) in vector notation with the
“design matrix” X = 1k = (1, . . . , 1)T:(

θ̂1, . . . , θ̂k
)T = D = Xβ + F = µG1k + (E + C),
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in which

E = (ε1, . . . , εk)
T ,

C = (ξ1, . . . , ξk)
T ,

E (E + C) = 0k,

W : = Cov (E + C) = τ2Ik + V.

Here, Ik denotes the k-dimensional identity matrix and V = diag(ν2
1 , . . . , ν2

k ).
Then it is straightforward to derive the weighted least squares (WLS) estimate
Xβ̂WLS = µ̂G with weighting matrix V−1 (note, that τ2 is unknown but the ν2

i
are assumed to be known). We have

µ̂G =

(
k

∑
i=1

ν−2
i θ̂i

)
/

(
k

∑
i=1

ν−2
i

)
.

The corresponding sum of squared residuals is

RSS = |D− D̂|2V−1 =
k

∑
i=1

ν−2
i θ̂2

i −

( k

∑
i=1

ν−2
i θ̂i

)2

/

(
k

∑
i=1

ν−2
i

) ,

with

E (RSS) = (k− 1) +

(
k

∑
i=1

ν−2
i −

(
k

∑
i=1

ν−4
i /

k

∑
i=1

ν−2
i

))
τ2.

Rearranging this equation and replacing the expectation E (RSS) by its ob-
served value RSS, it follows

τ̂2
dl =

(RSS− (k− 1))
(S1 − (S2/S1))

=

(
∑k

i=1 ν−2
i
(
θ̂i − µ̂G

)2 − (k− 1)
)

(S1 − (S2/S1))
, (3.5)

with Sl = ∑k
i=1

(
ν−2

i

)l
, l = 1, 2.

However, for the application in practice the true study specific variances
ν2

i are unknown, that means, for the data analysis they are estimated. Addi-
tionally, in most applications we have Var

(
θ̂|θ
)

= σ2 (θ) and σ2 (α1, . . . , αp
)
,

respectively, with unknown θ and αs. Note, that in Equation 3.5 we have
µ̂G = µ̂G(ν2

1 , . . . , ν2
k ) and Sl = Sl(ν2

1 , . . . , ν2
k ).

The problem is: What do we have to put in for (ν2
1 , . . . , ν2

k )? It would be good
practice to start from an adequate model, find the right conditional distribution
in this model, and with this derive the expression for the conditional variances
σ2

i (θi). Finally, we put in

ν2
i := σ̂2

i (θi) = σ2
i
(
θ̂i
)

,
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to obtain a practical version of the DerSimonian-Laird estimator. Note, that θ̂i
is random. Consequently, τ̂2

dl is no longer the best linear unbiased estimator
because the optimal weights ν−2

i are unknown. Moreover, τ2
dl is not unbiased,

numerator and denominator in Equation 3.5 are stochastic terms.

3.4 THE CONDITIONAL VARIANCES IN THE MODELS

For the Examples

Standardized difference Under the assumption of normally distributed mea-
surement variables

Xij ∼ N (µT
i , σ2

i;T,C), j = 1, . . . , nT
i ,

Yij ∼ N (µC
i , σ2

i;T,C), j = 1, . . . , nC
i

it follows that √
qiH (Ni/2) θ̂i ∼ tNi (θi

√
qi) ,

a noncentral t-distribution with Ni degrees of freedom and noncentrality pa-
rameter θi

√
qi, in which qi = nT

i nC
i /
(
nT

i + nC
i
)
. Therefore, we have

σ2
i (θi) = (H (Ni/2))−2 Ni

qi (Ni − 2)
+
(

Ni

(Ni − 2)
(H (Hi/2))−2 − 1

)
θ2

i (3.6)

(see Malzahn, Böhning, & Holling, 2000).

Standardized mortality ratio Since conditional on the value θi in area i, a
Poisson distribution with parameter λi = θiei is assumed for Yi, it is easy to see
that

σ2
i =

θi

ei
.

Maximum partial likelihood estimator for survival time studies It can be
shown (see Fleming & Harrington, 1994) that

n1/2
i

(
θ̂
(ni)
i − θi

)
−→L X,

with X ∼ N
(

0, σ−2
i (θi)

)
, in which the inverse of the asymptotical variance

for the standardized estimator is under additional assumptions (in order to
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reduce the complexity of the resulting expression):

σ2
i (θi) =

1
2

exp (θi)
∫ tup

0

(
1− t

ui

)
(S0 (t))exp(θi)[

exp (θi) (S0 (t))exp(θi) + S0 (t)
] f0 (t) dt

=
1
2

exp (θi)
∫ 1

S0(tup)

(
1−

S−1
0 (s)

ui

)
sexp(θi)[

exp (θi) sexp(θi) + s
]ds.

(3.7)

Here, tup denotes a constant, common for all studies (it depends on the baseline
hazard rate function, which is taken as a basis), and ui are (possibly study-
specific) constants, characterizing the censoring time distribution; S0 denotes
the survival function according to the baseline hazard: S0 (s) = P0 (T > s).

Quality scores The situation can be described by a multinomial distribution
model M(n; pl, pm, pg) with probability mass function:

π(l, m, g|p) =
n!

l!m!g!
pl

l p
m
m pg

g(1− pl − pm − pg)n−l−m−g. (3.8)

Here, p = (pl, pm, pg)T denotes the vector of the probabilities for detecting
a slight, moderate, or severe contamination in an inspected item. For hete-
rogeneity analysis it is important that we interpret the expression in Equa-
tion 3.8 as a conditional distribution: the distribution for the vector (l, m, g)T

at fixed underlying vector (pl, pm, pg)T. Heterogeneity means: There exists a
non-degenerated heterogeneity distribution G on (0, 1)3, and for each charge
of the product under examination the actually underlying parameter vector p
is a realization from this distribution. In this model, the conditional2 variance
of the quality score in charge i is

σ2
(

p(i)
)

:= Var
(

θ̂i|p(i)
)

=
c2

0
n

[
p(i)

l

(
1− p(i)

l

)
+ c2

m p(i)
m

(
1− p(i)

m

)
+ c2

g p(i)
g

(
1− p(i)

g

)
− 2cm p(i)

l p(i)
m − 2cg p(i)

l p(i)
g − 2cmcg p(i)

m p(i)
g

]
.

3.5 A PRINCIPLE TO ESTIMATE THE HETEROGENEITY
VARIANCE

Our starting point here is the relationship given in Equation 3.3 for the hetero-
geneity variance. If θ2 enters in the expression for Var

(
θ̂|θ
)
, then τ2 enters in

2Conditional on fixed p(i) =
(

p(i)
l , p(i)

m , p(i)
g

)T
.
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an analogous manner in the right side of Equation 3.3, leading to an equation
for τ2 which is specifically considered for the model. This equation provides
the possibility to construct an estimator τ̂2. As an example, we want to demon-
strate this principle for the standardized difference (see Malzahn et al., 2000).

Standardized difference Here, Equation 3.6 together with the relationship
EG
(
θ2) = τ2 + µ2

G yields∫
σ2 (θ) g (θ) dθ = (H (N/2))−2 N

q (N − 2)
+[

N
(N − 2)

(H (N/2))−2 − 1
] (

τ2 + µ2
G

)
.

Applying this and rearranging leads to

τ2 = (H (N/2))2 (N − 2)
N

Var
(
θ̂
)
− q−1 −

[
1− (N − 2)

N
(H (N/2))2

]
µG,

(3.9)
where N = nT + nC − 2 and q = nTnC/(nT + nC).

The data are
(
θ̂1; N1, q1

)
, . . . ,

(
θ̂k; Nk, qk

)
. Equation 3.9 will motivate a non-

parametric estimator τ̂2. To estimate the first term of Equation 3.9, it seems to
be reasonable to use a modified version of the usual empirical variance of the
study estimators, considering the different degrees of freedom (Ni). We can
estimate the mean value of the effect parameter in the overall population by

µ̂θ̂ = k−1
k

∑
i=1

θ̂i

or, given estimates ν̂2
i of the study-specific variances for θ̂i, the pooled estima-

tor

µ̂θ̂ =
∑k

i=1 ν̂−2
i θ̂i

∑k
i=1 ν̂−2

i

.

In the fixed effects model for known study-specific variances, the pooled mean
is the best unbiased linear estimator for the first moment and should be used
if the data indicates at most a small heterogeneity variance. In the case of large
heterogeneity, the arithmetic mean should be preferred because the “true”
weights within the pooled estimator are poorly estimated by noniterative pro-
cedures. Finally, in Equation 3.9 we estimate[

1− (N − 2)
N

(H (N/2))2
]

µ2
G
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by the mean value of the corresponding study specific realizations. This leads
to a nonparametric estimator of the heterogeneity variance given by

τ̂2 =
1

(k− 1)

k

∑
i=1

(1− Ki)
(
θ̂i − µ̂θ̂

)2 − 1
k

k

∑
i=1

1
qi
− 1

k

k

∑
i=1

Ki θ̂
2
i ,

where

Ki = 1− (H (Ni/2))2 (Ni − 2)
Ni

.

The same mode of procedure yields corresponding estimators for the hetero-
geneity variance in the case of the standardized mortality ratio.

Standardized mortality ratio

τ̂2 =
1

(k− 1)

k

∑
i=1

(
θ̂i − µ̂θ̂

)2 − 1
k

µ̂θ̂

k

∑
i=1

1
ei

,

where µ̂θ̂ is an estimator for the mean value of the parameter in the whole pop-
ulation. Typically, two estimators are considered:

the arithmetic mean

µ̂
(ar)
θ̂

=
1
k

k

∑
i=1

θ̂i

and the pooled mean

µ̂
(pool)
θ̂

= ∑k
i=1 θ̂iei

∑k
i=1 ei

(see Böhning, Sarol, & Malzahn, 2000).

Log relative risk in the log-linear Cox model with random censorship At
first, we consider the inverse of the asymptotical conditional variance of the
standardized estimator in this model, given by Equation 3.7. This quantity
has to be estimated for each study. The expression in Equation 3.7 for σ2

i (θi)
contains the unknown survival function S0(t) corresponding to the baseline
hazard. An obvious nonparametric estimator Ŝ0(t) in study i is the Kaplan-
Meier estimator

Ŝ0(t) = ∏
j:T0

ij≤t

(
Ȳij − 1

)
Ȳij

,

in which

Ȳij =
ni

∑
l=1

Yl

(
T0

ij

)
, with Yl(t) = I(Xl≥t).
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Furthermore, since there are no bindings, the Nelson estimator for the cumu-
lative hazard function

Λ0(t) =
∫ t

0
λ0(z)dz

is given by

Λ̂0 = ∑
j:T0

ij≤t

δij

Yij
.

Consequently, a natural estimator for an integral of the form
∫ b

a hi(t)λ0(t)dt is
given by

∑
j:a<T0

j <b

hi

(
T0

j

) δj

Y j
.

Because of f0(s) = λ0(s)S0(s), we have

hi(t) =
(S0 (t))exp(θi)+1[

exp (θ) (S0(t))exp(θi) + S0(t)
] (1− 1

ui

)

in Equation 3.7, leading to the estimator

σ̂2
i (θi) =

exp(θ̂i)
2 ∑

j:T0
ij≤tup

(
Ŝ0

(
T0

ij

))exp(θ̂i)+1

[
exp(θ̂i)

(
Ŝ0

(
T0

ij

))exp(θ̂i)
+ Ŝ0

(
T0

ij

)]
×
(

1−
T0

ij

ui

)
δij

Yij
,

where Yij is the size of the risk set at failure time T0
ij, and δij := I(Tij≤Uij), that

is, δij = 1 if the individual number j in study i is a failure, and δij = 0 if this
individual is a censored observation. Because the MPLE θ̂ is asymptotically
unbiased, Equation 3.3 suggests estimators of the form

τ̂2 =
1

(k− 1)

k

∑
i=1

(
θ̂i − µ̂θ̂

)2 − ÊG

((
nσ̂2 (θ̂))−1

)
,

where

ÊG

((
nσ̂2 (θ̂))−1

)
= H

(
n−1

1 σ̂−2
1
(
θ̂1
)

, . . . , n−1
k σ̂−2

k
(
θ̂k
))

.

The most simple case is H(x1, . . . , xk) = x, but this does not make much
sense, rather it seems to be more sensible to derive a weighted mean of the
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n−1
i σ̂−2

i (θ̂i). Currently, this is an open problem and will be subject of further
research.

Quality scores Here we can derive:

τ̂2 =
1

(k− 1)

k

∑
i=1

(
θ̂i − µ̂θ̂

)2

−
c2

0
n(n− 1)

[
b + c2

mm + c2
gg
]
+

c2
0

n(n− 1)

[
l2 + c2

mm2 + c2
gg2
]

− 2
c2

0
n2

[
cm

1
(k− 1)

k

∑
i=1

(
li − l

)
(mi −m) + cg

1
(k− 1)

k

∑
i=1

(
li − l

)
(gi − g)

+ cmcg
1

(k− 1)

k

∑
i=1

(mi −m) (gi − g)
]

,

where

lα =
1
k

k

∑
i=1

lα
i , l = l1.
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