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Preface

Meta-analysis as a systematic method to integrate empirical findings has be-
come a widely adopted technique in various scientific fields. Among the major
areas of application of the method are medicine and the social sciences. New
statistical developments and methodological advances often happen unrecog-
nized in different substantive fields, or are assimilated with considerable delay.
The present volume is intended to bring scholars from medical and social sci-
ences together to present their theoretical advances as well as new applications
of the method.

The book is divided in two parts. The first part consists of a collection of
chapters that address various important theoretical issues. These chapters fo-
cus on the evaluation and systematization of existing procedures that are used
in practice, present new developments regarding statistical procedures, de-
scribe techniques for the detection of bias in meta-analysis, and provide de-
tailed expositions of the methodological viewpoints on meta-analysis in phar-
maceutical, medical as well social science research.

In Chapter 1, Hartung, Argaç, and Makambi present a series of homogene-
ity tests that are known within the framework of ANOVA but have not been
widely adopted in applications of meta-analysis. They expound the under-
lying logic of the tests and evaluate their performance in a simulation study.
Hartung et al. address the problem of testing the homogeneity assumption that
is often made in practical applications of meta-analysis, and they show which
tests perform best under several conditions.

Schulze, Holling, Großmann, Jütting, and Brocke present a comparison of
two meta-analytical approaches for the analysis of correlation coefficients in
Chapter 2. It is shown that parallel statistical developments in different subdis-
ciplines of psychology have lead to diverse procedural details in approaches
often used in practice. These details can in turn lead to differences in results on
the basis of the same database. This is demonstrated in a Monte-Carlo study of
different homogeneous situations for which the procedures of the approaches
– and fixed effects models in general – are supposed to be appropriate.

Random and fixed effects models in meta-analysis play an important role
for the data analytic strategy and the interpretation of results. In recent years,
the random effects model has been favored over the fixed effects model for
theoretical reasons but only few procedures have been proposed for the esti-
mation of the heterogeneity variance. This variance is an important compo-
nent in the random effects model. Malzahn presents a general principle for its
estimation in several meta-analytical models in Chapter 3.
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The choice between the random and fixed effects model of meta-analysis
has been subject of several debates. Although the random effects model was
focused in theoretical discussions of the topic, in practical applications of meta-
analysis, especially in the social sciences, the fixed effects model still prevails
(see Chapter 2). Several authors have argued that the choice between these
models has to be based on theoretical reasons and the inference that is intended
with a meta-analysis. Hartung and Knapp present the basics of both the ran-
dom and fixed effects model as well as commonly used methods in these mod-
els in Chapter 4. They also show that there are theoretical deficiencies in these
models and propose an alternative test procedure which is presented in detail
from an analytical point of view. Furthermore, the results of a simulation study
that evaluates the performance of this new test procedure is reported.

The issue of bias in meta-analysis poses considerable problems to the inter-
pretation of meta-analytical results. Often, the so-called publication bias is of
particular interest. In Chapter 5, Schwarzer, Antes, and Schumacher review
several procedures – graphical methods as well as test procedures – for the de-
tection of bias in meta-analysis. They also present the results of a simulation
study to evaluate the performance of two statistical tests for the identification
of bias.

Apart from statistical issues in a narrower sense like those addressed in the
first five chapters, more general methodological discussions have reoccurred
in the literature since the advent of meta-analysis. Such methodological issues
are addressed in the following four chapters. The different perspectives of
medical research and the social sciences are reflected in these chapters and it is
shown how analogous problems are dealt with in these areas of research.

In Chapter 6, Sauerbrei and Blettner review and compare different methods
for summarizing empirical results from observational studies, including nar-
rative reviews, meta-analysis of literature, meta-analysis of patient data, and
prospective meta-analysis. Focusing on applications to medical research prob-
lems, the utility of meta-analysis for the evaluation of medical treatments is
critically assessed. In addition to a theoretical analysis of the different review
methods, several examples from the medical literature are presented. These
examples support their arguments for a sceptical view on the utility of meta-
analyses that are based on summary reports from the literature.

Koch and Röhmel concentrate in Chapter 7 on the use of meta-analysis in
the process of new drug applications, where the method has not played a major
role to date. They point out obstacles for the acceptance of meta-analytical
results in this area. An analysis of the evaluation process for outcomes from
randomized clinical trials on the comparison of different drugs for the same
indication is presented, and references to relevant guidelines are given. Also,
problems as well as benefits in using meta-analysis are illustrated by giving
concrete examples. The characteristics that influence the credibility of meta-
analyses in this field of application are highlighted as well. Thereby, Koch and
Röhmel provide a constructive account for the enhancement of meta-analytical
design.
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In the subsequent chapter, Matt presents a comprehensive treatment on
the possibilities to draw generalized causal inferences based on the results
of meta-analysis. Here, like in other chapters in this volume, it is acknowl-
edged that methods of meta-analysis are comparable to quasi-experiments or
observational studies in methods of primary research. Drawing on princi-
ples developed in the context of generalization in quasi-experimentation, he
demonstrates how these principles can be fruitfully applied to methods of
meta-analysis. In his detailed exposition Matt also refers to general princi-
ples of generalization and provides examples of their successful application
in practice. The presentation in Chapter 8 by Matt shows how questions of
generalization are treated in the social sciences, and this view stands – at least
partly – in contrast to treatments from the perspective of medical research (see
e.g., Chapter 6 by Sauerbrei and Blettner).

The last chapter of the first part addresses the utility of tests of moderator
hypotheses in meta-analysis. In Chapter 9 by Czienskowski, an example from
social cognition research on the so-called self-reference effect is given to illus-
trate the application of moderator-analysis. Potential conclusions on the basis
of the results are discussed, and it is shown how and why moderator analyses
can and should be supplemented by follow-up experiments.

In the second part of the book applications of meta-analysis to different
problems in medical, pharmaceutical and social science research are presented.
A series of six chapters illustrates the breath of potential fields of application
for meta-analytic methods.

An innovative field of application for meta-analysis is quality control in
pharmaceutical production. In Chapter 10, Böhning and Dammann provide
an overview and an example on how methods of meta-analysis can be applied
in this new area of application. They extend an approach of mixture modeling
of heterogeneity in meta-analysis and show its potential for an improvement
of production processes in pharmaceutical industry.

In the following Chapter 11 by Greiner, Wegscheider, Böhning, and Dahms,
an application of meta-analysis to explore and identify factors that influence
the sensitivity and specificity of a medical test for the detection of trichinella
antibodies is presented. They illustrate how adequate statistical methods of
meta-analysis (e.g., mixed logistic regression) can contribute new knowledge
that is of practical concern.

In Chapter 12, Dietz and Weist introduce a method based on finite mixed
generalized linear models as a means for modeling heterogeneity in meta-
analytic data. They present a detailed account of the model, methods for the
estimation of parameters, and also give two examples of its application. The
authors thereby demonstrate how advanced flexible methods of meta-analysis
can provide useful results for the explanation of heterogeneity that go well
beyond information gained from ordinary applications of meta-analysis.

Franklin also uses the generalized linear model in Chapter 13 to assess the
impact of explanatory variables on the variability in a meta-analytical database.
He examines, among other influential factors, the differences between treat-
ment results in paediatric and adult clinical trials on Hodgkin’s disease.
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In a meta-analysis on the results of controlled clinical trials on antidepres-
sants, Schöchlin, Klein, Abrahm-Rudolf, and Engel examine the potential mod-
erating influence of design variables. They report results in Chapter 14 that
stress the important role of design variables – especially the inclusion of place-
bo conditions – in this area of clinical applications.

One of the major research fields in social psychology, attitude research, is
the subject of Chapter 15 by Schulze and Wittmann. The authors first provide
an exposition of the two most often applied theories in this area. Additionally,
moderator hypotheses concerning the relationships between the theory’s com-
ponents are substantiated that reflect standard assumptions of the theories as
well as new hypotheses not previously tested in a meta-analytical framework.
The results of a meta-analysis are also presented to assess overall effects as well
as tests of pertinent moderator hypotheses in a random effects model.

Finally, Schlattmann, Malzahn, and Böhning present a new software pack-
age called META for the application of meta-analysis in Chapter 16. META
enables the user to perform not only standard analysis to integrate research re-
sults but also includes procedures to apply the latest developments in mixture
modeling of heterogeneity in meta-analysis as presented in this volume (see
also Chapter 10).

The new developments and applications described in these chapters are
contributions from different fields of research. Our hopes are that bringing
together the contributions from these scholars in a single volume adds new
knowledge to the different fields, counteracts fragmentation of statistical and
substantial developments, and encourages potential users of the procedures to
apply the latest methods of meta-analysis in their field of interest.

RALF SCHULZE

HEINZ HOLLING

DANKMAR BÖHNING
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1
Homogeneity Tests in Meta-Analysis

Joachim Hartung
Dog̃an Argaç
Department of Statistics†

University of Dortmund

Kepher Makambi
Department of Mathematics and Statistics
Jomo Kenyatta University of Agriculture and Technology

Summary

For the homogeneity problem in meta-analysis, the performance of seven
test statistics is compared under homogeneity and heterogeneity of the
underlying population (study, group) variances. These are: the classical
ANOVA F test, the Cochran test, the Welch test, the Brown-Forsythe test,
the modified Brown-Forsythe test, the approximate ANOVA F test and as
a proposal, an adjusted Welch test. At the whole, the Welch test proves to
be the best one, but for small sample sizes and many groups, it becomes
too liberal. In this case the adjusted Welch test is recommended to correct
this anomaly. The other tests prove to have changing advantages depen-
dent on the sizes of the parameters involved.

†Project “Meta-Analysis in Biometry and Epidemiology“ (SFB 475) of the Deutsche Forschungs-
gemeinschaft (DFG).



4 Homogeneity Tests In Meta-Analysis

1.1 INTRODUCTION

Meta-analysis of results from different experiments (groups, studies) is a com-
mon practice nowadays. In the framework of a one-way ANOVA model, serv-
ing generally as supporting edifice for meta-analysis, one may be interested
in testing the homogeneity hypothesis. However, when the underlying pop-
ulation variances in different populations (studies, groups) are different, the
ANOVA F-statistic attains significance levels which are very different from
the nominal level (see for example, De Beuckelaer, 1996). In the rubric of the
(generalized) Behrens-Fisher problem, a number of alternatives have been sug-
gested.

Using simulation studies for various constellations of number of popula-
tions, sample sizes and within population error variances, we compare the ac-
tual attained sizes of the classical ANOVA F test, the Cochran test, the Welch
test, the Brown-Forsythe test, the modified Brown-Forsythe test, the approx-
imate ANOVA F test and, by adopting an idea of Böckenhoff and Hartung
(1998), an adjusted Welch test, simultaneously.

1.2 MODEL AND TEST STATISTICS

Let yij be the observation on the jth subject of the ith population/study, i =
1, . . . , K and j = 1, . . . , ni

yij = µi + eij

= µ + ai + eij ; i = 1, . . . , K, j = 1, . . . , ni,

where µ is the common mean for all the K populations, ai is the effect of pop-
ulation i with ∑K

i=1 ai = 0, and eij, i = 1, . . . , K, j = 1, . . . , ni are error terms
which are assumed to be mutually independent and normally distributed with

E(eij) = 0, Var(eij) = σ2
i ; i = 1, . . . , K, j = 1, . . . , ni

That is, eij ∼ N (0, σ2
i ); i = 1, . . . , K, j = 1, . . . , ni.

Interest is in testing the hypothesis H0 : µ1 = · · · = µK = µ. To test this
hypothesis we will make use of the following test statistics:

a) The ANOVA F Test

San, given by

San =
N − K
K − 1

· ∑K
i=1 ni(ȳi. − ȳ..)2

∑K
i=1(ni − 1)s2

i

, (1.1)

with N = ∑K
i=1 ni, ȳi. = ∑K

j=1 yij/ni, ȳ.. = ∑K
i=1 niȳi./N.

This test was originally meant to test for equality of population means
under variance homogeneity and has an F distribution with K − 1 and
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N − K degrees of freedom.

Test: Reject H0 : µ1 = · · · = µK at level α if San > FK−1,N−K;1−α.

The ANOVA test has the weakness of not being robust with respect to
heterogeneity in the intra-population error variances (Brown & Forsythe,
1974).

b) The Welch Test

Swe =
∑K

i=1 wi(ȳi. −∑K
j=1 hjȳj.)2(

(K − 1) + 2 · K−2
K+1 ·∑K

i=1
1

ni−1(1− hi)2
) , (1.2)

where wi = ni/s2
i , hi = wi/ ∑K

k=1 wk, was an extension of testing the
equality of two means to more than two means (see Welch, 1951) in the
presence of variance heterogeneity within populations.

Under H0, the statistic Swe has an approximate F distribution with K − 1
and νg degrees of freedom, where

νg =
(K2 − 1)/3

∑K
i=1

1
ni−1(1− hi)2

.

Test: Reject H0 at level α if Swe > FK−1,νg;1−α.

c) Cochran’s Test

Sch =
K

∑
i=1

wi(ȳi. −
K

∑
j=1

hjȳj.)2, (1.3)

was proposed by Cochran (1937) and then modified by Welch. We take
it into our comparisons in order to get better comprehension and insight
of the behavior of both statistics.

Under H0, the Cochran statistic is distributed approximately as a χ2-
variable with K − 1 degrees of freedom.

Test: Reject H0 at level α if Sch > χ2
K−1;1−α.
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d) Brown-Forsythe (B-F) Test

This one is also known as the modified F test and is given by

Sb− f = ∑K
i=1 ni(ȳi. − ȳ..)2

∑K
i=1(1− ni/N)s2

i

. (1.4)

When H0 is true, Sb− f is distributed approximately as an F variable with
K − 1 and ν degrees of freedom where

ν =

(
∑K

i=1(1− ni/N)s2
i

)2

∑K
i=1(1− ni/N)2s4

i /(ni − 1)
. (1.5)

Test: Reject H0 at level α if Sb− f > FK−1,ν;1−α.

Using a simulation study Brown and Forsythe (1974) demonstrated that
their statistic is robust under inequality of variances. If the population
variances are homogeneous, the B-F test is closer to ANOVA than Welch.

e) Mehrotra (Modified Brown-Forsythe) Test

Sb− f (m) = ∑K
i=1 ni(ȳi. − ȳ..)2

∑K
i=1(1− ni/N)s2

i

, (1.6)

was proposed by (Mehrotra, 1997) in an attempt to correct a “flaw” in the
B-F test.

Under H0, Sb− f (m) is distributed approximately as an F variable with ν1
and ν degrees of freedom where

ν1 =

(
∑K

i=1(1− ni/N)s2
i

)2

∑K
i=1 s4

i +
(

∑K
i=1 nis2

i /N
)2
− 2 ·∑K

i=1 nis4
i /N

(1.7)

and ν is given in Equation 1.5 above.

Test: Reject H0 at level α if Sb− f (m) > Fν1,ν;1−α.

The flaw mentioned above is in the estimation of the numerator degrees
of freedom by K − 1 instead of ν1.
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f) The Approximate ANOVA F Test

SaF =
N − K
K − 1

· ∑K
i=1 ni(ȳi. − ȳ..)2

∑K
i=1(ni − 1)s2

i

, (1.8)

by Asiribo and Gurland (1990). This test gives an approximate solution
to the problem of testing equality of means of normal populations in case
of heteroscedasticity by making use of the classical ANOVA test.

Under H0, the statistic SaF is distributed approximately as an F-variable
with ν1 and ν2 degrees of freedom where ν1 is as given in Equation 1.7
above and

ν2 =

(
∑K

i=1(ni − 1)s2
i

)2

∑K
i=1(ni − 1)s4

i

. (1.9)

Test: Reject H0 at level α if SaF > ĉ · Fν1,ν2;1−α, where

ĉ =
N − K

N(K − 1)
∑K

i=1(N − ni)s2
i

∑K
i=1(ni − 1)s2

i

. (1.10)

We notice that the numerator degrees of freedom for SaF and Sb− f (m) are
equal. Further, for ni = n, i = 1, . . . , K, that is, for balanced samples,
the test statistic and the degrees of freedom for both the numerator and
denominator of these two statistics are also equal. That is, for balanced
designs

SaF = Sb− f (m) =
nK

K − 1
· ∑K

i=1(ȳi. − ȳ..)2

∑K
i=1 s2

i

,

and

ν = ν2 = (n− 1) ·

(
∑K

i=1 s2
i

)2

∑K
i=1 s4

i

.

g) The Adjusted Welch Test

The Welch Test uses weights wi = ni/s2
i . We know that

E(wi) = E

(
ni

s2
i

)
= ci ·

ni

σ2
i

,
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where ci = (ni − 1)/(ni − 3), see Patel, Kapadia, and Owen (1976, pages
39-40). Therefore, an unbiased estimator of ni/σ2

i is ni/cis2
i .

Now, let ϕi = (ni + δ1)/(ni + δ2), where δ1 and δ2 are arbitrary real num-
bers; and then define the general weights by w∗

i = ni/ϕis2
i . That is, for

the Welch test, wi = w∗
i with ϕi = 1 (δ1 = 0, and δ2 = 0) and if we take

the unbiased weights, wi = ni/cis2
i , then ϕi = ci, (δ1 = −1 and δ2 = −3).

For small samples in the groups, the Welch test becomes too liberal es-
pecially with increasing number of groups. Also, in our experience, us-
ing the unbiased weights in the Welch test makes the test too conserva-
tive. A reasonable compromise in this situation is to choose ϕi such that
1 ≤ ϕi ≤ ci.

This defines a new class of Welch type test statistics whose properties
can be adjusted accordingly by choosing the control parameter, ϕi, ap-
propriately. Our proposed test, which we shall henceforth call the ad-
justed Welch test, uses the weights w∗

i = ni/ϕis2
i in the Welch test, where

1 ≤ ϕi ≤ ci. That is the adjusted Welch test, Saw, is given by:

Saw =
∑K

i=1 w∗
i (ȳi. −∑K

j=1 h∗j ȳj.)2(
(K − 1) + 2 · K−2

K+1 ·∑K
i=1

1
ni−1(1− h∗i )

2
) , (1.11)

where h∗i = w∗
i / ∑K

i=1 w∗
i , i = 1, . . . , K.

Under H0, the adjusted Welch statistic, Saw, is distributed approximately
as an F-variable with K − 1 and ν∗g degrees of freedom, with

ν∗g =
(K2 − 1)/3

∑K
i=1

1
ni−1(1− h∗i )

2
.

Test: Reject H0 at α level if Saw > FK−1,ν∗g ;1−α.

When the sample sizes are large, Saw approaches the Welch test, that is,
(ni + δ1)/(ni + δ2)

ni→∞−→ 1. With small sample sizes, our statistic will help
correct the liberality witnessed in the Welch test.

To assess the relative performance of these test statistics in terms of the ac-
tual levels of significance attained, we will consider levels between 4% and
6% to be satisfactory, that is, following Cochran’s rule of thumb (cf. Cochran,
1954).
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1.3 SIMULATION STUDY AND DISCUSSION

In order to see the effect of balancedness and unbalancedness, as well as vari-
ance homogeneity and heterogeneity, a simulation study was conducted with
sampling experiments determined by the number of studies, sample sizes and
the variances in each study. In the first sampling experiment the following
patterns and combinations of the number of studies, sample sizes and vari-
ances were considered (cf. Tables 1.1, 1.2, 1.3, and 1.4): Balanced samples and
homogeneous variances, unbalanced samples combined with homogeneous
variances. The next experiment investigated the effect of variance heteroge-
neity on the empirical Type I error rates. We matched balanced and unbal-
anced sample sizes with heterogeneous variances. In the unbalanced sample
size cases, large sample sizes were separately paired with small and large vari-
ances. To investigate the effect of a large number of studies, we started with
K = 3 studies and made independent replications to give K = 6, 2× (.), K = 9,
3× (.), and K = 18, 6× (.). We will use the term small sample to refer to ni = 5,
and moderate for ni = 10, 15, i = 1, . . . , K. However, if any of the sample sizes,
ni, is greater or equal to 20, then the constellation will be taken to be of large
samples.

Table 1.1 reports the actual significance levels for K = 3, Table 1.2 for K = 6,
Table 1.3 for K = 9 and Table 1.4 for K = 18. For the adjusted Welch test,
Saw, we have taken ϕi = (ni + 2)/(ni + 1), i = 1, . . . , K. From these Tables,
we make the following observations in order of the various tests presented in
Section 1.2 above:

a) The ANOVA F Test

In the case when the number of populations, K = 3:

i. for balanced samples sizes and homoscedastic cases, the test, as ex-
pected, keeps the nominal level;

ii. for balanced and heterogeneous variance cases, the test keeps con-
trol of the significance level. This trend is maintained with increas-
ing sample sizes;

iii. for unbalanced and homoscedastic cases, the test keeps the nominal
level;

iv. for the unbalanced and heterogeneous cases, if small samples are
matched with small variances, the test tends to be conservative.
However, when small sample sizes are paired with large variances,
the test becomes liberal. This pattern remains largely unchanged
even if the sample sizes are increased.

For K = 6, K = 9 and K = 18, the observations made in i. to iv. above still
hold; except for balanced designs and heterogeneous variances where
the test becomes more liberal with increasing number of populations.
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Table 1.1 Actual Simulated Significance Levels (Nominal Level 5%) for K = 3

Sample Sizes Variances α̂%

(n1, n2, n3) (σ2
1 , σ2

2 , σ2
3 ) San Swe Sch Sb− f Sb− f (m) SaF Saw

(5,5,5) (4,4,4) 5.0 4.8 12.2 4.1 3.8 3.8 3.3
(1,3,5) 6.0 5.0 13.5 4.6 4.2 4.2 3.6

(10,10,10) (4,4,4) 5.1 4.9 8.4 4.9 4.6 4.6 3.9
(1,3,5) 5.7 4.7 8.2 5.1 4.5 4.5 3.9

(20,20,20) (4,4,4) 5.1 4.9 6.5 5.0 4.9 4.9 4.2
(1,3,5) 5.6 4.8 6.4 5.4 4.7 4.7 4.2

(40,40,40) (4,4,4) 4.9 4.9 5.6 4.8 4.8 4.8 4.5
(1,3,5) 5.9 5.2 5.8 5.8 5.0 5.0 4.8

(5,10,15) (4,4,4) 5.0 5.3 10.2 5.1 4.8 5.4 4.2
(1,3,5) 2.4 4.9 8.9 5.6 4.7 4.5 3.8
(5,3,1) 12.3 5.4 11.5 5.3 5.0 6.2 4.4

(10,20,30) (4,4,4) 5.2 5.3 7.7 5.1 4.9 5.3 4.5
(1,3,5) 2.2 4.9 6.5 5.5 4.6 4.5 4.2
(5,3,1) 12.9 5.5 8.1 5.6 5.2 5.9 4.5

(20,40,60) (4,4,4) 4.8 4.9 5.9 4.9 4.7 4.9 4.4
(1,3,5) 2.1 5.1 5.8 5.7 4.7 4.6 4.5
(5,3,1) 12.5 4.9 6.4 5.5 5.0 5.4 4.4

Note. For a definition of San, Swe, Sch, Sb− f , Sb− f (m), SaF, and Saw see Equations 1.1, 1.2,
1.3, 1.4, 1.6, 1.8, and 1.11.
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Table 1.2 Actual Simulated Significance Levels (Nominal Level 5%) for K = 6

Sample Sizes Variances α̂%

2× 2×
(n1, n2, n3) (σ2

1 , σ2
2 , σ2

3 ) San Swe Sch Sb− f Sb− f (m) SaF Saw

(5,5,5) (4,4,4) 5.2 6.2 22.1 4.1 3.3 3.3 4.1
(1,3,5) 6.6 6.1 22.4 4.8 3.7 3.7 4.3

(10,10,10) (4,4,4) 5.1 5.1 11.4 4.8 4.2 4.2 3.7
(1,3,5) 6.3 5.2 12.0 5.6 4.3 4.3 3.7

(20,20,20) (4,4,4) 4.8 4.7 7.7 4.7 4.3 4.3 3.8
(1,3,5) 6.0 4.8 7.7 5.7 4.4 4.4 4.0

(40,40,40) (4,4,4) 4.7 4.6 6.0 4.6 4.4 4.4 4.2
(1,3,5) 6.8 5.4 6.9 6.6 5.0 5.0 4.9

(5,10,15) (4,4,4) 5.0 6.3 15.5 4.7 4.0 4.5 4.7
(1,3,5) 2.4 5.5 13.1 5.9 4.3 4.2 3.8
(5,3,1) 16.3 6.7 16.7 5.7 4.6 5.5 5.0

(10,20,30) (4,4,4) 5.5 5.7 9.7 5.2 4.7 4.9 4.8
(1,3,5) 2.3 5.2 8.3 6.5 4.8 4.7 4.2
(5,3,1) 16.3 5.7 10.2 6.3 4.8 5.5 4.7

(20,40,60) (4,4,4) 5.2 5.3 7.2 5.2 4.8 5.0 4.6
(1,3,5) 2.6 5.5 7.1 6.7 5.1 5.0 4.7
(5,3,1) 15.3 4.8 6.7 6.3 4.9 5.2 4.1

Note. For a definition of San, Swe, Sch, Sb− f , Sb− f (m), SaF, and Saw see Equations 1.1, 1.2,
1.3, 1.4, 1.6, 1.8, and 1.11.
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Table 1.3 Actual Simulated Significance Levels (Nominal Level 5%) for K = 9

Sample Sizes Variances α̂%

3× 3×
(n1, n2, n3) (σ2

1 , σ2
2 , σ2

3 ) San Swe Sch Sb− f Sb− f (m) SaF Saw

(5,5,5) (4,4,4) 5.3 7.3 28.6 4.3 3.2 3.2 4.7
(1,3,5) 6.5 7.8 28.7 4.7 3.3 3.3 5.1

(10,10,10) (4,4,4) 5.1 6.2 14.8 4.9 4.0 4.0 4.3
(1,3,5) 7.0 6.0 14.5 6.2 4.5 4.5 4.3

(20,20,20) (4,4,4) 5.2 5.4 9.1 5.1 4.6 4.6 4.4
(1,3,5) 6.6 5.1 9.1 6.3 4.5 4.5 4.2

(40,40,40) (4,4,4) 5.0 5.2 7.0 5.0 4.7 4.7 4.5
(1,3,5) 6.6 4.9 6.9 6.5 4.8 4.8 4.4

(5,10,15) (4,4,4) 5.3 7.0 19.3 4.9 4.1 4.5 4.9
(1,3,5) 2.2 6.6 16.9 6.2 4.1 4.0 4.6
(5,3,1) 18.7 7.6 20.9 5.5 4.1 5.1 5.5

(10,20,30) (4,4,4) 4.9 5.5 10.7 4.8 4.3 4.4 4.1
(1,3,5) 2.1 5.2 9.6 6.4 4.6 4.5 4.0
(5,3,1) 17.6 5.9 10.7 5.8 4.3 4.8 4.6

(20,40,60) (4,4,4) 5.2 5.5 8.0 5.3 5.1 5.2 4.9
(1,3,5) 2.3 5.4 7.3 7.0 5.2 5.1 4.0
(5,3,1) 18.1 5.3 7.6 6.4 4.8 4.9 4.5

Note. For a definition of San, Swe, Sch, Sb− f , Sb− f (m), SaF, and Saw see Equations 1.1, 1.2,
1.3, 1.4, 1.6, 1.8, and 1.11.
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Table 1.4 Actual Simulated Significance Levels (Nominal Level 5%) for K = 18

Sample Sizes Variances α̂%

6× 6×
(n1, n2, n3) (σ2

1 , σ2
3 , σ2

3 ) San Swe Sch Sb− f Sb− f (m) SaF Saw

(5,5,5) (4,4,4) 4.9 11.7 46.3 3.8 2.5 2.5 7.1
(1,3,5) 7.1 12.4 46.7 4.1 3.2 3.2 7.8

(10,10,10) (4,4,4) 5.3 7.0 20.9 5.1 4.0 4.0 4.4
(1,3,5) 7.0 6.8 21.1 6.2 3.8 3.8 4.2

(20,20,20) (4,4,4) 4.8 5.2 11.3 4.8 4.2 4.2 4.1
(1,3,5) 7.0 5.2 11.0 6.7 4.7 4.7 4.0

(40,40,40) (4,4,4) 4.8 5.3 7.9 4.8 4.6 4.6 4.4
(1,3,5) 7.1 5.3 8.0 6.9 5.0 5.0 4.4

(5,10,15) (4,4,4) 5.2 9.7 28.6 4.8 3.5 4.0 6.4
(1,3,5) 1.7 8.2 26.6 6.8 4.5 4.4 5.1
(5,3,1) 24.9 10.2 30.0 5.7 3.7 4.6 7.1

(10,20,30) (4,4,4) 5.3 6.2 14.0 5.3 4.5 4.7 4.4
(1,3,5) 1.5 5.9 13.0 7.0 4.5 4.4 4.2
(5,3,1) 24.1 6.1 14.4 6.5 4.4 4.8 4.2

(20,40,60) (4,4,4) 4.8 5.2 8.5 4.8 4.3 4.4 4.0
(1,3,5) 1.5 5.3 8.5 6.5 4.4 4.4 4.5
(5,3,1) 23.2 5.0 8.2 6.3 4.3 4.5 4.0

Note. For a definition of San, Swe, Sch, Sb− f , Sb− f (m), SaF, and Saw see Equations 1.1, 1.2,
1.3, 1.4, 1.6, 1.8, and 1.11.
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b) The Welch Test
For K = 3:

i. for balanced sample sizes and homoscedastic cases, the test keeps
the required nominal level. Increasing the individual sample sizes
has no significant effect on the attained levels of significance;

ii. for balanced and heterogeneous variances, the test keeps the nomi-
nal level and this is not significantly affected by enlarging the sam-
ple sizes;

iii. for unbalanced and homogeneous variance case, the test performs
well and there is no significant effect in increasing the sample sizes;

iv. for unbalanced and heterogeneous variance cases, the test attains
acceptable significance levels both for small and large sample sizes.

For K = 6:

i. for balanced sample sizes and homoscedastic cases, the test keeps
the required nominal level but seems to be a bit liberal when the
sample sizes are small. Increasing the individual sample sizes has
the effect of making the attained levels of significance closer to the
nominal level;

ii. for balanced and heterogeneous variances, the test keeps the nomi-
nal level but, is a bit more liberal when the sample sizes are small;

iii. for unbalanced and homogeneous variance cases, if one of the sam-
ple sizes is small, the test becomes liberal otherwise, it attains ac-
ceptable levels of significance;

iv. The test attains acceptable significance levels for unbalanced and
heteroscedastic cases, except when one of the sample sizes is small
and is paired with a large variance.

For K = 9:

i. for balanced samples sizes and homoscedastic cases, the Welch test
is liberal for small samples but works quite well for moderate to
large sample sizes;

ii. for balanced and heterogeneous variances, the test is liberal for small
variance cases but, works well for moderate to large samples;

iii. for unbalanced and homogeneous variance cases, for small sample
sizes the test becomes liberal but, in general it attains acceptable
levels of significance;

iv. in the case of unbalanced samples and heterogeneous variances, the
test is slightly liberal when one of the sample sizes is small. Other-
wise, increasing the sample sizes makes the test better.
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For K = 18:

i. for balanced samples and equal variances in all the groups, the test
is liberal for small and moderate samples. For large samples, the
test keeps good control of the significance level;

ii. for equal sample sizes in all the groups and heterogeneous vari-
ances, the test is liberal for small and moderate samples but, attains
acceptable significance levels for large sample sizes;

iii. for unbalanced and homogeneous variances, the test attains accept-
able significance levels only when all the sample sizes are above or
equal to 20. Otherwise, the test is liberal;

iv. for unbalanced samples and unequal variances in the groups, the
test controls the nominal level when all the sample sizes are equal
or greater than 20. When one of the samples is of size 10 or less,
the test is more liberal when relatively large variances are combined
with relatively small sample sizes.

c) Cochran’s Test
For K = 3:

i. for balanced sample sizes and homogeneous variances, the test is
largely liberal. This liberality is much more pronounced for very
small samples and reduces drastically for moderate to large sam-
ples;

ii. for balanced sample sizes and heterogeneous variances, the test at-
tains levels which are above the acceptable upper limit but, there is
some improvement as the sample sizes increase;

iii. for unbalanced sample sizes and homogeneous variances, liberality
is clear but reduces with increased sample sizes;

iv. for unbalanced samples and heterogeneous variances, the test is
generally liberal but, if small variances are paired with small sam-
ple sizes, the attained levels are relatively lower than in case of large
variances paired with small sample sizes. Increasing the sample
sizes improves the attained significance levels.

For K = 6:

i. for homogeneous variances and balanced samples, the liberality of
the test persists but it is interesting to note, for example, that when
the all the sample sizes are ni = 5, i = 1, . . . , K, the level attained is
22.1%. This improves appreciably by about a half to 11.4% when the
sample sizes are doubled, ni = 10, i = 1, . . . , K;

ii. for balanced samples and heterogeneous variances, the improve-
ment in the attained levels similar to i) is observed; but the test re-
mains liberal;
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iii. for unbalanced samples and homogeneous variances, the test is lib-
eral and improves with increased sample sizes;

iv. for unbalanced samples and heterogeneous variances, the test is lib-
eral and, as expected, attains better levels as the sample sizes in-
crease.

For K = 9:

i. for homogeneous variances and balanced samples, the test attains
unacceptable significance levels for very small sample sizes, for ex-
ample, 28.6% for all ni = 5. This scenario dramatically improves to
14.8% when all ni = 10 and 7.0% when ni = 40;

ii. for balanced and heterogeneous variances, at very small samples the
levels attained are unacceptable. This improves as the sample sizes
increase. However, the test still remains liberal;

iii. for unbalanced samples and homogeneous variances, even though
the test is liberal, an improvement of the attained levels with in-
creased samples is clear;

iv. for unbalanced samples and heterogeneous variances, the test is lib-
eral and improves as the samples sizes increase. Note, that when
small samples are combined with small variances the attained sig-
nificance levels are relatively better than when small samples are
combined with large variances.

For K = 18:
For all cases of balancedness and unbalancedness, and homogeneity and
heterogeneity, the test attains unacceptable significance levels. Notice the
extreme liberality when the sample sizes are small.

d) Brown-Forsythe (B-F) Test
For K = 3:
For balanced samples and homoscedastic cases, the test attains accept-
able significance levels which remain significantly unaffected by increa-
ses in individual sample sizes. This observation is largely true for bal-
anced sample sizes combined with heterogeneous variances, unbalanced
sample sizes combined with homogeneous variances and unbalanced
samples combined with heterogeneous variances.
For K=6:

i. for balanced samples and homogeneous variances, the test attains
acceptable levels for all sample sizes;

ii. for balanced samples and heterogeneous variances, the test keeps
significance levels for small samples but, for large samples, the test
becomes liberal;

iii. for unbalanced samples and homogeneous variances, the levels at-
tained by this test are acceptable;
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iv. for unbalanced samples and heterogeneous variances, the test at-
tains acceptable levels for small samples. In the other cases the test
becomes liberal.

For K = 9:

i. for balanced sample sizes and homogeneous variances, the test at-
tains levels which are within the acceptable range;

ii. for balanced samples and heterogeneous variances, the test becomes
liberal for large sample sizes;

iii. for unbalanced samples and homoscedastic cases, the test attains
good levels;

iv. for unbalanced samples and heterogeneous variances, the test is in
general liberal, except for the case when a small sample is paired
with a large variance.

For K = 18:

i. for equal sizes in the groups and homogeneous variances, the test
attains an acceptable significance level except when the sample sizes
are small, in which case it tends to be a bit conservative;

ii. for equal sample sizes and heterogeneous variances, the test attains
acceptable levels only when the samples are small. Otherwise, the
test becomes liberal even for large sample sizes;

iii. for unbalanced samples and equal variances, the test keeps the sig-
nificance level within acceptable limits. This is true for small to large
sample cases;

iv. for unbalanced samples and unequal variances, the test is always
liberal,with the liberality being more pronounced when relatively
small samples are paired with relatively small variances.

e) The Modified Brown-Forsythe Test
For K = 3:
for balanced or unbalanced sample sizes matched with homogeneous or
heterogeneous variances, the levels attained are acceptable, except for
one case where the test is a bit conservative.
For K = 6:

i. for balanced samples and homogeneous variances, the test is a bit
conservative for small samples. Otherwise, with moderate to large
sample sizes, the test attains acceptable levels. This is also true for
balanced samples combined with heterogeneous variances;

ii. for unbalanced samples matched with homogeneous or heteroge-
neous variances, the test attains acceptable significance levels.

For K = 9 and K = 18, all the observations for K = 6 above are true but,
the degree of conservativeness in cases of small samples increases with
increasing K.
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f) The Approximate ANOVA F Test
This test is very similar to the modified Brown-Forsythe test given above.
As noted in Section 1.2 above, when the sample sizes in the groups are
equal, the results are expected to be the same. Checking Tables 1.1-1.4, we
see that the attained levels are all equal for the two tests for balanced de-
signs. Consequently, for K = 3, 6, 9 and 18, the observations made above
for the modified Brown-Forsythe test also hold for this test (approximate
ANOVA F test).

For unbalanced samples and K = 3, 6, 9 and 18, the test attains levels
which are very close to the Brown-Forsythe test for all values of K, save
for small differences. For example, in one case, K = 3, when the sample
combination is (5,10,15) and the corresponding variances (5,3,1), the ap-
proximate ANOVA F test is liberal (6.2%) whereas the modified Brown-
Forsythe attains an acceptable level. Further, even though both tests
attain acceptable significance levels, the approximate ANOVA test has
relatively higher levels when relatively large variances are paired with
relatively small sample sizes and when the variances in the groups are
all equal. However, when relatively small variances are combined with
small sample sizes, the approximate ANOVA F test attains relatively
lower significance levels compared to the modified Brown-Forsythe test.

g) The Adjusted Welch Test
For K = 3:

i. for balanced samples and homogeneous variances, the test keeps
control of the nominal significance level only when the sample sizes
are large otherwise, the test is conservative;

ii. for balanced samples and heterogeneous variances, the test attains
acceptable significance level only when the sample sizes are large
otherwise, the test is conservative;

iii. for unbalanced samples and homogeneous variances, the adjusted
Welch test attains acceptable levels;

iv. for unbalanced samples and heterogeneous variances, the actual lev-
els are within the acceptable limits.

For K = 6:

i. when the sample sizes and error variances in the groups are equal,
the test does not seem to keep good control of the nominal signifi-
cance level;

ii. for equal sample sizes and heterogeneous variances, the test attains
reliable significance levels only when all the sample sizes are equal
to 40;

iii. for unbalanced samples and homogeneous variances, the test at-
tains acceptable significance levels;
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iv. for unbalanced samples and heterogeneous variances, the actual lev-
els attained are within the limits (4%, 6%).

For K = 9:
For all cases of balancedness, unbalancedness, homoscedasticity, and het-
eroscedasticity, the actual levels attained are acceptable.
For K=18:
For balanced and small sample sizes the test is liberal. For moderate to
large sample sizes the test attains acceptable levels. In the case of un-
balancedness, when one sample is small the test is liberal except when a
small sample size is paired with a small error variance. In this case the
test attains its level. For moderate to large samples, the levels attained
are in the acceptable range.

In general, we see that for the Welch test, increasing the number of popu-
lations has no significant effect on the levels attained, except that for balanced
small samples the test becomes too liberal. In this case the adjusted Welch test
is preferred. For the Cochran test, increasing the number of populations has
the effect of dramatically inflating the significance levels when the sample sizes
are small and sometimes also for moderate samples. For the Brown-Forsythe
test, increasing the number of studies does not significantly affect the levels
attained by the test. For the modified Brown-Forsythe test, the attained sig-
nificance levels are all within the acceptable range for K = 3, 6, 9, and 18,
save sometimes for small samples where the test becomes more conservative
with an increasing number of populations. This behavior is also true for the
approximate ANOVA F test. The modified Brown-Forsythe test rarely attains
significance levels above 5%. This is true regardless of the number of popula-
tions.

1.4 CONCLUSION

The modified Brown-Forsythe and the approximate ANOVA F test are rela-
tively least affected by changes in the sample sizes and number of popula-
tions except when the number of groups is large and the corresponding sample
sizes are small, in which case these tests become too conservative. The Brown-
Forsythe test should not be used when the number of populations, K, is large
with large sample sizes and heterogeneous variances. We will recommend the
test for small individual samples regardless of the number of populations. The
Welch test can be recommended in the case of heterogeneous variances, except
when the sample sizes are small and the number of studies is large. In this
case we recommend a suitable adjustment of the adjusted Welch test. This test
(adjusted Welch test) has the advantage that the weights, w∗

i , i = 1, . . . , K, have
a control parameter, ϕi, i = 1, . . . , K, which can be adjusted accordingly.

In case of homoscedasticity regardless of balanced or unbalanced designs,
the ANOVA F test is the optimal test (cf. Lehmann, 1986) and the observed
deviations from the nominal level are due to the simulation experiment.
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Summary

Two meta-analytical approaches for the analysis of correlation coefficients
as effect sizes are distinguished. The approaches differ mainly with re-
spect to the effect size being aggregated (r vs. Fisher’s z), the weights
used in aggregation, estimators for the standard error of the aggregate,
and computational procedure for the homogeneity test. The performance
of the approaches is compared with regard to bias of estimators, cover-
age rates of confidence intervals, and Type I error of the homogeneity
tests. To comparatively evaluate the approaches, a simulation study with
a varying number of studies, number of subjects per study, and popula-
tion correlations was conducted. The situations in the simulation study
are restricted to homogeneous cases. The results show that, overall, the
approach as proposed by Hedges and Olkin (1985) as well as Rosenthal
(1991) is preferable to the alternative approach of Hunter and Schmidt
(1990) for the situations under study.
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2.1 INTRODUCTION

As almost any other statistical method, meta-analysis has its own history of
developments. Many of its procedural details emerged from adaptations of
the method to specific problems of application. This can easily be observed
by comparing the major book publications by the various early protagonists
of the method in psychology (Glass, McGaw, & Smith, 1981; Hedges & Olkin,
1985; Hunter, Schmidt, & Jackson, 1982; Rosenthal, 1991)1.

The development of meta-analysis was at least partly motivated in the late
1970s and early 1980s by a widespread dissatisfaction with the state of the so-
cial sciences and psychology in particular (see Hunter & Schmidt, 1990). The
situation was characterized by a large number of published studies on various
subject matters apparently showing heterogeneous results. There were only
few areas of research for which clear conclusions about the effectiveness of
interventions or the quality of models to explain and predict human behav-
ior could be drawn from the literature. Facing this state of affairs, researchers
from educational, clinical, and industrial/organizational (I/O) psychology be-
gan to develop methods to systematically integrate research findings across
studies to overcome deficiencies associated with more narrative methods of
literature reviews. Interestingly, these developments were done in parallel in
subdisciplines of psychology.

Glass and coworkers were the first to publish a comprehensive treatment
of the topic (Glass et al., 1981) with a focus on the evaluation of educational
and clinical research questions. Accordingly, their main interest was the de-
velopment of methods for cumulating results from experimental designs. The
most prevalent effect sizes in this are of research were therefore (standardized)
mean differences between groups.

In contrast, one of the focal research questions in I/O psychology, and per-
sonnel selection in particular, has been the question of whether the validities
of personnel selection procedures are situation specific or can be generalized
across situations. The validities were ordinarily assessed by the correlations
of results from procedures to select applicants with criterion measures like su-
pervisory ratings, for example. Thus, the main concern here was to develop
procedures to accumulate the effect size r from a series of studies (Hunter et al.,
1982).

In addition to differences in emphasis on effect size families, there also
emerged a plethora of further differences between meta-analytical methods,
like the introduction of the 75% rule for the detection of heterogeneity in the
approach by Hunter and Schmidt (1990), which is unique to their procedures.
Furthermore, other researchers developed methods to aggregate study results
like p-values or other outcomes of significance tests (Rosenthal & Rubin, 1979),
for example, and summarized their developments in their own treatment of

1The history of meta-analysis does not begin with these references and is much older, as Hunt
(1997) and Olkin (1990) have pointed out.
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the topic (Rosenthal, 1991). Additionally, some researchers focused more on
the statistical steps of meta-analysis (Hedges & Olkin, 1985).

As a result of these attempts to establish a comprehensive and elaborate set
of methods and procedures for the purpose of integrating research findings,
there emerged distinguishable approaches to meta-analysis. These approaches
differ with respect to a series of attributes and are associated with different
areas of application, at least in psychological research. Despite attempts to
systemize approaches (e. g., Bangert-Drowns, 1986) along characteristics like
units or outcomes of analysis, for example, the approaches as described above
still seem to prevail in different subdisciplines of psychology.

As a new and largely statistical method, meta-analysis diffused astonish-
ingly fast into psychological research practice and was quickly adopted by the
research community. This gave rise to a rapid growth of number of articles
that used meta-analysis instead of narrative reviews to summarize the state
of the art on a research question. It is noteworthy in this context that in ap-
plications of meta-analytical methods, researchers almost exclusively used the
respective approach of their field. The approach by Hunter and Schmidt, for
example, strongly dominated in I/O psychology.

The story of meta-analysis differs between psychology and other disciplines
like medicine, where researchers were more reluctant to use meta-analysis (for
a critical assessment of the method, see Feinstein, 1995, for example). Com-
prehensive treatments of meta-analytic methods (e.g., Sutton, Abrams, Jones,
Sheldon, & Song, 2000) also became available in medicine much later than in
psychology. Furthermore, the focus of expositions in psychology and medicine
differs with respect to effect sizes of main interest, specialized techniques, and
many other attributes.

Thus, although there is a general purpose of application common to all
methods of meta-analysis, a large number of procedures and techniques ex-
ist. This supports the view that meta-analysis should not be regarded as a
single method but as a conglomerate of methods to integrate research find-
ings encompassing statistical as well as non-statistical steps. Despite existing
differences between approaches, there are also efforts to point out a general
structure of the statistical procedures to aggregate effect sizes (Shadish & Had-
dock, 1994). But even when this general structure can be regarded as accepted,
there still remain more subtle differences between approaches. Such differ-
ences might influence the meta-analytic results and therefore also the substan-
tive conclusions drawn from these results.

In this chapter, we focus on approaches of meta-analysis developed in psy-
chological research that are designed for the aggregation of the correlation co-
efficient as an effect size. As a consequence, procedures for the aggregation
of standardized mean differences or other effect sizes will not be of concern
here. The specific statistical procedures of the relevant approaches will first be
presented in the next section. After an analysis of their properties and accen-
tuation of theoretical differences, the results of a simulation study will be pre-
sented in the subsequent section. The aim is to make a comparative evaluation
of the approaches under scrutiny with respect to their statistical performance.
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2.2 COMMON META-ANALYTICAL APPROACHES IN THE
SOCIAL SCIENCES

As has been described in the preceding section, there are several approaches
of meta-analysis in psychology that differ with respect to a large number of
attributes. Of these, the procedures developed in the context of educational re-
search by Rosenthal (1991), in I/O psychology by Hunter et al. (1982), and with
a more general statistical focus by Hedges and Olkin (1985) are of main concern
here. Because the methods summarized in the book by Rosenthal (1991) were
preceded by several journal publications in collaboration with Rubin (Rosen-
thal & Rubin, 1979, 1982), this approach will be labelled as Rosenthal-Rubin
(RR) approach. For applications in I/O psychology, Hunter and Schmidt pub-
lished a successor of their first book publication (Hunter & Schmidt, 1990),
which has become the main reference in this field of research. Their approach
will therefore conveniently be labelled as Hunter-Schmidt (HS) approach. Fi-
nally, the meta-analytical procedures summarized in the book by Hedges and
Olkin (1985) will be abbreviated in the following as HO approach.

The three approaches cannot be comprehensively evaluated here in all of
the steps they propose for meta-analysis, partly because they are not equally
specific. We therefore focus on the step of statistical aggregation of effect sizes
(correlations) to arrive at an estimate of the mean effect size, estimates for con-
fidence limits for the mean effect size, and the homogeneity test. These steps
are element of almost every published meta-analysis in the social sciences but
represent only a core of the statistical procedures. The elaborate artifact correc-
tions, for example, proposed and advocated by Hunter and Schmidt (1990) are
not considered here because other approaches do not specify alternative pro-
cedures or do not recommend using corrections for unreliability of measures
(Rosenthal, 1991).

The three approaches were also distinguished in a previous comparison of
these methods (Johnson, Mullen, & Salas, 1995), which we took as a starting
point for our evaluation. However, Johnson et al. specified the approaches in
a form that differs from the specification presented in detail below.

One major difference to the specification of Johnson et al. (1995) is that the
approaches of HO and RR are not distinguished here. The reasons for this are
twofold. First, the HO approach is specified by Johnson et al. (1995) as using
the d-statistic as effect size. With correlation coefficients as effect sizes, this
would require to convert the correlations to standardized mean differences
before aggregation by using an appropriate transformation. This is exactly
what Johnson et al. have done in their evaluation of the approaches. Unfor-
tunately, we cannot see any reason why one would in general want to convert
a database consisting entirely of r to d. More importantly, we cannot see any
indication in the work of Hedges and Olkin for a recommendation to do that.
Instead, Hedges and Olkin (1985) present specific formulas for correlations
in meta-analysis which we will use in our simulation study. Second, Johnson
et al. presented the mean effect size estimator for the RR approach to use study
sample sizes (Ni) as weights. We note, however, Ni − 3 being recommended
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by Rosenthal (1991) as weights, the same as in the HO approach for correlation
coefficients. This also has an effect on the standard error for the mean effect
size estimator which becomes the same as in the HO approach. Furthermore,
although Rosenthal and Rubin (1979) have indeed presented procedures to
summarize significance levels, they do not strictly advocate using these meth-
ods for the case of interest here. By consulting Rosenthal’s work (Rosenthal,
1991) it becomes evident that for the present purposes the approaches by HO
and RR are in fact identical. Thus, in contrast to Johnson et al. (1995) we do
not distinguish them in the following.

We next turn to a specification of the remaining two approaches. Differences
between them can best be explained by considering the basic formulas shown
in Table 2.1.

Table 2.1 Basic Formulas for the HO/RR- and HS-Approach (Homogeneous Case)

HO/RR HS

Estimator
for MES

z =

k
∑

i=1

(
σ̂−2

zi

)
zi

k
∑

i=1
σ̂−2

zi

r =

k
∑

i=1
Niri

k
∑

i=1
Ni

Variance
of MES

σ̂2
z =

(
k

∑
i=1

Ni − 3k

)−1

σ̂2
r =

1
k


k
∑

i=1
Ni (ri − r̄)2

k
∑

i=1
Ni


Homogeneity
test

Q =
k

∑
i=1

(Ni − 3) (zi − z)2 Q =

k
∑

i=1
(Ni − 1) (ri − r)2

(
1− r2)2

Note. HO/RR = Hedges-Olkin and Rosenthal-Rubin approach, HS = Hunter-Schmidt
approach, MES = Mean Effect Size.

The HO/RR and HS approach can both be used to summarize a database
consisting of a total of k correlations. Whereas by using the HS approach the
untransformed correlations r are taken to arrive at an estimate for the mean
effect size (MES), the correlations have to be transformed in the HO/RR ap-
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proach by applying the following transformation

zi = .5× ln
(

1 + ri

1− ri

)
= tanh−1(ri) (2.1)

The transformation given in Equation 2.1 was first introduced by Fisher (1915)
in the context of deriving the sampling distribution of the correlation coeffi-
cient and is mostly labelled as Fisher’s z. It is important to note that an esti-
mator for the approximate sampling variance of the transformed correlations
zi is given by σ̂2

zi
= 1/ (Ni − 3). Thus, the standard error for the transformed

correlations only depends on the sample size Ni. Whereas the standard error
of the correlation coefficient depends on sample size and the population cor-
relation ρ, Fisher’s z stabilizes the variance in the sense that it is independent
of ρ. By inspecting the formula for the estimator of the mean effect size in the
HO/RR approach in Table 2.1, it can be seen that the inverse variances of the
estimator (σ̂−2

zi
) are used as weights in the aggregation process. These weights

are optimal in the sense that they minimize the variance of the estimator of the
MES (Hedges & Olkin, 1985). To compute a mean correlation coefficient for a
set of studies, the inverse transformation given by

r =
exp (2z)− 1
exp (2z) + 1

. (2.2)

is usually applied to z.
The variances given in the second row of Table 2.1 can be used to conduct

a significance test for the MES and also to construct confidence intervals. The
formulas differ between the approaches because of the aforementioned use
of Fisher’s z in the HO/RR approach and untransformed correlations in the
HS approach. Additionally, the estimator for the variance in the HS approach
differs from the one specified by Johnson et al. (1995). As Schmidt and Hunter
(1999) have pointed out, Johnson et al. used a wrong formula for that purpose.
By using an incorrect estimator for the standard error, most of their results on
the differences between approaches were invalidated.

Confidence intervals for the MES can be constructed for both approaches
by using the information given in the first two rows of Table 2.1, assuming a
normal sampling distribution for the MES, and applying standard procedures.
Whereas on the basis of theoretical results (see Fisher, 1915; Hotelling, 1953)
the normal distribution can safely be assumed in the HO/RR approach, the
distribution of the correlation coefficient is known to be non-normal for non-
zero population correlations ρ and small to moderate Ni. Therefore, problems
may result in the HS approach for confidence intervals and statistical testing of
the MES, especially when Ni and k are small and ρ is large. In our evaluation
of the approaches we follow general (Wilkinson & Task Force on Statistical
Inference, 1999) and specific (Schmidt & Hunter, 1995) recommendations to
focus on confidence intervals and not null hypothesis testing.

In the last row of Table 2.1, the formulas for conducting a homogeneity test
in both approaches are given. Although both formulas are apparently differ-



COMMON META-ANALYTICAL APPROACHES IN THE SOCIAL SCIENCES 27

ent, they follow the same structure in that the squared differences of the (trans-
formed) effect sizes are weighted by the inverse of their variance and summed
over k studies. The result is a statistic ordinarily designated Q that follows a χ2

distribution with k − 1 degrees of freedom in the homogeneous case (see also
Chapter 10 by Böhning & Dammann as well as Chapter 1 by Hartung, Argaç,
& Makambi, this volume).

A still open question is how the approaches HO/RR and HS should be clas-
sified with respect to random vs. fixed effects models of meta-analysis. The
HO/RR approach as presented in this chapter and most often used in practice,
clearly represents a fixed effects model and is classified as such by its authors
(Hedges & Olkin, 1985). One indication of the fixed effects model is that there
is no variance component being estimated and used in the formula for the vari-
ance of the MES (see Table 2.1). In the random effects procedures specified by
Hedges and Olkin (1985) a variance component is estimated and used to com-
pute the weights applied in aggregation. The classification of the HS approach
is not as simple as for the HO/RR approach. The authors are inconsistent
in their own classification by stating that their methods use the fixed effects
model (Hunter & Schmidt, 1990, p. 405) but also that the methods are random
effects models (Hunter & Schmidt, 2000, p. 275). Furthermore, other authors
also do not seem to agree (cf. Erez, Bloom, & Wells, 1996; Field, 2001; Hedges
& Olkin, 1985). We note that for the classification it is essential to assess the
assumptions of an approach about population parameters, whether they are
constant (fixed) or possibly variable (random). Although not obvious from the
procedures of the HS approach as presented in this chapter, it is an integral
part of the general HS approach that – for several reasons – population corre-
lations can be variable and are best considered as a random variable. However,
Hunter and Schmidt (1990) do not present separate procedures for the differ-
ent models as Hedges and Olkin (1985) do. Instead, the statistical procedures
as shown in Table 2.1 for the HS approach can be applied in homogeneous as
well as heterogeneous situations, that is, when the fixed or the random effects
model, respectively, is appropriate. Of particular interest in this context is the
variance of the MES as shown in the right column of Table 2.1. This is the for-
mula generally recommended in the HS approach (Schmidt & Hunter, 1999)
because it is supposed to hold for the heterogeneous case and "serves equally
well when study effect sizes are homogeneous" (Osburn & Callender, 1992,
p. 116).

To summarize, with respect to the statistical procedures of the approaches
that are appropriate for the homogeneous case as presented in this chapter,
there are two main differences that lead to further differences in details of the
procedures. First, in the HO/RR approach Fisher’s z is used whereas in the HS
approach untransformed correlations are aggregated. Second, in the HO/RR
approach the inverses of the (estimated) variances are applied as weights in the
aggregation process whereas in the HS approach the sample sizes are used.

In the following simulation study we will comparatively evaluate the per-
formance of the approaches in only the homogeneous case, that is, when there
is only one constant population correlation ρ common to all studies.
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On the basis of the outlined differences of the approaches we expect the
following congruences and divergences in results in homogeneous situations
for different N, k, and ρ:

1. The estimates of mean effect sizes of both approaches will be biased in
cases when ρ 6= 0. The HO/RR will show an upward bias and the results
for the HS approach will be biased downwards. However, biases will in
general be negligibly small, except for cases in which N is very small.

2. The absolute biases will be larger for the HO/RR approach but the abso-
lute difference between biases of the approaches will be small.

3. The performance for the confidence intervals as assessed by the coverage
of the true parameter value will be better for the HO/RR approach when
N and k are small. In other cases both approaches will show similar
performance.

4. The performance for the homogeneity test will be better for the HO/RR
approach when N and k are small. In other cases both approaches will
show similar performance.

5. We will not be able to replicate most of the results of Johnson et al. (1995)
but our results will be in general agreement with those reported by Field
(2001).

Predictions concerning the bias of the estimators of the MES are based on the
theoretical results given in the seminal paper by Hotelling (1953). He gives es-
timates for biases of the transformed and untransformed correlation coefficient
which can be used to deduce predictions one and two. However, we also note
that previous Monte-Carlo studies on the bias of Fisher’s z and r have found a
smaller bias for Fisher’s z which contradicts prediction two (e.g., Corey, Dun-
lap, & Burke, 1998; Field, 2001).

The expected superiority of the HO/RR approach for confidence intervals
is based on a faster asymptotic of the distribution of the statistic (z) to the nor-
mal distribution in the HO/RR approach as compared to r in the HS approach,
for which convergence of the sampling distribution to the normal distribution
is remarkably slow. Accordingly, the asymptotic behavior of the Q-statistic is
also assumed to be better for the HO/RR procedure. Furthermore, for con-
fidence intervals in the HS approach the mean sampling error of the correla-
tions in studies is used, which may be influenced by what Hunter and Schmidt
(1990) call "second order sampling error", that is, inaccuracies in estimation
when N and/or k are small.

Finally, we note that there are two kinds of asymptotics relevant for the pre-
dictions. First, as the sample size of studies N grows larger but the number
of studies k remains constant, results are expected to converge to theoretical
predictions derived from large sample theory of the statistics. Second, as k
grows larger but N remains constant, results for the estimators need not con-
verge to true values being estimated. Thus, we expect larger N to have a more
profound effect on the results in comparison to an increase in k.
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2.3 SIMULATION STUDY

To comparatively evaluate the two approaches, a C++ program was written
to perform all computations in the situations under study. The procedures to
generate the database for applying the computational procedures of the ap-
proaches follow the descriptions given by Corey et al. (1998). Details of the
computational procedure are reported in Schulze (in press). As already indi-
cated, the main parameters varied in the Monte-Carlo study are number of
studies k to be aggregated, number of subjects per study N, and the popu-
lation correlation coefficient ρ. In the following subsection, the design of the
study is described in more detail, and results are presented in the subsequent
subsection.

2.3.1 Design and Procedure

The levels used for the number of studies were k = 8, k = 32, and k = 128.
They span a wide range of k to explore the results for the approaches in a more
typical case (k = 32) (see Cornwell, 1988) as well as extreme cases. The same is
true for the number of subjects which was varied across the following levels:
N = 16, N = 64, N = 128, and N = 256. For the population correlation
only positive values were used because results were expected to be similar in
the negative range of values. The levels of ρ used in the Monte-Carlo study
were: ρ = 0, ρ = .10, ρ = .30, ρ = .50, ρ = .70, and , ρ = .90. Again, these
values were chosen to explore the performance of the approaches across a wide
range of values. The more typical values in psychological research are in the
range from 0 to .50. However, there are also research questions in psychology
for which correlations to be aggregated can be much higher as in studies on
the reliability of a measurement instrument. Thus, very high values were also
included in our study.

All levels of the three design features were fully crossed, that is, we distin-
guished a total of 3× 4× 6 = 72 situations. Within these situations all levels
were held constant in the simulation procedure. For example, for the situa-
tion k = 8, N = 16, and ρ = 0, the procedures of the approaches outlined in
Table 2.1 were both applied to databases of 8 studies, all of which had a con-
stant N of 16 subjects and the true correlation underlying all of the observed
8 effect sizes was zero. The computations for all of the 72 situations were re-
peated 10,000 times and means across these iterations were computed for the
statistics of interest. By holding ρ constant within situations, we investigated
the homogeneous case for which the fixed effects methods of meta-analysis are
appropriate.

2.3.2 Evaluation Criteria

The performance of the approaches with respect to estimation of ρ is straight-
forward. We computed the estimates for both approaches in all situations and
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compared them to the known true values. Deviations from the true values
indicate bias of the estimators.

For the confidence intervals, the number of intervals covering the popula-
tion correlation ρ were counted in all iterations and divided by the number of
iterations (10,000). Thus, the coverage probability was estimated by the cov-
erage rates. This is similar to the procedure used by Brockwell and Gordon
(2001). All confidence intervals were computed with a prescribed coverage
probability of 95%, so that the expected coverage rate is .95 for all situations.
Because high coverage rates can come at the cost of long interval widths, the
mean widths were also computed by the difference of the mean upper and
lower limit across all iterations. This will enable a comparison of the ap-
proaches with respect to estimated coverage probabilities when coverage rates
are (almost) equal, for example. Ceteris paribus, the approach showing smaller
intervals shows better performance. Additionally, estimated confidence inter-
val widths may also be indicative for causes of potential deficiencies of cover-
age rates.

The homogeneity tests for both approaches and in all situations tests were
conducted with α = .05, and the rate of significant test results was assessed.
Thus, we evaluated whether Type I error rates of the tests for both approaches
conformed to the prescribed significance level of the tests.

2.3.3 Results

The results will be presented in separate tables for the estimates of the mean
effect size, coverage rates as well as interval widths of the confidence intervals,
and Type I error rates for the homogeneity tests. All tables will have the same
general structure showing the results for the two approaches in two blocks of
columns subdivided by levels of k. Levels of N are shown in blocks of rows
where blocks represent levels of ρ.

The estimates of the mean effect sizes for the two approaches are shown
in Table 2.2. There are several results for the mean effect size estimates to be
highlighted. First, overall the biases are small for most combinations of ρ, k,
and N. However, when N is very small (16), biases are not within rounding
error for correlations. Nevertheless, we doubt that the absolute value of biases
– even in the most extreme cases as observed in Table 2.2 – will affect substan-
tial conclusions in most applications. Biases for both approaches are largest
for values of ρ between .50 and .70 and are smallest for ρ = 0. Biases also
diminish for larger values of N but do show the same behavior for increasing
values of k. Thus, for neither of the approaches does adding more studies to
a meta-analysis in a homogeneous situation help in obtaining less biased es-
timates for the population parameter, as long as study sample sizes are equal
for the (added) studies.

Second, the results of the HO/RR approach show an upward bias in all
situations whereas the results for the HS approach indicate underestimations
of ρ. When comparing the absolute values of biases of the approaches, we note
that – except for very small N – biases are equal to the third digit. Contrary
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Table 2.2 Results: Estimates of Mean Effect Size

Number of studies k

HO/RS HS

N 8 32 128 8 32 128

ρ = 0

16 .001 .000 .000 .001 .000 .000
64 .000 .000 .000 .000 .000 .000

128 .000 .000 .000 .000 .000 .000
256 .000 .000 .000 .000 .000 .000

ρ = .10

16 .102 .103 .104 .097 .097 .097
64 .101 .101 .101 .099 .099 .099

128 .101 .101 .100 .100 .100 .100
256 .100 .100 .100 .100 .100 .100

ρ = .30

16 .306 .310 .310 .290 .291 .291
64 .302 .302 .302 .299 .298 .298

128 .301 .301 .301 .299 .299 .299
256 .300 .301 .301 .299 .299 .299

ρ = .50

16 .509 .512 .513 .486 .487 .487
64 .502 .503 .503 .497 .497 .497

128 .500 .501 .501 .498 .499 .499
256 .500 .501 .501 .499 .499 .499

ρ = .70

16 .710 .712 .712 .688 .688 .687
64 .702 .703 .703 .697 .697 .697

128 .701 .701 .701 .699 .699 .699
256 .701 .701 .701 .699 .699 .699

ρ = .90

16 .905 .906 .906 .894 .894 .894
64 .901 .901 .901 .899 .899 .899

128 .901 .901 .901 .899 .899 .899
256 .900 .900 .900 .900 .900 .900

Note. N = Sample size per study, HO/RR = Hedges-Olkin and Rosenthal-Rubin ap-
proach, HS = Hunter-Schmidt approach.
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to theoretical expectations, the method that employs Fisher’s z (i.e., HO/RR)
actually shows slightly less bias in cases when N = 16 as compared to the
approach in which untransformed correlations are aggregated.

Im sum, the results for the estimates of mean effect sizes confirm prediction
1 and contradict prediction 2 on page 28. The results reported in Table 2.2 are
in accordance with those reported elsewhere (Corey et al., 1998; Field, 2001;
Silver & Dunlap, 1987) and show small biases in opposite directions as well as
nearly equal absolute biases for both approaches.

The estimates of the coverage rates and interval widths for the two ap-
proaches are shown in Table 2.3. The values in Table 2.3 show both cover-
age rates of the 95% confidence intervals for the population effect size (left of
slashes) and estimated widths of the intervals (right of slashes). The interval
widths are given for values of r for both approaches. That is, interval limits
were estimated for the Fisher’s z values in the HO/RR approach, backtrans-
formed by applying Equation 2.2 to the estimated values for the limits, and
aggregated over iterations.

For the situations in which ρ = 0 and practically no bias was observed (see
Table 2.2), a symmetrical (normal) sampling distribution can be assumed for
both approaches. Because interval widths for the HO/RR approach only de-
pend on k, N, and the quantiles of the normal distribution corresponding to the
desired coverage probability, at least for ρ = 0 the widths should correspond
very closely to theoretical expectations derived from:

IW = 2× z.975

(
k

∑
i=1

Ni − 3k

)− 1
2

,

where IW denotes interval widths and z.975 is the .975-quantile from the stan-
dard normal distribution. The interval widths of the HO/RR approach indeed
correspond exactly to the theoretical expectations, except for one case (N = 16,
k = 8) showing a small difference to the expected width of .380− .384 = −.004.
Note, that this is also the situation, for which a very small bias was observed.
The observed close correspondence to theoretical expectations lends support
to the validity of the general procedure used to determine the estimates for the
interval widths.

Overall, interval widths shown in Table 2.3 become smaller both for in-
creases in k and N, as would be expected from statistical theory. The results
also indicate coverage rates close to the desired level in nearly all situations
for the HO/RR approach. Few exceptions are observed for combinations of
large k, small N, and medium to high values of ρ. For the same combinations
of values, the coverage rates of the HS approach are less than expected.

In a comparison of the performance of the approaches’ procedures, two
main aspects are noteworthy. First, apart from few exceptions coverage rates
for the HS approach are smaller than those of the HO/RR approach and inter-
val widths are simultaneously smaller for the HS approach. Thus, confidence
intervals in the HS approach are too small and this ostensibly higher precision
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Table 2.3 Results: Coverage Rates and Estimated 95% Confidence Interval Widths

Number of studies k

HO/RS HS

N 8 32 128 8 32 128

ρ = 0

16 .951/.380 .947/.192 .949/.096 .891/.326 .934/.175 .945/.089
64 .954/.177 .948/.089 .950/.044 .888/.158 .936/.085 .946/.043

128 .949/.124 .949/.062 .949/.031 .893/.111 .938/.060 .947/.031
256 .951/.087 .952/.044 .951/.022 .899/.078 .939/.042 .950/.022

ρ = .10

16 .948/.376 .948/.190 .949/.095 .886/.322 .934/.173 .947/.088
64 .952/.175 .950/.088 .950/.044 .898/.157 .935/.085 .946/.043

128 .953/.123 .949/.061 .946/.031 .893/.110 .938/.060 .943/.030
256 .949/.086 .951/.043 .950/.022 .892/.077 .940/.042 .947/.021

ρ = .30

16 .952/.345 .943/.173 .932/.087 .898/.298 .935/.161 .932/.082
64 .952/.161 .946/.081 .945/.040 .894/.145 .936/.078 .942/.040

128 .949/.113 .949/.056 .946/.028 .894/.101 .937/.055 .944/.028
256 .950/.079 .950/.040 .948/.020 .889/.071 .935/.039 .943/.020

ρ = .50

16 .948/.283 .935/.142 .885/.071 .890/.252 .930/.136 .894/.070
64 .948/.133 .950/.066 .940/.033 .890/.119 .938/.065 .934/.033

128 .949/.093 .950/.046 .947/.023 .891/.084 .938/.045 .945/.023
256 .950/.065 .951/.033 .949/.016 .889/.059 .937/.032 .946/.016

ρ = .70

16 .944/.190 .920/.095 .828/.047 .891/.176 .930/.097 .845/.050
64 .949/.090 .942/.045 .920/.022 .887/.082 .931/.044 .923/.023

128 .951/.063 .946/.032 .934/.016 .893/.057 .934/.031 .937/.016
256 .951/.044 .947/.022 .942/.011 .895/.040 .935/.022 .944/.011

ρ = .90

16 .940/.070 .898/.035 .741/.017 .885/.068 .920/.038 .786/.020
64 .949/.033 .938/.017 .909/.008 .894/.031 .930/.017 .912/.009

128 .951/.024 .945/.012 .929/.006 .892/.021 .935/.012 .925/.006
256 .950/.017 .945/.008 .942/.004 .887/.015 .935/.008 .938/.004

Note. Numbers on the left of the slashes indicate coverage rates, numbers on the right
are estimates of interval widths. N = Sample size per study, HO/RR = Hedges-Olkin
and Rosenthal-Rubin approach, HS = Hunter-Schmidt approach.
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comes at the cost of coverage rates being smaller than desired. Second, for
k = 8 the HS approach always shows coverage rates less than .90. In these sit-
uations, the differences in interval widths to the HO/RR approach are also at
a maximum. The inferior performance of the HS approach may be due to sec-
ond order sampling error in the estimated standard errors for the mean effect
sizes when the number of studies is small.

It is also possible on the basis of the results shown in Table 2.3 to shed some
light on the performance of the approaches for significance testing, as is ordi-
narily done in meta-analyses. From the results on the estimation of the MES
in Table 2.2, it is known that biases are generally small, so that interval widths
can be used to deduce the following results: First, because of smaller interval
widths for the HS approach, the hypothesis in question will be rejected more
often as in the HO/RR approach. Thus, statistical power will be compara-
tively higher for the HS approach when the hypothesis is false but the HO/RR
may better conform to the desired nominal α-level when the hypothesis is true.
Second, for small effects (ρ = .10) and combinations of small to medium levels
of k and N there is remarkably low power for both approaches. This can be
seen, for example, by considering the situation in which k = 8, N = 64, and
ρ = .10. Here, there is only a very small bias for both approaches (.001 in abso-
lute value, see Table 2.2) and interval widths are .175 for the HO/RR approach
and .157 for the HS approach, respectively. Thus, intervals will mostly contain
the value of zero so that the hypothesis is (falsely) not rejected. The results
we deduced on testing the hypothesis of zero correlation in the population,
conform to the conclusions drawn by Field (2001), who explicitly examined
the test performance of the approaches but not the performance for confidence
intervals as we have done.

In sum, the HO/RR approach shows a better overall performance for the
confidence intervals in comparison to the HS approach. The most disturb-
ing aspect of the results for the HS approach is the consistently low coverage
rate for a small number of studies in a meta-analysis. Although most meta-
analyses in practice will have more than eight studies in total, this result is
particularly relevant for subgroup analyses often done in detailed analyses of
a meta-analytic database.

The last aspect in the comparative evaluation of the approaches is the per-
formance of the proposed homogeneity tests. The estimates of the Type I error
rates for homogeneity tests are shown in Table 2.4. The results indicate that
the test in the HO/RR approach approximately retains the nominal α (.05) in
all situations. In contrast, the results for the HS approach show deficiencies
as the population correlation increases, N is small, and k grows larger. This is
most easily noticeable by inspecting the rejection rates of the null hypothesis
for ρ = .90. Again, it is noted that this situation will not be given often in prac-
tice. Nevertheless, the deviance of the results from the expected values for the
HS approach and its conspicuously low rejection rates for small N and ρ lead
to a preference for the HO/RR approach in the situations of the simulation
study.
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Table 2.4 Results: Type I Error Rates for Homogeneity Tests (α = .05)

Number of studies k

HO/RS HS

N 8 32 128 8 32 128

ρ = 0

16 .057 .053 .054 .044 .035 .034
64 .050 .053 .053 .046 .048 .047

128 .052 .051 .050 .052 .049 .047
256 .053 .051 .051 .052 .050 .050

ρ = .10

16 .056 .053 .053 .044 .037 .037
64 .050 .051 .048 .048 .047 .043

128 .051 .050 .053 .048 .049 .050
256 .049 .052 .049 .048 .052 .049

ρ = .30

16 .051 .055 .054 .045 .049 .056
64 .049 .054 .055 .050 .053 .054

128 .049 .052 .049 .048 .049 .051
256 .048 .049 .055 .047 .049 .054

ρ = .50

16 .053 .050 .048 .062 .079 .124
64 .047 .054 .052 .051 .062 .068

128 .048 .048 .051 .050 .051 .059
256 .050 .053 .050 .051 .054 .053

ρ = .70

16 .049 .048 .040 .079 .138 .247
64 .049 .046 .048 .057 .064 .088

128 .048 .050 .048 .052 .064 .068
256 .054 .048 .048 .055 .055 .057

ρ = .90

16 .048 .043 .034 .097 .210 .445
64 .053 .045 .046 .065 .081 .125

128 .050 .048 .051 .055 .066 .085
256 .048 .050 .050 .050 .061 .063

Note. N = Sample size per study, HO/RR = Hedges-Olkin and Rosenthal-Rubin ap-
proach, HS = Hunter-Schmidt approach.
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2.4 DISCUSSION AND CONCLUSIONS

From the findings in our simulation study we conclude that the HO/RR ap-
proach leads to more reliable results in a meta-analysis of correlation coeffi-
cients in a homogeneous situation. Most of our predictions were supported by
the results. For the accurate estimation of a mean effect size it does not seem
to be critical which of the two approaches is chosen because estimates were
mostly accurate within rounding error for both approaches. However, for the
construction of confidence intervals or testing of the hypothesis that the pop-
ulation correlation is zero, the HO/RR approach leads to more appropriate
results. The same is true for testing the hypothesis of a constant effect size in
the population with the homogeneity test (but see Hartung et al., Chapter 1 in
this volume).

There are two aspects of the simulation study that might limit its relevance
for practical purposes. First, only the homogeneous case was investigated. It
has been argued by several authors (e.g., Erez et al., 1996; Hunter & Schmidt,
2000; Osburn & Callender, 1992) that the assumption of homogeneous effect
sizes is not realistic for most practical applications. However, despite sev-
eral calls for an increased use of random effects procedures, methods of meta-
analysis as presented in this chapter are still dominant in the literature in the
social sciences. For an evaluation of the methods most often used in practice,
it seems reasonable to compare them in simulations of situations for which
the procedures were designed, as was done in the present study. Our results
showed that in this case the HO/RR approach is preferable to the HS approach.

It might well be the case, however, that the procedures perform differently
in heterogeneous situations. Whereas the HS approach is supposed to be ap-
plicable both in homogeneous and heterogeneous situations, there have been
developed different procedures for the two situations by Hedges and Olkin
(1985). That is, for the application of the procedures presented by Hedges and
Olkin one has to make a decision between procedures before their application
and this decision depends on assumptions about the true situation in the pop-
ulation of effect sizes. Field (2001) presented a simulation study in which the
random effects procedures by Hedges and Olkin were compared to the HS ap-
proach in heterogeneous situations. He reported mixed results insofar as there
are advantages in using the HS approach for estimation of the mean effect size
but also a better performance of the random effects procedures by Hedges and
Olkin for inferential purposes, though none of the approaches performed sat-
isfyingly for all simulated conditions. In a comprehensive effort to compare a
large set of approaches and accompanying refinements in a number of situa-
tions, Schulze (in press) analyzed the approaches as presented here also in het-
erogeneous situations. In this study, a series of serious deficiencies of both ap-
proaches in heterogeneous situations was found and better alternatives were
pointed out.

As an alternative to the above mentioned a priori decision between fixed
and random effects procedures, Hedges and Vevea (1998) also proposed a so-
called conditionally random effects procedure in which the choice of proce-



DISCUSSION AND CONCLUSIONS 37

dures is conditional on the results of the homogeneity test. They showed an-
alytically that their fixed and random effects procedures perform best with
respect to inferential goals when applied to situations for which they were
designed. The conditionally random effects procedure showed performance
better than the random effects procedure in homogeneous situations but per-
formed not as good as the fixed effects procedures here. The pattern of perfor-
mance was reversed for heterogeneous situations. Several simulation studies
(e.g., Field, 2001; Hardy & Thompson, 1998; Harwell, 1997; Schulze, in press)
showed, however, that there are serious problems with the homogeneity test
and that it should be used with caution as a device to decide between models.

In sum, at least for inferential purposes the decision between fixed and ran-
dom effects procedures is critical because they perform best when the decision
is correct. Thus, such a decision is important when a comparison of approaches
is of interest. Unfortunately, authoritative statistical tests for an empirically
based decision do not yet seem to be available and compromise procedures
like the conditional random effects model or the HS-approach are not with-
out problems. Additionally, a choice between models also crucially depends
on the inferential purposes as Hedges and Vevea (1998) have argued and we
share their view that an abandonment of fixed effects procedures – even if het-
erogeneous situations are assumed by default – would be unnecessary.

A second potential limitation for the conclusions based on the results pre-
sented in this chapter is that the sample sizes were held constant in the simu-
lations within levels of k and ρ. Indeed, constant sample sizes have never been
observed in published meta-analyses and are therefore not realistic. We ar-
gue, however, that if differences in sample sizes would exhibit an influence on
the results of a meta-analysis, such an influence would depend on the distri-
bution of the sample sizes, its parameters, and also the covariation of sample
sizes with effect sizes. Furthermore, this influence might differentially affect
the results for the approaches to be compared. If this would be the case, spe-
cific assumptions about the distributional properties of sample sizes would
obscure a comparative evaluation of approaches. Only in a situation in which
firm knowledge about the distribution and its properties were available there
would be a gain in making the comparison of approaches more realistic. How-
ever, there seems to be no consensus about which distribution to assume in
simulation studies. In some Monte-Carlo studies on meta-analytical methods,
the sample sizes across studies have been assumed to be normally distributed
with varied parameters (e.g., Field, 2001; Osburn & Callender, 1992), uniformly
distributed (e. g., Erez et al., 1996), or have been held constant (e. g., Corey
et al., 1998; Overton, 1998) as in the present study. Unfortunately, neither of
these distributions seems to mirror the distribution observed in practice. The
results of a content analysis of 81 meta-analyses in industrial/organizational
psychology reported by Cornwell (1988), clearly show a distribution of sam-
ple sizes far from normal or uniform. Instead, at least in this field of research
the distribution is characterized by strong positive skewness and kurtosis. We
therefore think that holding sample sizes constant across studies is a more sen-
sible choice over assuming a distribution not observed in practice.
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Notwithstanding the outlined potential limitations, it is clear from the re-
sults presented in this chapter that many of the conclusions concerning the
HS approach drawn by Johnson et al. (1995) were based on erroneous results.
However, more extensive simulation studies are needed to reach final conclu-
sions about the usefulness of existing approaches.
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Summary

A main question in meta-analysis is the comparability of studies in con-
sideration. This relates and leads inevitably to the investigation of prob-
lems of heterogeneity. In this chapter, we deal with the one-dimensional
case, represented by four examples, and propose a nonparametric mo-
ment estimator for the heterogeneity variance in the corresponding ran-
dom effects model. The principle is based on decomposing the variance
of the study estimator, that is, the total (unconditional) variance is com-
posed of the mean conditional variance and the heterogeneity variance, or
an expression containing the latter. We also hint to problems concerning
the use of the DerSimonian-Laird estimator, which is a frequently used
nonparametric estimator of general application. Finally, based on expres-
sions for the conditional variances in several models for effect parameters
and quality scores we demonstrate our principle.
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3.1 INTRODUCTION AND EXAMPLES

We denote by θ ∈ R the measure of the effect of interest. Given population
heterogeneity, there is an increase of the variance for the study estimator. It
appears an additional variance term, the heterogeneity variance τ2. An esti-
mation τ̂2 for τ2 can be used to adapt the inference regarding the overall mean
of θ.

We suppose that the meta-analysis is based on k studies, or charges of a
pharmaceutical product (solution, powder), respectively. Let us consider four
examples for an effect measure or quality score θ.

Standardized difference This effect size measure is used for comparisons of
groups based on continuous measurement variables with (possibly) different
scales of measurement:

θ =
(µT − µC)

σT,C
.

Here, µT and µC denote the mean values in a treatment and control group, σT,C
denotes the variance of the response variables in the two groups. That means
equal variances of the two groups within each study are assumed.

Standardized mortality ratio Here, we are interested in the expected num-
ber of counts for a case event in a region or area in comparison to the corre-
sponding number in a reference population with the same population struc-
ture:

θ =
µ

e
.

At this µ is the mean number of mortality or morbidity cases for a geographic
region or area, and e is the corresponding value for this area calculated on the
basis of an external reference population. Clearly, both values depend on the
population size for the area considered.

Log relative risk in Cox regression with random censorship We consider the
log-linear Cox-model with only one covariate. This covariate is a dichotomous
variable which indicates some grouping membership (new therapy/treatment
– standard therapy/placebo). Here, the parameter θ can be interpreted as the
logarithm of the relative risk (ln(RR)):

θ = ln(RR) = ln
(

λ(t|Z = 1)
λ(t|Z = 0)

)
= ln

(
λT(t)
λC(t)

)
,

where λ(·|Z) = λ0(·)eθZ denotes the hazard rate function. We suppose that
the distribution function F0(t) =P(T ≤ t|Z = 0) is continuous.

S0(t) = exp
(
−
∫ t

0
λ0(z)dz

)
is the survival function corresponding to λ0(·).
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Quality scores (in pharmaceutical technology) This type of scores is used
for in-process control detecting polluting particles in solutions and powders:

θ =
1
n

c0
(
λl + cmλm + cgλg

)
.

Here, n denotes the size of the sample which is drawn from each charge of
the product; λl, λm, and λg denote the expected numbers of slight, moderate,
and severe faults (pollutions, contaminations) in the sample; cm and cg are
coefficients to weigh the kinds of fault.

The (unknown) study-/charge-specific values of the effect-/score parame-
ter are denoted by θi; θ̂i is the estimate in the study number i. Homogeneity
means that θ1 = θ2 = · · · = θk.

In the random effects model (RE model) we have to distinguish between the
conditional distribution of the random variable θ̂, given a fixed study-specific
parameter value θ, Pθ̂, and the distribution of the parameter θ in the popu-
lation of study parameters. In the context of heterogeneity analysis the latter
distribution is called the heterogeneity distribution, say G.

We will assume that θ̂ is a conditional unbiased estimator1, and θ̂ is regarded
as the bias corrected version of an estimator θ̃. In the following, we give the
study estimators for our four examples.

Standardized difference

θ̂i = [H(Ni/2)]−1

(
XT

i − XC
i

)
s2

i
.

Here, s2
i denotes the pooled sample variance, and H(Ni/2) is the bias correct-

ing factor:

H(a) =
√

a
Γ(a− 1

2)
Γ(a)

, and furthermore, Ni = nT
i + nC

i − 2,

in which nT
i and nC

i are the group sizes in study i, and Γ(·) denotes the gamma
function.

Standardized mortality ratio

θ̂i =
Yi

ei
.

Here, Yi is the observed number of mortality or morbidity cases in region i, and
ei is the corresponding expected number calculated on the basis of an external
reference population.

1More precisely, we only need that E
(
θ̂|θ
)

= θ + C, in which the constant C does not depend
on θ.
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Log relative risk in Cox regression with random censorship Here, θ̂i is the
maximum partial likelihood estimator (MPLE), which is asymptotically unbi-
ased:

θ̂i = argmaxθ

Li

∏
j=1

exp(θiZi(j))

∑l∈Rij
exp (θiZil)

and ni denotes the number of individuals at the beginning of study i, T0
i1 <

· · · < T0
iLi

are the failure times, and Zi(j) is the covariate value for the individual
failed at time T0

ij. Furthermore, Rij is the risk set immediately before time T0
ij

in study i. The data are (Xil, δil), Xil = min(Til, Uil), in which Til and Uil are
the variables for the failure time and censoring time for individual l in study i,
and δil = I{Til≤Uil}.

Quality scores
θ̂i =

c0

ni

(
li + cmmi + cggi

)
,

where li, mi and gi are the observed numbers of slight, moderate, and severe
faults in charge i. Here, we usually have ni ≡ n.

Let us summarize the assumptions of the RE model:

θ̂i = θi + εi, θi = µG + ξi, (3.1)

in which the εi are independent random variables with

E (εi) = 0, ν2
i = Var (εi) = EG

(
σ2

i (θi)
)

, with σ2
i (θi) = Var

(
θ̂i|θi

)
,

ξi i.i.d., E (ξi) = 0, Var (ξi) = VarG (ξ) = τ2, µG = EG (θi) .

The conditional variances possibly depend both on the study design in study i
and on the parameter θi. We consider the problem of estimating the heteroge-
neity variance τ2.

3.2 A VARIANCE DECOMPOSITION

In this section, we generally denote by θ̂ a study-/charge-estimator with

µ(θ) = E
(
θ̂|θ
)

,

σ2(θ) = Var
(
θ̂|θ
)

.

Note, that more precisely we have to denote σ2(θ; Ξ; α1, · · · , αp), in which Ξ
stands for the study design or, more generally, for characteristics of the exper-
iment, for instance N = nT + nC − 2 for the standardized difference. Under
the assumption θ random, θ ∼ G, we can decompose the total (unconditional)
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variance:

Var
(
θ̂
)

= EG
(
Var

(
θ̂|θ
))

+ VarG
(
E
(
θ̂|θ
))

=
∫

σ2 (θ) g (θ) dθ +
∫

(µ (θ)− µG)2 g (θ) dθ,
(3.2)

where g(·) is the density or the probability mass function (which gives the
single probabilities) in the case of a discrete heterogeneity distribution.

In the case that θ̂ is conditionally unbiased: µ(θ) = θ, or if µ(θ) = θ + const.,
it follows that VarG

(
E
(
θ̂|θ
))

= VarG (θ) = τ2, and

τ2 = Var
(
θ̂
)
− EG

(
Var

(
θ̂|θ
))

(3.3)

(see Equation 3.2). Equation 3.3 will motivate a principle for estimating τ2.
The advantages of the method are:

• the resulting estimator is very easily calculated,

• we avoid any parametric assumption about G,

• using Var
(
θ̂|θ
)
, it is possible to take the special statistical model into ac-

count, that is, the special estimating problem.

This method is applicable under the supposition that we can express

EG
(
Var

(
θ̂|θ
))

= F
(

Λ; µ
(l)
G ; EG (αr

s)
)

, (3.4)

in which Λ comprises known quantities from the study design. Examples for
αs are α1 = pl, α2 = pm, and α3 = pg in the case of quality scores. σ2(θ) =
F̃(Λ; θl; αr

s) is sufficient for Equation 3.4.

3.3 THE DERSIMONIAN-LAIRD ESTIMATOR

A simple, general, and frequently used method to estimate τ2 is the DerSimon-
ian-Laird estimator. Generally, this estimator can be derived without normality
assumptions by means of the weighted least squares principle. For this, it is
assumed that the conditional variances are known, the so-called study specific
variances. We write ν2

i instead of σ2
i (θi) because it makes no sense to assume

on the one side that θi is an unknown realization of a random variable, fur-
thermore σ2

i is known exactly, and on the other side, that we have a structural
dependence of σ2

i on θi : σ2
i (θi).

Now we can write the model (see Equations 3.1) in vector notation with the
“design matrix” X = 1k = (1, . . . , 1)T:(

θ̂1, . . . , θ̂k
)T = D = Xβ + F = µG1k + (E + C),
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in which

E = (ε1, . . . , εk)
T ,

C = (ξ1, . . . , ξk)
T ,

E (E + C) = 0k,

W : = Cov (E + C) = τ2Ik + V.

Here, Ik denotes the k-dimensional identity matrix and V = diag(ν2
1 , . . . , ν2

k ).
Then it is straightforward to derive the weighted least squares (WLS) estimate
Xβ̂WLS = µ̂G with weighting matrix V−1 (note, that τ2 is unknown but the ν2

i
are assumed to be known). We have

µ̂G =

(
k

∑
i=1

ν−2
i θ̂i

)
/

(
k

∑
i=1

ν−2
i

)
.

The corresponding sum of squared residuals is

RSS = |D− D̂|2V−1 =
k

∑
i=1

ν−2
i θ̂2

i −

( k

∑
i=1

ν−2
i θ̂i

)2

/

(
k

∑
i=1

ν−2
i

) ,

with

E (RSS) = (k− 1) +

(
k

∑
i=1

ν−2
i −

(
k

∑
i=1

ν−4
i /

k

∑
i=1

ν−2
i

))
τ2.

Rearranging this equation and replacing the expectation E (RSS) by its ob-
served value RSS, it follows

τ̂2
dl =

(RSS− (k− 1))
(S1 − (S2/S1))

=

(
∑k

i=1 ν−2
i
(
θ̂i − µ̂G

)2 − (k− 1)
)

(S1 − (S2/S1))
, (3.5)

with Sl = ∑k
i=1

(
ν−2

i

)l
, l = 1, 2.

However, for the application in practice the true study specific variances
ν2

i are unknown, that means, for the data analysis they are estimated. Addi-
tionally, in most applications we have Var

(
θ̂|θ
)

= σ2 (θ) and σ2 (α1, . . . , αp
)
,

respectively, with unknown θ and αs. Note, that in Equation 3.5 we have
µ̂G = µ̂G(ν2

1 , . . . , ν2
k ) and Sl = Sl(ν2

1 , . . . , ν2
k ).

The problem is: What do we have to put in for (ν2
1 , . . . , ν2

k )? It would be good
practice to start from an adequate model, find the right conditional distribution
in this model, and with this derive the expression for the conditional variances
σ2

i (θi). Finally, we put in

ν2
i := σ̂2

i (θi) = σ2
i
(
θ̂i
)

,
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to obtain a practical version of the DerSimonian-Laird estimator. Note, that θ̂i
is random. Consequently, τ̂2

dl is no longer the best linear unbiased estimator
because the optimal weights ν−2

i are unknown. Moreover, τ2
dl is not unbiased,

numerator and denominator in Equation 3.5 are stochastic terms.

3.4 THE CONDITIONAL VARIANCES IN THE MODELS

For the Examples

Standardized difference Under the assumption of normally distributed mea-
surement variables

Xij ∼ N (µT
i , σ2

i;T,C), j = 1, . . . , nT
i ,

Yij ∼ N (µC
i , σ2

i;T,C), j = 1, . . . , nC
i

it follows that √
qiH (Ni/2) θ̂i ∼ tNi (θi

√
qi) ,

a noncentral t-distribution with Ni degrees of freedom and noncentrality pa-
rameter θi

√
qi, in which qi = nT

i nC
i /
(
nT

i + nC
i
)
. Therefore, we have

σ2
i (θi) = (H (Ni/2))−2 Ni

qi (Ni − 2)
+
(

Ni

(Ni − 2)
(H (Hi/2))−2 − 1

)
θ2

i (3.6)

(see Malzahn, Böhning, & Holling, 2000).

Standardized mortality ratio Since conditional on the value θi in area i, a
Poisson distribution with parameter λi = θiei is assumed for Yi, it is easy to see
that

σ2
i =

θi

ei
.

Maximum partial likelihood estimator for survival time studies It can be
shown (see Fleming & Harrington, 1994) that

n1/2
i

(
θ̂
(ni)
i − θi

)
−→L X,

with X ∼ N
(

0, σ−2
i (θi)

)
, in which the inverse of the asymptotical variance

for the standardized estimator is under additional assumptions (in order to
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reduce the complexity of the resulting expression):

σ2
i (θi) =

1
2

exp (θi)
∫ tup

0

(
1− t

ui

)
(S0 (t))exp(θi)[

exp (θi) (S0 (t))exp(θi) + S0 (t)
] f0 (t) dt

=
1
2

exp (θi)
∫ 1

S0(tup)

(
1−

S−1
0 (s)

ui

)
sexp(θi)[

exp (θi) sexp(θi) + s
]ds.

(3.7)

Here, tup denotes a constant, common for all studies (it depends on the baseline
hazard rate function, which is taken as a basis), and ui are (possibly study-
specific) constants, characterizing the censoring time distribution; S0 denotes
the survival function according to the baseline hazard: S0 (s) = P0 (T > s).

Quality scores The situation can be described by a multinomial distribution
model M(n; pl, pm, pg) with probability mass function:

π(l, m, g|p) =
n!

l!m!g!
pl

l p
m
m pg

g(1− pl − pm − pg)n−l−m−g. (3.8)

Here, p = (pl, pm, pg)T denotes the vector of the probabilities for detecting
a slight, moderate, or severe contamination in an inspected item. For hete-
rogeneity analysis it is important that we interpret the expression in Equa-
tion 3.8 as a conditional distribution: the distribution for the vector (l, m, g)T

at fixed underlying vector (pl, pm, pg)T. Heterogeneity means: There exists a
non-degenerated heterogeneity distribution G on (0, 1)3, and for each charge
of the product under examination the actually underlying parameter vector p
is a realization from this distribution. In this model, the conditional2 variance
of the quality score in charge i is

σ2
(

p(i)
)

:= Var
(

θ̂i|p(i)
)

=
c2

0
n

[
p(i)

l

(
1− p(i)

l

)
+ c2

m p(i)
m

(
1− p(i)

m

)
+ c2

g p(i)
g

(
1− p(i)

g

)
− 2cm p(i)

l p(i)
m − 2cg p(i)

l p(i)
g − 2cmcg p(i)

m p(i)
g

]
.

3.5 A PRINCIPLE TO ESTIMATE THE HETEROGENEITY
VARIANCE

Our starting point here is the relationship given in Equation 3.3 for the hetero-
geneity variance. If θ2 enters in the expression for Var

(
θ̂|θ
)
, then τ2 enters in

2Conditional on fixed p(i) =
(

p(i)
l , p(i)

m , p(i)
g

)T
.
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an analogous manner in the right side of Equation 3.3, leading to an equation
for τ2 which is specifically considered for the model. This equation provides
the possibility to construct an estimator τ̂2. As an example, we want to demon-
strate this principle for the standardized difference (see Malzahn et al., 2000).

Standardized difference Here, Equation 3.6 together with the relationship
EG
(
θ2) = τ2 + µ2

G yields∫
σ2 (θ) g (θ) dθ = (H (N/2))−2 N

q (N − 2)
+[

N
(N − 2)

(H (N/2))−2 − 1
] (

τ2 + µ2
G

)
.

Applying this and rearranging leads to

τ2 = (H (N/2))2 (N − 2)
N

Var
(
θ̂
)
− q−1 −

[
1− (N − 2)

N
(H (N/2))2

]
µG,

(3.9)
where N = nT + nC − 2 and q = nTnC/(nT + nC).

The data are
(
θ̂1; N1, q1

)
, . . . ,

(
θ̂k; Nk, qk

)
. Equation 3.9 will motivate a non-

parametric estimator τ̂2. To estimate the first term of Equation 3.9, it seems to
be reasonable to use a modified version of the usual empirical variance of the
study estimators, considering the different degrees of freedom (Ni). We can
estimate the mean value of the effect parameter in the overall population by

µ̂θ̂ = k−1
k

∑
i=1

θ̂i

or, given estimates ν̂2
i of the study-specific variances for θ̂i, the pooled estima-

tor

µ̂θ̂ =
∑k

i=1 ν̂−2
i θ̂i

∑k
i=1 ν̂−2

i

.

In the fixed effects model for known study-specific variances, the pooled mean
is the best unbiased linear estimator for the first moment and should be used
if the data indicates at most a small heterogeneity variance. In the case of large
heterogeneity, the arithmetic mean should be preferred because the “true”
weights within the pooled estimator are poorly estimated by noniterative pro-
cedures. Finally, in Equation 3.9 we estimate[

1− (N − 2)
N

(H (N/2))2
]

µ2
G
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by the mean value of the corresponding study specific realizations. This leads
to a nonparametric estimator of the heterogeneity variance given by

τ̂2 =
1

(k− 1)

k

∑
i=1

(1− Ki)
(
θ̂i − µ̂θ̂

)2 − 1
k

k

∑
i=1

1
qi
− 1

k

k

∑
i=1

Ki θ̂
2
i ,

where

Ki = 1− (H (Ni/2))2 (Ni − 2)
Ni

.

The same mode of procedure yields corresponding estimators for the hetero-
geneity variance in the case of the standardized mortality ratio.

Standardized mortality ratio

τ̂2 =
1

(k− 1)

k

∑
i=1

(
θ̂i − µ̂θ̂

)2 − 1
k

µ̂θ̂

k

∑
i=1

1
ei

,

where µ̂θ̂ is an estimator for the mean value of the parameter in the whole pop-
ulation. Typically, two estimators are considered:

the arithmetic mean

µ̂
(ar)
θ̂

=
1
k

k

∑
i=1

θ̂i

and the pooled mean

µ̂
(pool)
θ̂

= ∑k
i=1 θ̂iei

∑k
i=1 ei

(see Böhning, Sarol, & Malzahn, 2000).

Log relative risk in the log-linear Cox model with random censorship At
first, we consider the inverse of the asymptotical conditional variance of the
standardized estimator in this model, given by Equation 3.7. This quantity
has to be estimated for each study. The expression in Equation 3.7 for σ2

i (θi)
contains the unknown survival function S0(t) corresponding to the baseline
hazard. An obvious nonparametric estimator Ŝ0(t) in study i is the Kaplan-
Meier estimator

Ŝ0(t) = ∏
j:T0

ij≤t

(
Ȳij − 1

)
Ȳij

,

in which

Ȳij =
ni

∑
l=1

Yl

(
T0

ij

)
, with Yl(t) = I(Xl≥t).
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Furthermore, since there are no bindings, the Nelson estimator for the cumu-
lative hazard function

Λ0(t) =
∫ t

0
λ0(z)dz

is given by

Λ̂0 = ∑
j:T0

ij≤t

δij

Yij
.

Consequently, a natural estimator for an integral of the form
∫ b

a hi(t)λ0(t)dt is
given by

∑
j:a<T0

j <b

hi

(
T0

j

) δj

Y j
.

Because of f0(s) = λ0(s)S0(s), we have

hi(t) =
(S0 (t))exp(θi)+1[

exp (θ) (S0(t))exp(θi) + S0(t)
] (1− 1

ui

)

in Equation 3.7, leading to the estimator

σ̂2
i (θi) =

exp(θ̂i)
2 ∑

j:T0
ij≤tup

(
Ŝ0

(
T0

ij

))exp(θ̂i)+1

[
exp(θ̂i)

(
Ŝ0

(
T0

ij

))exp(θ̂i)
+ Ŝ0

(
T0

ij

)]
×
(

1−
T0

ij

ui

)
δij

Yij
,

where Yij is the size of the risk set at failure time T0
ij, and δij := I(Tij≤Uij), that

is, δij = 1 if the individual number j in study i is a failure, and δij = 0 if this
individual is a censored observation. Because the MPLE θ̂ is asymptotically
unbiased, Equation 3.3 suggests estimators of the form

τ̂2 =
1

(k− 1)

k

∑
i=1

(
θ̂i − µ̂θ̂

)2 − ÊG

((
nσ̂2 (θ̂))−1

)
,

where

ÊG

((
nσ̂2 (θ̂))−1

)
= H

(
n−1

1 σ̂−2
1
(
θ̂1
)

, . . . , n−1
k σ̂−2

k
(
θ̂k
))

.

The most simple case is H(x1, . . . , xk) = x, but this does not make much
sense, rather it seems to be more sensible to derive a weighted mean of the
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n−1
i σ̂−2

i (θ̂i). Currently, this is an open problem and will be subject of further
research.

Quality scores Here we can derive:

τ̂2 =
1

(k− 1)

k

∑
i=1

(
θ̂i − µ̂θ̂

)2

−
c2

0
n(n− 1)

[
b + c2

mm + c2
gg
]
+

c2
0

n(n− 1)

[
l2 + c2

mm2 + c2
gg2
]

− 2
c2

0
n2

[
cm

1
(k− 1)

k

∑
i=1

(
li − l

)
(mi −m) + cg

1
(k− 1)

k

∑
i=1

(
li − l

)
(gi − g)

+ cmcg
1

(k− 1)

k

∑
i=1

(mi −m) (gi − g)
]

,

where

lα =
1
k

k

∑
i=1

lα
i , l = l1.
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An Alternative Test Procedure for

Meta-Analysis

Joachim Hartung and Guido Knapp
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University of Dortmund

Summary

In this chapter, we show that a meta-analysis carried out in the random
effects model is preferable to the fixed effects model. Especially in the
normal mean case, as our simulation study indicates, the test of associ-
ation in the FE model does not yield satisfactory results. If one prefers
to use the commonly used methods, the choice between the FE and the
RE model, which leads to the choice of the test statistic for the hypothesis
of no association, is better based on the sign of the method of moments
estimator of the between-study variance than on the test of homogeneity.
But the use of the alternative test statistic originally proposed in (Hartung,
1999) is preferable concerning the significance level to all commonly used
methods. The test is always carried out in the RE model, but it yields suf-
ficiently good results if no heterogeneity is present. So, one does not have
to choose between the FE and the RE model in advance. In the case of a
small between-study variance, a combined test procedure involving the
commonly used test in the FE model and Hartung’s alternative test statis-
tic may still improve the actual significance level of the test towards the
prescribed one.

†Project “Meta-Analysis in Biometry and Epidemiology“ (SFB 475) of the Deutsche Forschungs-
gemeinschaft (DFG).
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4.1 INTRODUCTION

In this chapter, we focus our attention on the tests of association in the meta-
analytic framework, that is, we want to judge if an overall treatment effect ex-
ists given the stochastically independent study-specific estimates of the treat-
ment effect. This test is carried out either in the fixed effects model of meta-
analysis assuming a homogeneous treatment effect over the studies or in the
random effects model if heterogeneity of the study-specific treatment effects is
present. Before applying the test of association one usually decides which of
the two models one takes. Even in recent literature one can find the proposal
that the choice of the model should be based on the test of homogeneity, cf. for
instance Normand (1999). But the test of homogeneity in this context often has
too low power to detect a deviation from the hypothesis of homogeneity and
the false use of the fixed effects model, if heterogeneity is present, can lead to
a dramatic increase of the Type I error rate of the commonly used test of as-
sociation as pointed out for instance in Ziegler and Victor (1999). Moreover,
the commonly used tests of association in the fixed effects model and in the
random effects model, respectively, may lead to a large number of unjustified
significant evidences even if one carries out the analysis in the correct model.
In the fixed effects model this was shown by Li, Shi, and Roth (1994) and also
Böckenhoff and Hartung (1998) in the normal mean case.

We will now consider an alternative test statistic for the test of association
in the random effects model of meta-analysis proposed by Hartung (1999) and
show that this test provides satisfactory results concerning the actual signifi-
cance level in the fixed effects model as well as in the random effects model, so
that with this test a choice between the two models, in advance, is unnecessary.
Furthermore, we will discuss decision rules for the test of association, which
combines the commonly used tests and this alternative test, and investigate
these decision rules, whether they yield a further improvement with respect to
the prescribed significance level.

The outline of the chapter is as follows: In the next two sections we first
describe the theoretical foundations of the meta-analysis in a fixed effects and
a random effects approach, respectively. In Section 4.4, the commonly used
methods for a practical application in the fixed effects and random effects
model are presented. Section 4.5 contains some results of the theoretical de-
ficiency of the commonly used tests in the both models. In Section 4.6, the al-
ternative test statistic in the random effects model proposed by Hartung (1999)
is presented and in Section 4.7 some decision rules are discussed, which com-
bine the commonly used tests and the alternative test. In a simulation study,
of which the results are given in Section 4.8, the discussed tests are compared
concerning their actual significance levels in the normal mean case. Finally,
some conclusions are given.
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4.2 THE HOMOGENEOUS FIXED EFFECTS MODEL

Let us consider k independent studies and let us denote by θ1, . . . , θk the (one-
dimensional) parameters of interest, where each parameter stands for the treat-
ment effect in a study. For example, the parameter θi, i = 1, . . . , k, may rep-
resent the mean and the standardized difference of means, respectively, for
continuous outcome variables or the risk difference, the logarithmic odds ra-
tio, and the relative risk, respectively, for binary outcome variables. In each
study an estimate of the parameter θi, say θ̂i, is available, and all study-specific
estimators θ̂i, i = 1, . . . , k, are stochastically independent. Assuming that the
parameters of interest are fixed and homogeneous, that is, it holds θ1 = · · · =
θk = θ, and the study specific estimators θ̂i are at least approximately normally
distributed and unbiased or at least consistent, then the so-called (homoge-
neous) fixed effects model (FE model) of meta-analysis is given by

θ̂i ∼ N
(

θ, σ2(θ̂i)
)

, i = 1, . . . , k, (4.1)

where σ2(θ̂i) denotes the variance of the estimator θ̂i in the ith study.
In model 4.1, the best linear unbiased estimator of the common mean θ is

given by

θ̃FE =
k

∑
i=1

vi

v
θ̂i, v =

k

∑
i=1

vi, (4.2)

with vi = [σ2(θ̂i)]−1 the inverse of the variance of the study-specific estimator
θ̂i in the ith study. The estimator θ̃FE is also the maximum likelihood estima-
tor (MLE) of θ in model 4.1 if the normal distribution exactly holds and the
variances σ2(θ̂i) are known.

The assumption of homogeneity of the parameters can formally be checked
using the test statistic

Q =
k

∑
i=1

vi
(
θ̂i − θ̃FE

)2
, (4.3)

which is at least approximately χ2-distributed with (k− 1) degrees of freedom
under the hypothesis of homogeneity (Cochran, 1954; Normand, 1999).

If all assumptions in model 4.1 are fulfilled, the estimator θ̃FE from Equation
4.2 has the following distributional property:

θ̃FE ∼ N
(

θ,
1
v

)
. (4.4)

So, from 4.4 an (approximate) (1− α)-confidence interval for the common pa-
rameter θ is given by θ̃FE ∓ u1−α/2/

√
v, where uγ denotes the γ-quantile of

the standard normal distribution. Furthermore, the two-sided test rejects the
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hypothesis of no association H0 : θ = 0 at level α if

(
θ̃FE
)2

1/v
=

(
∑k

i=1 vi θ̂i

)2

v
> χ2

1;1−α,

where χ2
ν;γ denotes the γ-quantile of the χ2-distribution with ν degrees of free-

dom.
If the assumption of homogeneity is not valid in model 4.1, that is, it exists

at least one pair θi 6= θj, i 6= j, then the estimator θ̃FE from Equation 4.2 is still
an unbiased estimator of a weighted average of the θi’s, namely of ∑k

i=1 viθi/v.
So, the above described confidence interval and test can always be used for
this weighted average of the parameters. But the usual proceeding, if the
hypothesis of homogeneity is not valid, is either to try to identify covariates
which stratify studies into homogeneous populations or to carry out the meta-
analysis in a random effects model (Normand, 1999). In the next section we
will consider the latter proposal.

4.3 THE RANDOM EFFECTS MODEL

In contrast to the homogeneous fixed effects model 4.1, we first allow that the
study-specific estimators θ̂i, i = 1, . . . , k, may possess different expected values
θi, i = 1, . . . , k, that is, it holds approximately

θ̂i
∣∣θi, σ2(θ̂i) ∼ N

(
θi, σ2(θ̂i)

)
, i = 1, . . . , k,

and for each study-specific mean θi we assume that it is drawn from some
superpopulation of effects with mean θ and variance τ2, that is,

θi
∣∣θ, τ2 ∼ N

(
θ, τ2

)
.

The parameters θ and τ2 are referred to as hyperparameters, θ represents the
average treatment effect and τ2 the between-study variation. Given the hyper-
parameters, the marginal distribution of the estimators θ̂i is given by

θ̂i ∼ N
(

θ, τ2 + σ2(θ̂i)
)

, i = 1, . . . , k, (4.5)

(cf. Whitehead & Whitehead, 1991; Normand, 1999). If the between-study
variance τ2 is equal to zero then the random effects model (RE model) 4.5 re-
duces to the FE model 4.1.

In the RE model 4.5, the best linear unbiased estimator of the average treat-
ment effect θ is given by

θ̃RE =
k

∑
i=1

wi

w
θ̂i, w =

k

∑
i=1

wi
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with wi = [τ2 + σ2(θ̂i)]−1 the inverse of the variance of the estimator θ̂i in the
RE model. The estimator θ̃RE is also the MLE of θ if the variance components
are known and the normal distribution in 4.5 exactly holds.

The estimator θ̃RE in model 4.5 possesses the following distributional prop-
erty:

θ̃RE ∼ N
(

θ,
1
w

)
.

Thus, an (1 − α)-confidence interval for the average treatment effect θ in the
RE model is given by θ̃RE ∓ u1−α/2/

√
w and the hypothesis of no association,

that is, H0 : θ = 0, is rejected at level α if

(
θ̃RE
)2

1/w
=

(
∑k

i=1 wi θ̂i

)2

w
> χ2

1;1−α.

4.4 THE COMMONLY USED METHODS IN THE FE AND RE
MODEL

In the previous two sections we have summarized the theoretical aspects of the
FE and RE model of meta-analysis. For a practical application of the just de-
scribed inference the involved variances τ2 and σ2(θ̂i), i = 1, . . . , k, are hardly
ever known. So, they have to be replaced by appropriate estimators.

Let us first consider the FE model. Normally, an estimator of the variance of
θ̂i, say σ̂2(θ̂i), is available in each study. We assume that these estimators σ̂2(θ̂i),
i = 1, . . . , k, are jointly stochastically independent and at least nearly unbiased
for the corresponding variances σ2(θ̂i). Using these variance estimators, the
feasible estimator of θ in model 4.1 is given by

θ̂FE =
k

∑
i=1

v̂i

v̂
θ̂i, v̂ =

k

∑
i=1

v̂i, v̂i =
[
σ̂2(θ̂i)

]−1
, i = 1 . . . , k.

In general, this estimator is not an unbiased one of θ. If the estimators θ̂i and
the variance estimators σ̂2(θ̂i) are stochastically independent, which implies
that v̂i/v̂ as a function of σ̂2(θ̂i), i = 1, . . . , k, is also stochastically independent
of θ̂i, then the estimator θ̂FE is unbiased for θ in model 4.1. This can be readily
seen with ∑k

i=1 v̂i/v̂ = 1.
For further inference in the FE model, the variance estimators are commonly

inserted in the test statistics and the confidence interval given in Section 4.2.
Thus, the assumption of homogeneity of the treatment effects in model 4.1 is
checked in practice with the test statistic

Q1 =
k

∑
i=1

v̂i
(
θ̂i − θ̂FE

)2
. (4.6)
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The test statistic for testing the hypothesis of no association is given by

T1 =
(
θ̂FE
)2

1/v̂
=

(
∑k

i=1 v̂i θ̂i

)2

v̂
, (4.7)

and the hypothesis is rejected at level α if the observed value of T1 exceeds the
(1− α)-quantile of the χ2-distribution with one degree of freedom.

In the RE model, besides the estimates of the within-study variances σ2(θ̂i),
i = 1, . . . , k, an estimator of the between-study variance τ2 has to be deduced.
One approach is to use the method of moments estimator, which is derived
using the test statistic of homogeneity Q from Equation 4.3. The expected value
of Q in the RE model is given by

E(Q) = (k− 1) + τ2

(
v−

k

∑
i=1

v2
i /v

)
(cf. DerSimonian & Laird, 1986; Whitehead & Whitehead, 1991). So, the
method of moments estimator reads

τ̃2 =
Q− (k− 1)

v−∑k
i=1 v2

i /v
. (4.8)

Due to its construction, the estimator τ̃2 is unbiased but it can yield negative
estimates with positive probability. Moreover, the estimator depends on the
unknown variances σ2(θ̂i). Thus, for a practical application the feasible esti-
mator of τ2 is given by

τ̂2 =
Q1 − (k− 1)

v̂−∑k
i=1 v̂2

i /v̂
, (4.9)

with Q1 from Equation 4.6, and usually the truncated version of this estimator
is used, namely,

τ̂2
+ = max{0, τ̂2}. (4.10)

The larger the between-study variance τ2, the less the probability of τ̂2 yield-
ing negative estimates. So, for large τ2 both estimators in Equations 4.9 and
4.10 are nearly identical. Note that feasibility in this sense does not mean un-
biasedness for all τ2.

Other approaches of estimating the between-study variance τ2 are to use the
restricted maximum likelihood approach or a Bayesian approach (Normand,
1999). But we will not consider these approaches in the context of this chapter.

With the between-study variance estimator τ̂2
+ and the within-study vari-

ance estimators σ̂2(θ̂i), i = 1, . . . , k, the feasible estimator of the average treat-
ment effect θ in the RE model is given by

θ̂RE =
k

∑
i=1

ŵi

ŵ
θ̂i, ŵ =

k

∑
i=1

ŵi, ŵi =
[
τ̂2
+ + σ̂2(θ̂i)

]−1
, i = 1 . . . , k.
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So, the test statistic for testing the hypothesis of no association in the RE model
is given by

T2 =
(
θ̂RE
)2

1/ŵ
=

(
∑k

i=1 ŵi θ̂i

)2

ŵ
, (4.11)

and the hypothesis is rejected at level α if the observed value of T2 is larger
than the (1− α)-quantile of the χ2-distribution with one degree of freedom.

4.5 THE THEORETICAL DEFICIENCY OF THE COMMONLY
USED TESTS IN THE FE AND RE MODEL

In the previous section, we have presented the commonly used test statistics in
the FE and RE model (see Equations 4.7 and 4.11) for testing the hypothesis of
no association as well as the rule of rejection at a prescribed significance level
α. But as already pointed out in Li et al. (1994) and Böckenhoff and Hartung
(1998), the actual significance level of the commonly used test in the FE model
with normally distributed responses is often much larger than the prescribed
level α due to underestimation of the variance of the combined estimator θ̃FE
so that this phenomenon results in a large number of unjustified significant
evidences.

We now summarize the main theoretical results of the work of Böckenhoff
and Hartung in the FE model and indicate that the same deficiency also holds
in the RE model. First, we need some mathematical tools from Hartung (1976).

Definition 4.5.1. A function f : Rk → R` is called convex if(
x, y ∈ Rk, λ ∈ [0, 1] ⇒ f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

)
with the natural semi-ordering, that is,ordering by components.

Definition 4.5.2. A function f : Rk → R` is called quasi-convex if(
y ∈ R` ⇒ {x ∈ Rk| f (x) ≤ y} is convex

)
.

Definition 4.5.3. A function f is called (quasi-)concave if (− f ) is (quasi-)convex.

Lemma 4.5.1. Let f : Rk → R` be convex [concave] and T : R` → Rm be (quasi-)
convex [(quasi-)concave] and increasing by the natural semi-ordering in Rm. Then
the composed function T ◦ f is (quasi)-convex [(quasi)-concave].

Lemma 4.5.2. Let f : Rk → R` be convex [concave] and T : R` → Rm be (quasi-)
concave [(quasi-)convex] and decreasing by the natural semi-ordering in Rm. Then
the composed function T ◦ f is (quasi)-concave [(quasi)-convex].

Lemma 4.5.3. If f : R`
+ → R+ is quasi-convex [quasi-concave] and f (λ x) =

λ f (x), λ > 0, x 6= 0, then f is also convex [concave].
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Jensen’s Inequality. For a random variable ϑ̂ it holds
E( f (ϑ̂)) ≥ f (E(ϑ̂)) if f is convex, and
E(g(ϑ̂)) ≤ g(E(ϑ̂)) if g is concave.

We now return to the meta-analysis and consider the variance estimator
1/v̂ in the FE model. Note, that in the previous section we have assumed
that the within-study estimators σ̂2(θ̂i), i = 1, . . . , k, are (nearly) unbiased for
σ2(θ̂i), that is, E(σ̂2(θ̂i)) = σ2(θ̂i), i = 1, . . . , k. So, we can prove the following
theorem.

Theorem 4.5.4. In the FE model the variance estimator 1/v̂ in average underesti-
mates the variance 1/v, that is, E(1/v̂) ≤ 1/v.

Proof. First consider σ̂2(θ̂i) > 0, i = 1, . . . , k, then 1/σ̂2(θ̂i), i = 1, . . . , k, is a
convex function in σ̂2(θ̂i).

Furthermore, ∑ : Rk → R is a convex and increasing function. So, with
Lemma 4.5.1 the function ∑k

i=1 1/σ̂2(θ̂i) is convex in σ̂2(θ̂i), i = 1, . . . , k.

With Lemma 4.5.2, we yield that the function v̂−1 =
(

∑k
i=1 1/σ̂2(θ̂i)

)−1
is

quasi-concave, because every monotone function is quasi-convex as well as
quasi-concave.

Now, it holds for λ > 0 that(
k

∑
i=1

1
λσ̂2(θ̂i)

)−1

=

(
1
λ

k

∑
i=1

1
σ̂2(θ̂i)

)−1

= λ

(
k

∑
i=1

1
σ̂2(θ̂i)

)−1

,

that means with Lemma 4.5.3 that the function
(

∑k
i=1 1/σ̂2(θ̂i)

)−1
is concave.

Applying Jensen’s inequality, we obtain

E
(

v̂−1
)

= E

(
k

∑
i=1

1
σ̂2(θ̂i)

)−1

≤
(

k

∑
i=1

1
E(σ̂2(θ̂i))

)−1

=

(
k

∑
i=1

1
σ2(θ̂i)

)−1

= v−1,

which completes the proof.

As a consequence of Theorem 4.5.4, we obtain that the distribution of the test
statistic T1 from Equation 4.7 under H0 : θ = 0 may not be well approximated
by a χ2-distribution with one degree of freedom. Suppose that the feasible
estimator θ̂FE has variance near 1/v under H0, then the probability of T1 under
H0 to exceed the (1 − α)-quantile of the χ2

1-distribution is larger than α, so
that the actual significance level of the test is larger than the prescribed one.
Such an attitude of the test based on T1 has been observed in the normal mean
case as already mentioned by Li et al. (1994) as well as by Böckenhoff and
Hartung (1998). In the latter work, some alternative estimators of the variance
of θ̃FE are discussed in the normal mean case, which in average overestimate
the variance of θ̃FE and thereby lead to a correction of the actual significance
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level towards the prescribed one. This procedure does not, in general, result
in a conservative attitude of the test, as one may expect at first sight, because
one has to keep in mind that the variance of the theoretical estimator θ̃FE is
estimated and not the variance of the feasible estimator θ̂FE. Thus, even with an
overestimation of the variance σ2(θ̂i) in each study one may obtain too many
unjustified significant results but in a smaller number than with the commonly
used method (Böckenhoff & Hartung, 1998).

The above argumentation mainly holds if the variance estimator 1/v̂ un-
derestimates the variances of the feasible estimator θ̂FE. But if the variance
estimator 1/v̂ overestimates the variance of θ̂FE, the resulting test can be very
conservative as Hartung and Knapp (2001) have observed, for example, in the
log odds ratio case.

It is worthwhile to note that the just described deficiencies of the commonly
used test statistic in the FE model are most striking if the sample sizes in the
studies are small to moderate depending on the choice of the parameter of
interest.

In the RE model, a similar result as in Theorem 4.5.4 can be stated for testing
the hypothesis of no association using the test statistic T2 from Equation 4.11.
Suppose we use the untruncated unbiased estimator τ̃2 from Equation 4.8 of
the between-study variance in T2, then we can prove, following the lines of the
proof of Theorem 4.5.4, that the variance estimator 1/w̃, w̃i = [τ̃2 + σ̂2(θ̂i)]−1,
i = 1, . . . , k, w̃ = ∑k

i=1 w̃i, in average underestimates the variance of the theo-
retical estimator θ̃RE. Thus, the test in the RE model may be rather anticonser-
vative if the variance of the feasible estimator θ̂RE is near 1/w. But on the other
hand, the test can be very conservative if 1/w̃ overestimates the variance of
θ̂RE. If the truncated estimator τ̂2

+ from Equation 4.10 is used in the test statis-
tic T2 in practice, the expected value of the variance estimator is larger than
the expected value of the variance estimator with the untruncated estimator
τ̂2 from Equation 4.9, but for growing τ2 this difference diminishes.

4.6 AN ALTERNATIVE TEST STATISTIC IN THE FE AND RE
MODEL

In Section 4.4, we have estimated the variances of the theoretical estimators θ̃FE
and θ̃RE in the FE and RE model by estimating their components separately.
Now we consider an estimator of the variance of θ̃RE in the RE model 4.5 fol-
lowing the theory of variance components estimation (cf. Rao, 1972; Hartung,
1981). This estimator is a quadratic function of the study-specific estimators θ̂i,
i = 1, . . . , k, and is given in the RE model 4.5 as

σ̃2(θ̃RE) =
1

k− 1

k

∑
i=1

wi

w
(
θ̂i − θ̃RE

)2
,
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(cf. Hartung, 1999). Note that for τ2 = 0 the quadratic function w · (k − 1) ·
σ̃2(θ̃RE) coincides with the statistic Q from Equation 4.3, which is formally
used in the FE model for checking the assumption of homogeneity.

Theorem 4.6.1. The estimator σ̃2(θ̃RE) is an unbiased estimator of the variance of
θ̃RE in the RE model 4.5.

Proof. It holds

E
(
θ̂i
)2 = Var

(
θ̂i
)
+
[
E
(
θ̂i
)]2 = w−1

i + θ2,

E
(
θ̃RE
)2 = w−1 + θ2,

E
(
θ̂i θ̃RE

)
=

wi

w
E
(
θ̂i
)2 +

k

∑
j 6=i

wj

w
E
(
θ̂i
)

E
(
θ̂j
)

= w−1 + θ2.

Then it follows

E
(
θ̂i − θ̃RE

)2 = w−1
i + θ2 − 2w−1 − 2θ2 + w−1 + θ2 = w−1

i − w−1

and

E
(

σ̃2 (θ̂RE
))

=
1

k− 1

k

∑
i=1

wi

w
(w−1

i − w−1) =
1

k− 1
(kw−1 − w−1) =

1
w

.

Moreover, it is shown in Hartung (1999) that the quadratic form w · (k− 1) ·
σ̃2(θ̃RE) is χ2-distributed with (k − 1) degrees of freedom and stochastically
independent of θ̃RE in the RE model if the study-specific estimators θ̂i, i =
1, . . . , k, are exactly normally distributed. Thus, we now consider the random
variable (

θ̃RE − θ
) /√

σ̃2(θ̃RE),

which under the above assumption is exactly t-distributed with (k− 1) degrees
of freedom. Therefore, an alternative test of H0 : θ = 0 is given by∣∣θ̃RE

∣∣√
σ̃2(θ̃RE)

> tk−1;1−α/2, (4.12)

where tν;γ stands for the γ-quantile of the t-distribution with ν degrees of free-
dom.

The alternative test in 4.12, however, depends on the unknown between-
study variance τ2 and the unknown within-study variances σ2(θ̂i), i = 1, . . . , k.
Thus, for a practical application of this test we replace the unknown variance
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components by appropriate estimators. Then, the feasible test statistic reads

T3 =

∣∣θ̂RE
∣∣√

σ̂2(θ̃RE)
(4.13)

and the hypothesis of no association is rejected if the observed value of T3
exceeds the (1 − α/2)-quantile of the t-distribution with (k − 1) degrees of
freedom.

4.7 COMBINED DECISION RULES

In the previous sections, we have always distinguished between the FE and
the RE model. For practically conducting a meta-analysis one usually has to
choose in advance between these two models. In the literature, there exist
different opinions how to deal with this decision problem.

A widespread procedure is to make first a test of homogeneity using the
test statistic Q1 from Equation 4.6 and, if the hypothesis of homogeneity is
rejected, one uses the RE model, otherwise the FE model (Normand, 1999).
Note that the hypothesis of homogeneity in the FE model, that is, H0 : θ1 =
. . . = θk, is equivalent to the hypothesis that the between-study variance τ2

in the RE model is equal to zero. But the test of homogeneity often has low
power against the alternative τ2 > 0 so that one cannot satisfactorily avoid the
false use of the FE model if a between-study variance is present. The effect of a
dramatically increasing Type I error by using the test statistic T1 from Equation
4.7, if heterogeneity is present, is, for example, shown in Ziegler and Victor
(1999) and in our simulation study described in the next section.

Whitehead and Whitehead (1991) propose a similar decision making at first
sight. They consider the method of moments estimator τ̂2 from Equation 4.9
of the between-study variance and suggest to use the FE model if τ̂2 yields a
negative estimate, otherwise the RE model. But this procedure is identical to
the principle to always use the RE model with the truncated variance estimator
τ̂2
+ from Equation 4.10.

Both procedures have in common that the decision for an analysis in a corre-
sponding model depends on a judgement of the variation between the studies.
If one is mainly interested in testing the hypothesis H0 : θ = 0, the “pre-
test” determines the test procedure which has to be used, but a false decision
of the “pre-test” may considerably affect the properties of the test procedure.
The most crucial point in the just described choice between the two models is
given if the true between-study variance τ2 is relatively small. In this situation
one may expect the most false decisions between the models. For growing τ2

the decision for the RE model becomes more and more certain. Thus, we will
consider decision rules for tests of the hypothesis H0 : θ = 0, which incorpo-
rate the test procedure in the FE model as well as in the RE model and depend
only in part on a variance estimate of the between-study variance. Moreover,
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we make always use of the alternative test statistic T3 from Equation 4.13 in
the RE model.

The first combined decision rule is that the hypothesis H0 : θ = 0 is rejected
if T1 > χ2

1;1−α and |T3| > tk−1;1−α/2, that means, we require that the commonly
used test in the FE model as well as the alternative test in the RE model has
to reject H0. The idea behind this decision rule is that for a small between-
study variance one may correct the significance level of the anticonservative
test based on T1 in the FE model towards the prescribed one, because the al-
ternative test based on T3 in the RE model may possess a smaller significance
level. If the between-study variance grows, the role of the test based on T1
becomes more and more ignorable and the combined decision rule is nearly
identical to the decision rule simply based on the alternative test.

Furthermore, we consider two additional combined decision rules which
include the estimation of the between-study variance. The first combined de-
cision rule rejects H0 : θ = 0 if (|T3| > tk−1;1−α/2 and τ̂2

+ > 0) or (T1 > χ2
1;1−α

and |T3| > tk−1;1−α/2, and τ̂2
+ = 0), that is, we always require that the alter-

native test in the RE model rejects the hypothesis H0 irrespective of the esti-
mated value of τ2, but if the truncated estimator τ̂2

+ is equal to zero, that is,
the usual method of moments estimator yields a negative estimate, the com-
monly used test in the FE model has also to reject H0. This combined decision
rule is motivated to correct a possible anticonservative attitude of the alterna-
tive test statistic in the RE model if the between-study variance is small and
the test is anticonservative, while the commonly used test in the FE model is
rather conservative in this situation. But if the alternative test statistic in the RE
model performs better in case of small τ2, this decision rule is nearly identical
to the previous combined decision rule. Again, for growing τ2 this decision
rule becomes more and more similar to the decision rule based solely on the
alternative test statistic T3 in the RE model.

The second combined decision rule, which incorporates an estimation of
τ2, rejects H0 : θ = 0 if (T1 > χ2

1;1−α and τ̂2
+ = 0) or (T1 > χ2

1;1−α and
|T3| > tk−1;1−α/2 and τ̂2

+ > 0), that means, we always require that the com-
monly used test in the FE model rejects the hypothesis H0 irrespective of the
estimated value of τ2, but if the truncated estimator τ̂2

+ is greater than zero,
the alternative test in the RE model has also to reject the hypothesis. This deci-
sion rule is similar to the proposal of Whitehead and Whitehead (1991), except
that we use the alternative test statistic T3 instead of the commonly used T2 in
the RE model. Since we also require to carry out the commonly used test in
the FE model if the variance estimate of τ2 is positive, this combined decision
rule reduces the anticonservative attitude of this test for growing τ2 as well
as a possible anticonservative attitude of the test based on the alternative test
statistic for small between-study variances.
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4.8 SIMULATION STUDY

In a small simulation study, we compare the decision rules according to their
actual Type I error rate. Table 4.1 summarizes all seven different decision rules
we have already discussed and which are considered in the simulation study.

Table 4.1 Tests and Corresponding Decision Rules for Rejecting the Hypothesis
H0 : θ = 0 at Level α With the Test Statistics T1, T2, and T3

Test Decision Rule: Reject H0 : θ = 0 if

ψ1 T1 > χ2
1;1−α

ψ2 T2 > χ2
1;1−α

ψ3 |T3| > tk−1;1−α/2

ψ4 T1 > χ2
1;1−α, if Q1 ≤ χ2

k−1;1−α

T2 > χ2
1;1−α, if Q1 > χ2

k−1;1−α

ψ5 T1 > χ2
1;1−α and |T3| > tk−1;1−α/2

ψ6 |T3| > tk−1;1−α/2, if τ̂2
+ > 0

T1 > χ2
1;1−α and |T3| > tk−1;1−α/2, if τ̂2

+ = 0

ψ7 T1 > χ2
1;1−α, if τ̂2

+ = 0
T1 > χ2

1;1−α and |T3| > tk−1;1−α/2, if τ̂2
+ > 0

Note. For a definition of T1, T2, and T3 see Equations 4.7, 4.11, and 4.13, for Q1 see
Equation 4.6, and for τ̂2

+ see Equation 4.10.

As an example, we choose the random one-way ANOVA model with het-
eroscedastic error variances, which is given by

yij = µ + ai + eij, i = 1, . . . , k; j = 1, . . . , ni, (4.14)

with ai ∼ N (0, τ2) and eij ∼ N (0, σ2
i ), and all random effects are stochastically

independent. Instead of the individual data, usually summary statistics are
given in publications. We consider the arithmetic mean µ̂i = ∑ni

j=1 yij/ni as
the estimator of µ in each study. For this estimator, we have the following
distributional property:

µ̂i ∼ N
(

µ, τ2 + σ2 (µ̂i)
)

, σ2(µ̂i) = σ2
i /ni, i = 1, . . . , k. (4.15)

Furthermore, an unbiased estimator of the error variance in model 4.14 is given
by σ̂2

i = s2
i = ∑ni

j=1(yij − µ̂i)2/(ni − 1), i = 1, . . . , k, so that an unbiased es-
timator of the within-study variance σ2(µ̂i) is σ̂2(µ̂i) = s2

i /ni. This estima-
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tor is stochastically independent of µ̂i and it holds that (ni − 1)s2
i /σ2

i is χ2-
distributed with (ni − 1) degrees of freedom.

In the simulation study, we consider four different patterns of sample sizes
and error variances, which are given in Table 4.2 for k = 3 studies. The first
pattern has equal sample sizes and equal error variances, whereas in the sec-
ond pattern the sample sizes are doubled in each study. In the last two patterns
we consider different sample sizes in each study. In pattern 3, the error vari-
ances are increasing with growing sample sizes, but the within-study variance
σ2

i /ni, i = 1, 2, 3, is always 0.1. In pattern 4, the error variances are decreasing
with growing sample sizes so that the study with the largest sample size has
the smallest within-study variance.

Table 4.2 Sample Sizes and Error Variances Used in the Simulation Study

Pattern Sample Sizes Error Variances
for k = 3 (n1, n2, n3) (σ2

1 , σ2
2 , σ2

3 )

1 (5, 5, 5) (4,4,4)
2 (10, 10, 10) (4,4,4)
3 (10, 20, 40) (1,2,4)
4 (10, 20, 40) (4,2,1)

Patterns for k = 9: Replicated Twice the Patterns for k = 3

In Table 4.3, the results of our simulation study are put together. We present
the results for k = 3 and k = 9 studies, where the patterns for k = 9 stud-
ies have been constructed by replicating the patterns for k = 3 studies twice.
As different values of the between-study variance we choose τ2 = 0, 0.1, 1, 10,
and as the estimator of τ2 we always use τ̂2

+ from Equation 4.10. Besides the
estimated Type I error rates of the test given a prescribed significance level of
α = .05, the table also contains the estimated proportion of negative estimates
of τ2 using τ̂2 from Equation 4.9 and the estimated power of the test of homo-
geneity based on Q1 from Equation 4.6. Each estimated value in the table is
based on 10,000 replications of the corresponding model.

From Table 4.3, we see that the commonly used test ψ1 in the FE model is
rather anticonservative in the normal mean case if the between-study variance
is equal to zero, that is, the FE model is the theoretically correct one. Moreover,
the Type I error rates increase if the number of studies grows, but if the sam-
ple sizes increase for fixed k the Type I error rates decrease. If between-study
variation is present, the estimated Type I error rates become still larger and
they increase for growing between-study variance. Consequently, one should
be very careful in the normal mean case to apply the test ψ1.

The commonly used test ψ2 in the RE model, which coincides with the pro-
posal of Whitehead and Whitehead how to deal with the choice between FE
and RE model, yields its best results in comparison to the prescribed level if
the between-study variance is equal to zero. From the estimated proportions
of negative estimates of τ2, we observe that for k = 3 in approximately 60 % of
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Table 4.3 Estimated Type I Error Rates (in %) for the Seven Different Two-Sided
Tests of H0 : µ = 0 in Model 4.15, Given α = .05, the Estimated Proportion (in %)
of Negative Estimates of τ2, the Estimated Power (in %) of the Test of Homogeneity
for k = 3 and k = 9 Studies

τ̂2 Power
k Pattern τ2 ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 neg. (Q1)

3 1 0 19.4 10.3 7.2 14.8 3.7 3.7 7.8 56.4 12.6
0.1 21.3 11.0 7.2 15.9 4.2 4.2 8.4 53.2 14.6

1 36.3 14.8 6.8 20.9 5.2 5.2 9.1 32.4 33.8
10 69.3 18.6 5.1 20.5 5.0 5.0 5.8 6.3 82.7

2 0 10.6 6.4 5.5 8.9 2.2 2.2 5.1 60.9 8.0
0.1 14.8 8.2 5.9 11.7 2.8 2.8 6.2 51.7 13.4

1 37.5 15.6 5.7 19.9 4.7 4.7 8.3 23.5 45.5
10 73.7 18.7 5.2 19.3 5.2 5.2 5.7 3.7 89.4

3 0 10.0 5.1 5.5 7.3 1.7 1.7 4.2 57.1 11.8
0.1 26.4 13.7 7.7 20.1 5.2 5.2 10.7 44.4 20.6

1 64.0 21.1 8.4 27.0 7.8 7.8 10.8 16.5 61.0
10 87.7 21.0 6.1 21.5 6.1 6.1 6.2 2.2 93.7

4 0 6.6 4.1 4.7 5.7 1.3 1.3 3.4 59.7 8.5
0.1 35.2 16.6 9.1 25.2 6.8 6.8 12.3 38.7 24.9

1 73.7 21.6 8.0 25.5 7.6 7.6 9.3 10.5 73.5
10 91.1 22.2 5.8 22.5 5.7 5.7 5.8 1.4 96.0

9 1 0 26.9 9.8 9.4 15.3 7.6 7.7 8.1 32.9 29.8
0.1 28.9 9.7 9.0 14.9 7.6 7.7 8.0 26.3 35.9

1 44.5 9.8 6.8 12.8 6.7 6.7 6.7 5.5 74.7
10 74.9 9.8 5.3 9.8 5.3 5.3 5.3 0.0 99.9

2 0 12.1 6.5 6.6 9.3 4.6 4.6 5.2 44.7 14.1
0.1 17.2 8.1 7.2 11.6 5.9 5.9 6.3 30.5 26.4

1 39.7 8.6 5.4 10.0 5.3 5.3 5.4 2.2 86.2
10 76.1 9.3 5.4 9.3 5.4 5.4 5.4 0.0 100

3 0 11.2 5.4 5.3 7.5 3.7 3.7 4.1 40.8 19.5
0.1 27.8 9.4 6.6 13.8 6.2 6.2 6.5 14.8 51.8

1 66.7 10.3 6.0 10.7 6.0 6.0 6.0 0.3 97.7
10 88.3 10.5 5.3 10.5 5.3 5.3 5.3 0.0 100

4 0 7.5 4.9 5.4 6.6 3.3 3.3 3.8 49.1 11.4
0.1 36.1 10.4 7.4 14.7 7.2 7.2 7.4 8.0 65.8

1 73.9 10.0 5.5 10.0 5.5 5.5 5.5 0.1 99.6
10 91.8 10.7 5.3 10.7 5.3 5.3 5.3 0.0 100
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the simulated cases and for k = 9 in still approximately 40 % of the cases one
actually performs the commonly used test in the FE model. If between-study
variation is present, the estimated Type I error rates in the normal mean case
increase to more than four times the prescribed level for k = 3 studies and to
nearly twice the prescribed level for k = 9 studies. But this indicates that for
an increasing number of studies the actual Type I error rate diminishes.

The alternative test ψ3 in the RE model yields the best results concerning the
actual significance level in comparison to the tests ψ1 and ψ2. If τ2 = 0 is not
present, the tests ψ2 and ψ3 have rather similar estimated Type I error rates, but
if a positive between-study variance exists, the alternative test has estimated
Type I error rates often near the prescribed level and only in some cases goes
beyond 7 %.

The test ψ4, which has a decision rule depending on the test of homogene-
ity, always has an estimated Type I error rate which is greater or equal to the
estimated Type I error rate of the test ψ2. Thus, this combined decision rule
does not yield an improvement concerning the actual significance level.

The test ψ5, which requires the rejection of the hypothesis with the test ψ1
and with the alternative test ψ3, has always estimated Type I error rates which
are less or equal to the estimated Type I error rates of the test ψ3. The test ψ5
is often an essential improvement in comparison to the test ψ3 if the between-
study variance τ2 is equal to 0.1 or 1, but for τ2 = 0 the test ψ5 may become
rather conservative.

Due to the fact that the test ψ1 is anticonservative the test ψ6 yields nearly
the same results as the test ψ5, as we have pointed out in Section 4.7.

The test ψ7 yields rather similar results like the test ψ5 if k = 9 studies are
considered. The estimated Type I error rates of ψ7 are slightly greater or equal
to the estimated Type I error rates of ψ5. The relationship between these two
tests also holds for k = 3 studies, but the difference between the estimated
Type I error rates of the tests is much larger. Often, the estimated Type I error
rates of ψ7 are twice as large as the estimated ones of ψ5.
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Summary

The result of a meta-analysis as part of a systematic review critically de-
pends on the extent to which relevant information about the particular
research question can be retrieved. Biases are especially to be expected
due to the selective publication of significant results (publication bias).

For the investigation of biases in meta-analyses, both (informal) graphical
as well as statistical methods are used. Within the framework of a simula-
tion study, two tests for biases are compared; a rank-correlation test (Begg
& Mazumdar, 1994) and a test based on a linear regression approach (Eg-
ger, Smith, Schneider, & Minder, 1997).
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5.1 INTRODUCTION

The use of meta-analysis to combine the results of several independent trials
is still increasing in the medical field. The validity of a meta-analysis may
be affected by various sources of bias, for example, publication bias (Begg &
Berlin, 1988; Egger, Smith, et al., 1997) and language bias (Egger, Zellweger-
Zahner, et al., 1997). An analysis of bias should be a part of any systematic
review. Both statistical tests and graphical methods have been proposed for
this purpose. In this chapter, we describe these methods in some detail by the
use of a simulated dataset with binary outcome data, which are common in
medical applications.

Throughout the chapter, we utilize the following notation. Let ti denote
the estimated effect (e.g., the log relative risk or the log odds ratio) in trial i,
i = 1, . . . , k with E(ti) = µ and Var(ti) = σ2

i . The estimated variance of ti
is denoted by vi. The inverse variance method is used to derive an overall
treatment effect

t =
∑k

j=1(tj/vj)

∑k
j=1(1/vj)

,

where k is the number of trials involved in the meta-analysis (Cooper & Hed-
ges, 1994).

We referred to a survey conducted at the German Cochrane Centre to gen-
erate sample sizes of individual trials. All issues from 1948 to 1998 of eight
German medical journals were examined and information from all published
primary randomized clinical trials was extracted (Galandi, personal commu-
nication). We fitted a log-normal distribution to this dataset restricted to trials
with a total sample size of at least 30 patients. This log-normal distribution
with mean 3.678 and variance 1.146 was used to generate sample sizes. A for-
est plot of 20 such generated trials with an underlying relative risk of 0.5 is
displayed in Figure 5.1. The variance estimates vi were calculated according to
Fleiss (1993). Due to the small sample sizes, many trials in this specific meta-
analysis have equal relative risk estimates, for example, five trials result in an
estimated relative risk of 0.5. The estimated overall treatment effect is 0.542
with a 95% confidence interval [0.387; 0.757], which is in good agreement with
the true treatment effect. This simulated dataset is used for illustrative pur-
poses in the sequel.

5.2 GRAPHICAL METHODS FOR THE DETECTION OF
BIAS IN META-ANALYSIS

A funnel plot is the most often used graphical method to check informally the
presence of bias in meta-analysis. Beside this method, a radial plot can be used
for this purpose, too.
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trial  20      n =  122

Fixed effects model

Figure 5.1 Forest plot of simulated meta-analysis; relative risk as measure of treat-
ment effect.

5.3 FUNNEL PLOT

A scatterplot of the estimated treatment effect xi = ti and a measure of the
precision of ti is called a funnel plot (Light & Pillemer, 1984). Typically, the
sample size yi = ni or the inverse of the estimated variance yi = 1/vi is used
as a measure of precision. For both measures, the display looks like a funnel if
no publication bias and between-trial heterogeneity exists showing decreasing
fluttering from bottom to top of the graph. Asymmetry in the funnel plot is
taken as an indication of bias in the meta-analysis.

A variant of the funnel plot with standard error as measure of precision is
displayed in Figure 5.2. The display should look like a triangle centered at the
true treatment effect when the standard error is used as measure of precision.
This kind of display has been chosen by the statistical methods group of the
Cochrane Collaboration as the preferred variant.

We introduced a simple form of bias in the simulated meta-analysis as in-
dicated by the plotting symbol in Figure 5.2. A funnel plot for the published
trials (denoted by “s”) can be derived from Figure 5.2 because the position of xi
and yi which contain only trial specific information does not change. A meta-
analysis considering only the published trials results in an estimated overall
treatment effect of 0.385 with 95% confidence interval from [0.2546; 0.5821].
The asymmetry in the funnel plot is obvious if trials marked with “n” are not
considered.
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Figure 5.2 Funnel plot of simulated meta-analysis; relative risk as measure of treat-
ment effect; s = trial published, n = trial not published.

5.4 RADIAL PLOT

Galbraith (1988b) introduced the radial plot in order to display several point
estimates with different standard errors in a single graph. An additional paper
focused on medical applications and the use of the log odds ratio as effect
measure of interest (Galbraith, 1988a).

A scatterplot of xi = 1/σi and yi = ti/σi is called a radial plot. A radial plot
has the following properties (Galbraith, 1988b):

a) Var(yi) = 1

b) ti = slope of the line through (0,0) and (xi, yi)

c) Points are close to zero on the x-axis for large σi

d) Estimated overall effect t̄ = slope in linear regression model: yi = β · xi +
εi.

Due to properties b) and d), a circular scale is typically displayed on the
right-hand side of a radial plot showing the estimated treatment effect. Some-
times y∗i = (ti − t̄)/σi is plotted against xi to get a better visual discrimination.
In this case, the estimated overall effect coincides with the horizontal axis and
departures from the overall effect are more obvious. In practice, the variances
σ2

i are unknown and have to be estimated.
A radial plot of the simulated meta-analysis is depicted in Figure 5.3. Again,

a plot for the published trials can be derived from this figure by omitting trials
marked with n because the position of xi and yi does not change; a different
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Figure 5.3 Radial plot of simulated meta-analysis; relative risk as measure of treat-
ment effect; s = trial published, n = trial not published; overall treatment effect is
indicated by the dashed line.

estimated overall treatment effect has to be considered for the published trials.
A gap in the upper left part indicates the presence of bias if only published
trials are considered. However, this is more obvious in the funnel plot.

5.5 STATISTICAL TESTS FOR THE DETECTION OF BIAS IN
META-ANALYSIS

At least two test procedures for the detection of bias in meta-analysis enjoy
some popularity. Begg and Mazumdar (1994) proposed a rank correlation test;
Egger, Smith, et al. (1997) introduced a test based on a linear regression of the
standard normal deviate on precision which is strongly connected to a radial
plot. The estimated variance of the treatment effect in each single trial vi is of
central importance in both tests.

5.5.1 Begg and Mazumdar Test

Begg and Mazumdar (1994) proposed an adjusted rank correlation test for the
detection of bias in a meta-analysis and evaluated the power of this test in a
simulation study assuming a normal distribution for ti. The test is based on
the correlation between the standardized effect measure

t∗i =
(ti − t̄)√

v∗i
with v∗i = vi −

1

∑k
j=1 v−1

j

and the variance vi. Kendall’s tau is used as correlation measure. Let x denote
the number of pairs of trials with standardized effects and variances ranked in
the same order, that is, (t∗i > t∗j and vi > vj) or (t∗i < t∗j and vi < vj), where
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i 6= j. The number of pairs ranked in the opposite order are denoted by y. The
normalized test statistic for the case that no ties are present neither within t∗i
nor vi is

z =
(x− y)√

k(k−1)(2k+5)
18

,

where k is the number of trials involved in the analysis. A modified version for
tied observations can be found in Armitage and Berry (1994). The test statistic z
has an asymptotic standard normal distribution if the variances σ2 are known.
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Figure 5.4 Graphical display of the rank correlation test for the detection of bias in
the simulated meta-analysis; s = trial published, n = trial not published.

A scatterplot of t∗i and vi for the simulated dataset is depicted in Figure
5.4. No correlation between t∗i and vi is apparent if all trials are considered.
This impression is supported by the result of the rank correlation test. The
difference x − y is −28 with a standard error of 30.8 resulting in a p-value of
p = .31. The shape of the display for the published trials is different from
Figure 5.4 because a different overall treatment effect t̄ is utilized to calculate
t∗i . The difference is −30 with a standard error of 16.4 resulting in a p-value of
p = .067 if only published trials are considered.

5.5.2 Egger Test

The test proposed by Egger, Smith, et al. (1997) for the detection of bias in
meta-analysis is based on a linear regression of yi on xi: yi = α + β · xi + εi. In
contrast to the radial plot, the regression line is not constrained to run through
the origin. A test for the detection of bias is constructed by testing the null-
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hypothesis of a zero intercept. The approach is justified by the intuitive argu-
ment that, in the presence of publication bias, small trials with non-significant
or negative results are less likely to get published. Thus, points close to zero
on the x-axis do not scatter randomly around the overall effect resulting in a
non-zero intercept, that is, a departure from property d) of a radial plot. The
test procedure is implicitly based on the assumption that linearity still holds in
the presence of bias.
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Figure 5.5 Result of the Egger test for the detection of bias in the simulated dataset;
xi and yi according to a radial plot; regression lines displayed both for all trials and
subset of published trials; s = trial published, n = trial not published.

The result of the Egger test for the simulated meta-analysis is displayed in
Figure 5.5. The estimated intercept, if all trials are considered, is α̂ = −0.53
with a standard error (SE) of SE(α̂) = 0.532 compared to a t-distribution with
18 df , resulting in a p-value of .33. A clear indication of bias is given if only
published trials are considered: α̂ = −0.95 with SE(α̂) = 0.33 resulting in a
p-value of .015 (compared to a t-distribution with 11 degrees of freedom).

5.6 CONCLUDING REMARKS

In this chapter, we described two statistical tests on bias in meta-analysis which
have been developed recently. Both tests are implicitly based on the assump-
tion that the variances σ2

i are known. The statistical properties of these tests
in practical relevant situations are still unknown. Further research is needed,
especially with regard to the usefulness in meta-analysis with binary outcome
data and in the case of heterogeneity.
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We utilized a very simple method to generate bias in meta-analysis by ar-
bitrarily omitting trial results. In order to compare the tests on bias in meta-
analysis in simulations, more sophisticated mechanisms to generate bias are
needed. This simulation model could be based on an approach described in
Copas (1999) linking the probability of trial publication to both sample size
and magnitude of observed treatment effect.
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Summary

Summarizing data from several studies is an important part in medical
research. Several problems of traditional review articles are known for
a long time, with the consequence to demand for more systematic re-
views. We will outline the rationale for meta-analyses and describe four
methods to summarize data, with the emphasis on observational studies
where the association of risk or prognostic factors and certain diseases
are investigated. We will compare and assess several criteria for different
types of overviews such as narrative review, meta-analysis from litera-
ture, meta-analysis with individual patients data, and the prospectively
planned meta-analysis. We will critically discuss some examples from the
literature and will show severe problems of meta-analyses based on lit-
erature data only. We argue that a reasonable and valid meta-analysis of
observational studies requires in general some re-modeling of the data.
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Therefore, the use of individual data is an important requirement to reach
reliable conclusions on the association between the factor and the outcome
of interest.

6.1 INTRODUCTION

The serious problems and questionable recommendations from traditional re-
view articles have been shown and the necessity of more systematic reviews
in a timely fashion by using statistical techniques are well known (Antman,
Lau, Kupelnick, Mosteller, & Chalmers, 1992). Therefore, much attention has
been given in recent years to meta-analysis in medical research, however, nu-
merous methodological issues particularly with respect to biases and the use
of meta-analysis are still raising controversial discussions (Chalmers, 1991;
Chalmers & Lau, 1993; Thompson & Pocock, 1991; Stewart & Parmar, 1993).
Authors have heavily criticized the method as such (“If a medical treatment
has an effect so recondite and obscure as to require meta-analysis to estab-
lish it, I would not be happy to have it used on me”, Eysenck, 1994, p. 792)
or identified poorly performed meta-analyses (“In my own review of selected
meta-analyses, problems were to frequent and so serious, including bias on
the part of the meta-analyst, that it was difficult to trust the overall ’best esti-
mates’ that the method often produces.”, Bailar, 1997, p. 560), both resulting in
some discredit of this method. Additionally, in many circumstances such as in
medical decision making where modern techniques of health technology as-
sessment (HTA) play a central role, often estimates of parameters are needed
and produced by a “quick” meta-analysis. Deficiencies in the meta-analysis
may transfer to unsound decisions.

The critique of meta-analysis should distinguish between three central as-
pects:

1. A major distinction should be made whether the results of randomized
trials (RCT) or observational studies are summarized. Studies comparing
a treatment given in one clinic with another treatment given in another
clinic are here seen as observational studies. As parts of the experiment
are under control of the investigators, these studies are often considered
as quasi-experiments.

2. A second important feature is the measurement scale of the factors of
interest. Different problems occur depending on whether binary, ordinal,
categorical, or continuous factors are investigated. Additional problems
occur with a summary assessment using meta-analytic techniques when
different scales of measurement were used in the original studies.

3. The third and most often considered characteristic is whether individual
patient data (often called MAP= Meta-Analysis of Patient) or published
data (called MAL = Meta-Analysis of Literature) is used for the meta-
analysis.
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There is general acceptance that meta-analyses of RCT based on individual
data give the most reliable results concerning the combination of studies. Ob-
viously, conducting a MAP is a large study in its own which requires large
effort and funds from the group starting such a project and the willingness of
the investigators from the single studies to cooperate. For a detailed discus-
sion, see Stewart and Clarke (1995). These difficulties are usually given as the
main justification for a meta-analysis based on published data only. Concern-
ing RCTs, well-conducted meta-analyses based on MAL can result in useful
summaries of an effect of interest and they are an accepted instrument. For
observational studies the situation is more complex as the studies are less ho-
mogeneous, for example, adjustment for confounder factors in a multivariate
model is essential for each single study and those are often different between
studies.

In this chapter, we will discuss merits, limitations, and difficulties of dif-
ferent types of systematic reviews for observational studies. The following is
partly taken from a paper by Blettner, Sauerbrei, Schlehofer, Scheuchenpflug,
and Friedenreich (1999), where the topic in epidemiology is considered and
terminology from this field is often used. Most arguments given in this paper
apply to other observational studies in clinical research.

Four different methods for summarizing the evidence are distinguished:

Review: Qualitative summary, the narrative review article.

MAL: Meta-Analysis of literature, that is, quantitative summary
of published data.

MAP: Meta-Analysis of patient data, that is, re-analysis of indi-
vidual data of the original studies followed by a quantita-
tive summary.

Prospective MA: Prospectively planned, pooled analysis of several studies,
where pooling is already a part of the protocol. Data col-
lection procedures, definition of variables, questions, and
hypotheses are as far as possible standardized for the in-
dividual studies.

In the literature, different terms are used for these four types and certainly
some combinations are possible. It should be noted that the prospective meta-
analysis differs in several respects from a classical multicentre clinical trial
since often the single studies are analyzed and published separately. In many
situations, the design of the studies is slightly different because of local or re-
gional circumstances.

For the following, we summarize and compare the four different types for
investigations where the influence of one or several factors on an outcome
variable is investigated in non-randomized studies. First, we give the major
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reasons and some general rules for conducting a meta-analysis. Then we de-
scribe the similarities and differences between the various types. We compare
the advantages and limitations of the four types. We will discuss some exam-
ples of summaries of observational studies based on published data for risk
factors, prognostic factors, and therapeutic factors mainly with the emphasis
to demonstrate severe problems of meta-analyses from literature.

6.2 RATIONALE FOR META-ANALYSES

The main reason for conducting a review or a meta-analysis is to summarize
the results of previously conducted studies which usually have inconsistent
results. Such a situation may arise when the sample sizes of individual stud-
ies are too small to find stable results or if the results from single studies vary
considerably. Meta-analyses are mainly used to assess the influence of weak
risk factors, which may nevertheless have a large public health impact (such as
passive smoking, use of contraceptives, or exposure to electromagnetic fields)
or of treatment strategies whose small benefits can be worthwhile for a severe
disease with a large incidence. For other issues in medical research, for exam-
ple, prognostic factor studies or diagnostic studies, the use of meta analyses is
increasing. Review articles investigate whether the available evidence is con-
sistent and/or to which degree inconsistent results can be explained by ran-
dom variation or by systematic differences between the design, the setting or
the analysis of the study. In contrast to qualitative reviews, MAL or MAP are
mainly performed to obtain a combined estimator of the quantitative effect of
the risk factor such as the relative risk or risk difference. Some meta-analyses
are also used to investigate more complex dose-response functions. The major-
ity of meta-analyses conducted so far examined dichotomous (or categorical)
factors. Briefly, the main reasons for conducting a meta-analysis or a review of
observational studies are:

1. to assess qualitatively whether a factor has to be considered as a risk
factor,

2. to provide more precise effect estimates and increased statistical power
and to analyze dose-response relations,

3. to investigate the heterogeneity between different studies,
4. to generalize results of single studies,
5. to investigate rare exposure and interactions, and
6. to investigate risks associated with rare diseases.
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6.3 CHARACTERIZATION AND LIMITATIONS OF THE
FOUR TYPES

6.3.1 Review

Traditional narrative reviews provide a qualitative but not a quantitative as-
sessment of published results. They are influenced by publication bias (Dick-
ersin, 1990, 1997) and the file drawer problem (Rosenthal, 1979). If there is not
an a priori strict protocol for the review, narrative reviews are only a subjective
judgment of the included studies. However, if they are carefully done, they
can give quite an extensive overview of the current state of the research within
a short time frame and at low cost.

6.3.2 Meta-Analysis From Literature (MAL)

These studies are comparable to a narrative review with respect to time and
cost, with the main difference being that the primary goal is to give a quan-
titative estimate of the effect of interest. They can be performed from pub-
lished data without cooperation and without the agreement of other study
groups. However, attempts may be made to obtain additional information
from study coordinators, if necessary. So far, not many meta-analysts have
tried this approach. There are some major limitations of this approach that
have been pointed out by several authors (see e.g., Shapiro, 1994). One limi-
tation is that publication bias is particularly important since some explorative
analyses may be done and published selectively. Most likely, unexpected sig-
nificant results may be selected for publication, yielding an overestimation of
the effect. An additional problem is that studies may differ considerably in
designs, data collection methods, and the precise definition of the factors of in-
terest and the confounder variables. A special dilemma arises if different stud-
ies adjust for different confounding factors. No systematic investigation has
been performed to determine whether the simple (crude) estimates or “best
estimates” should be used for combining results of individual studies. Many
aspects of the heterogeneity cannot be dealt with appropriately in such sum-
maries. A combined estimate should not be calculated if the heterogeneity
between studies is too high. However, in many publications, the problem of
heterogeneity is not adequately handled. An estimate is often published al-
though strong heterogeneity between study results was observed.

6.3.3 Meta-Analyses With (Individual) Patients Data (MAP)

Some of the problems that arise with MAL are avoidable if individual data
from all investigations performed on the subject matter are available. Publi-
cation bias may be less prominent as it is possible that investigators are will-
ing to contribute their data even if for a specific theme no analysis has been
performed and no papers have yet been published. The cooperation between
different researchers may help to identify studies, for example, if they are only
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known to local investigators. With individual data, statistical re-analysis can
be performed. This analysis can include a new unified definition of the avail-
able variables and new regression models. With a large number of patients the
effect of rare exposures can be examined. New hypotheses for specific sub-
groups may also be investigated.

It is often argued that major barriers for MAP are the high cost and long
duration, and that it requires close cooperation between researchers (Stewart
& Parmar, 1993; Stewart & Clarke, 1995). Although an improvement of data
quality is not possible, some errors in the data or in the statistical analysis
can be corrected for. Furthermore, adjustment for confounding variables that
have been delineated since the original studies were performed can be done
if those covariables were originally collected. Differences between the study
results can be actively discussed between study coordinators and reasons for
these differences can be elucidated. In general, it is possible to estimate risk
coefficients and their variance from the combined data.

6.3.4 Prospectively Planned Meta-Analysis

This type of analysis has not been called a meta-analysis, despite the fact that
it has several aspects in common with MAL and MAP. Several large interna-
tional case-control studies and occupational cohort studies have used this ap-
proach (e.g., Boffetta et al., 1997). The major difference is that joint planning
of the data collection and analysis makes it possible to avoid large differences
between the studies since many details can be planned in advance and stan-
dardized. The experience of many coordinators is used in the preparation of
the new multicentre study to ensure comparability in design, data collection,
data analysis, and reporting across all centres. In contrast to multicentre ran-
domized clinical trials, more heterogeneity in the individual study centres may
exist arising from differences in populations (e.g., race is not a confounder fac-
tor in Germany but in the United States) or in design (e.g., no methods of
random population sampling exist in the U.S., no overall cancer registration
in Germany). The costs for a new multicentre study are in general high. The
planning phase can be substantial, even difficult, and the time incurred can be
long. Alternatively, individual studies with a joint core protocol for questions
of common interest may be performed. This allows individual researchers to
set priorities and also permits some variation across studies. One disadvan-
tage of a large multicentre study is that errors in the design can be multiplied.
Moreover, once a meta-analysis has been performed it will be more difficult to
justify a new individual study with the same topic.

6.4 METHODS FOR AN OVERVIEW

All types of overviews – whether quantitative or qualitative – have some steps
in common that should be followed in planning and conducting it. Each indi-
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vidual type has some aspects of the conduct that are different and that will be
described later.

6.4.1 Steps in Performing a Meta-Analysis

Each type of overview needs a clear study protocol that describes the research
question and the design, including how studies are identified and selected, the
statistical methods to use, and how the results will be reported. This protocol
should also include the exact definition of the disease of interest, the factors of
interest, and the potential confounding variables that have to be considered. A
main component of the protocol is the exact definition of the inclusion criteria
for single studies. As described by Friedenreich (1993), the following steps are
needed for a meta-analysis:

1. Define a clear and focused topic for the review.
2. Locate all studies (published and unpublished) that are relevant to the

topic.
3. Select all studies that are relevant according to the explicit inclusion cri-

teria.
4. Abstract necessary information from the published papers or obtain the

primary data from the original investigators. Meta-analysis of published
data may also include contacting the original project leaders to obtain
data or information that have not been published in sufficient detail. For
a MAL, agreement to use the original data is needed.

5. Tabulation of relevant elements of each study, including sample size, as-
sessment procedures, available variables, study design, publication year,
performing year, geographical setting, and so forth.

6. Define protocol for the analysis of all studies and estimate the study-
specific effects (relative risks adjusted for relevant confounder variables).

7. Investigate the homogeneity of study-specific effects and determine whe-
ther these effects can be combined to perform a pooled analysis.

8. Presentation of published results, for example, graphically.
9. Investigate and reduce (if possible) the heterogeneity between studies.

10. Decide about remaining heterogeneity components: Coping with differ-
ent designs, study types, confounder, and so forth.

11. Estimate a pooled effect with adequate statistical methods if the studies
are efficiently homogeneous.

12. Conduct a sensitivity analysis.

Obviously, some variations are needed for the different forms, for example, for
traditional reviews, in general, only the steps 1 to 4 together with a qualitative
assessment are done. For a meta-analysis from published data, data abstrac-
tion will be done from publications, however, if required data are not given
in the publications, contact with the project manager of the studies should be
made.
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6.4.2 Statistical Analysis

The statistical analysis of aggregated data from published studies was first de-
veloped in the fields of psychology and education (Glass, 1977; Smith & Glass,
1977). These methods have been adopted since the mid-1980s in medicine pri-
marily for randomized clinical trials and are also used for observational stud-
ies. We will give a brief outline of some issues of the analysis. For more details
we refer to several textbooks or to a recent tutorial paper (Normand, 1999).

6.4.2.1 Single Study Results A first step of the statistical analysis is the de-
scription of the characteristics and the results of each study. Tabulations and
simple graphical methods should be employed to visualize the results of the
single studies. Plotting the odds ratios and their confidence intervals (so-called
forest plot) is a simple way to spot obvious differences between the study re-
sults. The Galbraith plot (Galbraith, 1994) is a more sophisticated way to in-
vestigate the heterogeneity and the contribution of each study to the overall
estimate.

6.4.2.2 Heterogeneity The investigation of the heterogeneity between the
different studies is a main task in each review or meta-analysis (Thompson,
1994). For the quantitative assessment of heterogeneity, several statistical tests
are available (Petitti, 1994; Paul & Donner, 1989). A major limitation of formal
heterogeneity tests is, however, their low statistical power to detect any hetero-
geneity present. Therefore, it is recommended to investigate the heterogeneity
informally, for example, by comparing results from studies with different de-
signs, within different geographical regions. In addition, graphical methods
should be used to visualize heterogeneity, such as plots with single studies
grouped or ordered according to special covariables as type of study, publi-
cation time, etc., or funnel plots to indicate publication bias, and radial plots
(Galbraith, 1994).

In meta-analysis of literature (MAL), some sensitivity analysis can be per-
formed to investigate the degree of heterogeneity. However, if individual data
are available, the sources of heterogeneity can be investigated in some detail.
Heterogeneity can be reduced, for example, by using the same statistical model
for all single studies. In a prospective meta-analysis, the strategy for the sta-
tistical analysis and the definitions of variables can be determined a priori for
all individual studies. Hence, an identical multiple regression analysis can be
used in each centre. This avoids heterogeneity that could be introduced by
different models.

6.4.2.3 Summarizing Effect Estimates Whether calculating a common es-
timate is appropriate should be decided after investigating the homogeneity
of the study results. If the results vary substantially, no estimator should be
presented or only estimators for selected subgroups should be calculated (e.g.,
combining results from case-control-studies only). Methods for pooling de-
pend on the data available. In general, a two-step procedure has to be applied.
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First, the risk estimates and variances from each study have to be abstracted
(MAL) or calculated (MAP). Then, a combined estimate is obtained as a (vari-
ance based) weighted average of the individual estimates. The methods for
pooling based on the 2× 2 table include the approaches by Mantel-Haenszel
and Peto (see Petitti, 1994, for details). If data are not available in a 2× 2 table
but as estimates from a more complex model (such as an adjusted relative risk
estimate), the Woolf and DerSimonian-Laird approach can be adopted using
the estimates and their (published or calculated) variance resulting from the
regression model (DerSimonian & Laird, 1986). For these methods, variance
estimates of the pooled estimator are available and allow the calculation of
confidence intervals.

Usually two different statistical concepts are used for the combined estima-
tor. In the fixed effects model, it is assumed that the underlying true exposure
effect in each study is the same. The overall variation and, therefore, the con-
fidence intervals will reflect only the random variation within each study but
not any potential heterogeneity between the studies. If individual data is avail-
able, the pooled estimator and its variance can be obtained using regression
models by incorporating an additional dummy variable for each centre. The
random effects model incorporates variation between the studies. It is assumed
that each study has its own (true) exposure effect and that there is a random
distribution of these true exposure effects around a central effect. The observed
effects from the different studies are used to estimate this distribution. In other
words, the random effects model allows non-homogeneity between the effects
of different studies.

The most common approach to combine the single estimates is the methods
of moments given by DerSimonian and Laird (1986). The important difference
is that for this model, study specific weights are calculated as a sum of the
variance within the studies and a term for the variance between the studies,
τ2. The between-study variance τ2 can also be interpreted as a measure for
the heterogeneity between studies. Because of anticonservatism in case of the
validity of a random effects model, Ziegler and Victor (1999) proposed a mod-
ification of the test based on DerSimonian and Laird (1986). The new proposal
holds the nominal level asymptotically.

Comparison between fixed effects and random effects model

• Random effects methods yield (in general) larger variance and confi-
dence intervals than fixed effects models because a between-study com-
ponent τ2 is added to the variance.

• If the heterogeneity between the studies is large, τ2 will dominate the
weights and all studies will be weighted more equally (in random effects
model weight decreases for larger studies compared to the fixed effects
model)

• A major critique of the random effects model is that it is not sufficient
to “explain” the heterogeneity between studies, since the random effect
merely quantifies unexplained variation by estimating it (e.g., Mengersen,
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Tweedie, & Biggerstaff, 1995). Heterogeneity between studies should
yield careful investigation of the sources of the differences. If a suffi-
cient number of different studies are available, further analyses, such as
“meta-regression”, may be used to examine the sources of heterogeneity
(Greenland, 1987, 1994).

If individual data is available, the fixed effects estimate can be calculated from
a regression model with dummy variables. So far, there is no comparable ap-
proach available for the random effects model. Here, the two-step procedure
is used even with individual data available (e.g., Lubin et al., 1995).

Several other methods have been proposed to estimate the overall effect
based on maximum-likelihood methods or on Bayesian methods (DuMouchel,
1990; Smith, Spiegelhalter, & Thomas, 1995). Recent investigations have de-
monstrated that, for practical purposes, the differences between these methods
are not very large. So far, only rather sophisticated software is available for
these approaches (Spiegelhalter, Thomas, Best, & Gilks, 1996).

6.4.2.4 Sensitivity Analysis An important method for investigating hetero-
geneity is sensitivity analysis, for example, to calculate pooled estimators only
for subgroups of studies (according to study type, quality of the study, period
of publication, etc.) to investigate variations of the odds ratio. An extension of
this is meta-regression as proposed by Greenland (1987), however, this method
cannot be used in most meta-analyses since too few studies are available.

6.5 COMPARISON AND ASSESSMENT OF THE FOUR
TYPES OF REVIEWS

The different review methods are outlined in Table 6.1 and will be discussed
here in detail.

6.5.1 Design, Conduct and Literature Search

For each type of review, the hypothesis, question, and conduct should be sum-
marized and defined in a strict protocol in which clear inclusion and exclusion
criteria for the studies and the details of the literature search are described.
This component of the review process is important for each study type, but
is especially needed if quantitative results are required. It should also be de-
cided whether and which data will be required from the investigators of the
individual studies.

An important problem of meta-analysis is publication bias. This bias has
received a lot of attention particularly in the area of clinical trials. Publication
bias occurs when studies that have non-significant or negative results are pub-
lished less frequently than positive studies. For randomized clinical trials, it
has been shown that even with a computer-aided literature search only some
of the relevant studies will be identified (Dickersin, Scherer, & Lefebre, 1994).
For observational studies additional problems exist: Very often a large number
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Table 6.1 Comparison of Methods for Different Literature Review Methods

Requirement for the Review Method Review MAL MAP PMA

Planning and literature search
Protocol +? + ++ ++
Inclusion / Exclusion criteria + + ++ ++
Systematic literature search
(incl. Abstracts, Proceedings)

+? + ++ ∗

Obtaining additional information from
single studies that are not published

− +? + ∗

Evaluation of sources of errors and bias
Investigation of sources of bias +? +? ++ ++
Evaluation of validity of individual studies − +? ++ ∗
Control of data collection − − +? ++
Adjustment of inclusion criteria for
individuals

− − + ++

Assessment and control of statistical analysis − − ++ ++
Estimation of publication bias − ? + ∗

Comparability of single studies
Standardized study design +? + + ++
Standardized assessment of risk factors − − − +
Standardized definition of exposure and
confounder variables (categories)

− − +? ++

Standardized adjustment for confounder
variables

− − +? ++

Statistical analysis
Quantitative estimate for the effect − +? ++ ++
Improvement of the precision of effects
measured

− ? + ++

Estimator for dose-response relationship − − +? ++
Estimator for risk in subgroups − ? + +
Increase of statistical power − +? ++ ++
Evaluation of interactions and confounder
effects

− − + ++

Evaluation of sources of heterogeneity ? +? ++ ++
Sensitivity analyses − + ++ ++
Reproducibility of methods − − +? +?

General aspects
Description of state of research + + + ∗
New research questions ++ ++ + +
Improvement of the quality of further studies + + + +
Time and costs for the study very low low high very high

Note. MAL = Meta-analysis of literature, MAP = Meta-analysis with patient data,
PMA = Prospective meta-analysis, ++ = possible in principle and (almost) always
done, + = possible in principle and often done, +? = often not possible or not done,
? = only possible or useful in exceptional cases, − = never possible, ∗ = less relevant.
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of variables will be collected in questionnaires as potential confounders. If one
or several of these potential confounders yield significant or important results,
they may be published in additional papers, papers that have often not been
planned in advance. If these confounders, however, yield expected or nega-
tive results, no publication will be made. Some regional studies may not be
published in international journals and are not found in a literature search for
a meta-analysis.

Inclusion criteria, data collection methods, and statistical analyses cannot
be changed if published data are used for a meta-analysis. In many situa-
tions it is even difficult to determine exactly what has been done from the
published literature. The methods section in many papers is often short and
critical evaluation is not always possible. Errors in the original work cannot be
corrected or checked and may yield to bias in the results of the meta-analysis.
For MAP, the inclusion criteria for the single studies can be modified (for dif-
ferent age groups, tumour sites, latency times, etc.). They can also be redefined
and checked. It is also possible to evaluate or adopt the statistical analysis if
patient data is available. Possible sources of a systematic bias can be elimi-
nated if a detailed statistical analysis of the single studies can be done. The
evaluation of possible bias attributable to lack of control for confounding is
also only possible with individual data.

6.5.2 Validation of Comparability of the Single Studies

Since many study designs are possible, it is necessary to evaluate the com-
parability of the single studies before conducting a review. This evaluation
can be conducted partly from published data if enough detailed information
is available in the papers. If individual data are available, an analysis of the
single studies in one common model is possible. A major reason for different
results across studies is that different statistical methods/models have been
used. Hence, heterogeneity can be significantly reduced in a pooled analysis
by using the same model for all studies. A pooled analysis is only possible if
similar data are available from all studies and are provided to the investigator
of the pooled analysis. The investigation of study-specific heterogeneity can
be done, to some extent in MAL, mainly with a sensitivity analysis.

6.5.3 Quantitative Risk Estimation

Reviews are not designed to give a quantitative estimate of the effect of risk
factors or to describe a dose-response relation. They only allow a descrip-
tive comparison of the results of available research. All other types of meta-
analysis allow – if the data are sufficiently homogeneous – the calculation of a
pooled risk estimate. A quantitative estimate is very often considered an im-
portant goal of meta-analysis. However, calculating an overall risk estimate is
not always possible because different statistical models were used in the orig-
inal studies that prohibit a sensible combination of study results to be made.
It should also be noted that an improvement in the precision of the risk esti-
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mate could often not be achieved by pooling since only the variation caused
by random error (increasing the sample size) will be decreased by pooling.
Increasing the sample size cannot eliminate any bias (systematic error). In-
deed in some situations, the pooled estimate is less precise than estimates of
the included single studies, as was shown by Gilbert (1989) in the radiation
leukaemia studies.

A less precise estimate is likely if only data for a crude categorization (e.g.,
2× 2 tables) can be abstracted from the publication. Bias may also be increased
if different methods to control confounding have been used in the individ-
ual studies. A more precise estimate is in most circumstances only possible
in a re-analysis with individual patient data. Especially, to estimate a dose-
response relation, individual patient data are required at least if different cat-
egories are used. Likewise, an investigation of interaction and confounding
requires individual data. Prospective multicentre meta-analyses have the ad-
vantage that the data collection procedures, the measurement methods, the
exposure assessment, and the definition of all variables can be agreed upon
prior to data collection. Consequently, the data can be more easily combined
at a later stage. It should also be noted that subgroup analysis, which is of-
ten a goal of a planned meta-analysis, could only be performed if the data are
published with sufficient detail.

To investigate whether the results are consistent across studies, published
data can be used for a review as well as for MAL. However, only limited
search for sources of this heterogeneity is possible. For example, whether dif-
ferent definitions of exposure and confounder variables or different use of con-
founder in a multivariate statistical model influence the results can not be de-
termined. A valid judgement of the consistency of results in complex questions
requires a new and detailed statistical analysis based on original data.

Many authors have pointed out that investigating heterogeneity is the most
important aspect of meta-analysis (e.g., Thompson, 1994). Statistical meth-
ods to investigate heterogeneity can be based on aggregated data. However,
statistical tests have low power and may not be able to detect heterogeneity
between studies. MAP allows different strategies to be used to eliminate dif-
ferences and at least to give results in a unified way. Frequently, it is difficult to
compare results from different observational studies since different data pre-
sentation methods are used across publication. Even in a single study different
strategies for modeling can yield rather different results (Blettner & Sauerbrei,
1993). Therefore, for a meaningful meta-analysis it is necessary to eliminate
this source of heterogeneity. Such a comparison is only possible if the same (or
quite similar) variables are available from all studies.

6.6 SOME EXAMPLES

Ursin, Longenecker, Haile, and Greenland (1995) report results from a meta-
analysis investigating the influence of the Body-Mass-Index (BMI) on develop-
ment of premenopausal breast cancer. They include 23 studies of which 19 are
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case-control studies and 4 are cohort-studies. Some of these studies were de-
signed to investigate BMI as risk factor, others measured BMI as confounders
in studies investigating other risk factors. It can only be speculated that the
number of unpublished studies in which BMI was mainly considered as a con-
founder and did not show a strong influence on premenopausal breast cancer
is non-negligible and that this issue may result in some bias. As is usual prac-
tice in epidemiological studies, relative risks were provided for several cate-
gories of BMI. To overcome this problem the authors estimated a regression
coefficient for the relative risk as a function of the BMI, however, several criti-
cal assumptions are necessary for this type of approach. The authors found se-
vere heterogeneity across all studies combined (the p-value of a corresponding
test was smaller than 10−8). An influence of the type of study (cohort-study
or case-control study) was apparent. Therefore, no overall summary is pre-
sented for case-control and cohort studies combined. However, the authors
present a summary estimate for all case-control studies, although the severe
heterogeneity (p < 10−8) was still present. One reason for the heterogeneity
is the difference in adjustment for confounders. Adjustment for confounders
other than age was used only in 10 out of the 23 studies. Several other issues
may have caused the severe heterogeneity between studies and the summary
assessment of an inverse association of high BMI with risk of premenopausal
breast cancer must be interpreted with caution.

White (1999) investigates the level of alcohol consumption at which all-
cause mortality is least. Based on a MEDLINE search he included 20 studies in
the meta-analysis; nine studies were excluded because information needed for
the meta-analysis was not available. The heterogeneity of the study popula-
tions and the differences of confounding factors is obvious from the summary
table in the paper. Age is the only factor used in all studies, the number of
additional factors ranges from 0 to 12. The author has used a complex method
to re-calculate unadjusted relative risk estimates, however, combining crude
estimates may yield a severe bias if confounding plays a role. Additionally,
various numbers of categories based on different cutpoints were used in the
individual studies. To combine these different estimates, the author fit asym-
metric quadratic functions to the results based on categorized alcohol levels in
the original papers. From each function a nadir indicating the least all-cause
mortality was estimated. Obviously, the nadir depends strongly on the origi-
nal chosen categories and the calculation to estimate the nadir from the pub-
lished data are questionable and could yield a major bias. Four studies that
did not show a “typical” U-shape relationship were considered to be nonin-
formative about the nadir and were excluded from the analysis. For different
subpopulations estimates of the nadir with corresponding confidence intervals
were presented. The estimate is much higher for UK men than for US men,
however, because of many limitations of the MAL the results are questionable
(Sauerbrei, Blettner, & Royston, 2001). The used approach gives estimates that
may be wrong and may lead to possibly wrong recommendations regarding
the alcohol consumption. Using the publications only, a careful investigation
of the large heterogeneity between studies and countries could have been a
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worthwhile exercise, but the calculation of a quantitative estimate is meaning-
less.

Based on published data Ben-David, Rosen, Franssen, Einarson, and Szyfer
(1995) present a meta-analysis investigating the influence of dose intensity of
first line chemotherapy with cis- or carboplatin alone or in combination with
other chemotherapy drugs on median survival of stage III-IV ovarian cancer
patients. Following some central rules for meta-analyses they identified 61
“separate units”, some from randomized trials and some from observational
studies, which can be seen as independent one-armed observational studies.
Based on the intended dose for each study and the distribution of the prog-
nostic factors given in the corresponding publication, they tried to identify the
influence of dose intensity of platin (DI), total dose intensity of platin (TDI),
and total dose intensity of all chemotherapy drugs (GDI). The amount of in-
formation about prognostic factors given in the published papers and their
incorporation in adjusting the treatment effect varied substantially between
the different studies. As the effect of prognostic factors on survival is much
stronger than the benefit from the treatment, observational studies require
their incorporation in a multivariate model for the estimation of a treatment
effect. However, in the published papers this issue is handled differently, lead-
ing to estimates which cannot be combined in a sensible way. Median survival
categorized as less than 20 versus more than 20 months was used as the only
outcome for each study. This very simple measure is not informative as it does
not use survival time per patient. This choice was certainly guided by sim-
plicity because only published papers were used. In a comment on the paper,
Sauerbrei, Blettner, and Schumacher (1996, p. 428) concluded that

in contrast to the obvious effect of TDI on median survival presented
in the paper we believe that the authors did not succeed in adding any
important information to the question of dose intensity on the survival of
ovarian cancer patients.

Furthermore, a large randomized trial convincingly reached a result in contrast
to that of the meta-analysis presented by Ben-David et al. (1995). Hopefully,
not too many clinicians read this oversimplified meta-analysis and came to
wrong conclusions for the treatment of their patients.

In breast cancer more than 100 factors are discussed as being potentially
prognostic, however, only the number of positive axillary lymph nodes is gen-
erally accepted to have an important influence on prognosis. For most factors,
only unsystematically traditional reviews have been published. The confusion
caused by the current way of summarizing the evidence will be demonstrated
by citing some review papers on HER2/neu oncogene, also known as c-erbB-
2, a factor of strong interest in the last years. For this factor several traditional
reviews based on different included studies, using different methods and lead-
ing to different conclusions have been published.

Based on their review, Allred, Harvey, Berardo, and Clark (1998) conclude
that HER2/neu is at best a weak prognostic factor in node negative patients,
whereas it seems to have a more pronounced prognostic value in node posi-
tive patients. More detailed information of single studies is given by Révillion,
Bonneterre, and Peyrat (1998). They state that in several studies the prognos-
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tic value of HER2/neu was present only in univariate analysis, and not in
multivariate analysis. Furthermore, different results are sometimes reported
for the effect on disease-free survival and overall survival. The tables 7 to 9
by Révillion et al. (1998) give evidence that incorporation of classical factors
varies severely between the different studies and that, despite of the strong re-
lationship to estrogen and progesterone receptors, these factors are often not
considered in the analysis. For different studies this may cause severe differ-
ences in the estimated effect of the prognostic value of HER2/neu and makes
a sensible comparison of results almost impossible. Révillion et al. (1998) sum-
marize: “In univariate analyses HER2/neu is strongly associated with poor
prognosis. However, it does not retain a clinical prognostic significance in
multivariate analyses since it is associated with several strong prognostic pa-
rameters” (p. 791). As this statement is only based on a listing of the classical
prognostic parameters used in the individual studies and on the simple assess-
ment of significance for each single study but without any discussion on the
power in the “negative” studies or on the size of the effect if the factor had a
significant influence we consider the scientific basis for these important state-
ments as being very low. Their review clearly demonstrates the heterogeneity
between the studies concerning treatment, follow-up time, and on the issue of
subgroup analyses. From our point of view any summary assessment seems
unjustifiable. In another review published in two papers Ross and Fletcher
(1998, 1999) list 47 studies investigating the prognostic value. They do not care
about mixing results from univariate and multivariate analyses of the single
studies, whose results are simply given as impact on prognosis “yes” or “no”.
In the paper published first they conclude “The preponderance of evidence
indicates that HER2/neu gene amplification and protein overexpression are
associated with an adverse outcome in breast cancer” (Ross & Fletcher, 1998,
p. 424). A reader gets certainly the impression of an important prognostic fac-
tor. In the latter paper they give no summary statement but concentrate more
on different measurement techniques and list studies with significant and non-
significant results, respectively. Obviously, a useful summary assessment of
the prognostic value seems impossible with the traditional review. In their
later paper they seem to have realized it, however, they did not explicitly state
it. From our point of view such a statement would have added some value to
their paper.

Difficulties in general associated with reviews of prognostic factor studies
are discussed in Altman and Lyman (1998). Most problems are closely con-
nected to issues of assessing the importance of a factor from the results of ob-
servational studies.

6.7 CONCLUSION

This chapter has described and critically assessed different review methods
for observational studies. We strongly believe that all available data and in-
formation are needed for full assessment of weak factors and that systematic
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reviews of available evidence will become increasingly important. A major
impediment for meta-analysis of observational studies is the heterogeneity be-
tween studies in their design, data collection methods, and statistical mod-
eling. Mainly because of the last aspect meta-analyses using published data
are, therefore, limited and give rarely a valid quantitative estimate or dose-
response function. However, a meta-analysis of published data may be more
reproducible than a qualitative review. A MAL has the trivial but dangerous
advantage of being less expensive and time consuming than a meta-analysis
with individual data. Consequently, some authors will continue to publish
results from those meta-analyses and public health regulators, and decision-
makers may rely on these results, even if the scientific value is questionable.
Therefore, it remains important to point to the weaknesses and flaws in meta-
analyses of literature. In particular, errors and bias that can be produced when
combining studies with different design, methods, and analytic models need
to be addressed. Despite of the large costs in time and manpower researchers
should be encouraged to aim for meta-analyses with patient data. Several suc-
cessful projects have shown that it is possible to interest researches all over
the world for the collaboration (Advanced ovarian cancer trialists group, 1991;
Early Breast Cancer Trialists’ Collaborative Group, 1992), mainly because the
question was so important that the scientific community was strongly inter-
ested in scientific answers. We believe that a useful MAP does not always
need to incorporate all studies conducted for the specific question of inter-
est but that a well defined “group of studies” – for example, only new, good,
and large studies – may be sufficient. Such an approach will substantially re-
duce the costs and largely increase the probability to receive the individual
data from the studies of interest. A meta-analysis starting with a re-analysis
of the individual studies would have a chance to result in valid estimates or
dose-response functions. With our examples we tried to show that the more
traditional ways have often failed to give a reliable assessment for a factor of
interest, despite of the fact that an enormous amount of money was spent from
the individual study groups all over the world and data are available on tens
of thousands of patients.

Statistical methods for pooling data from different sources have to be re-
fined and new approaches are needed. Some important work is currently
in progress, for example, from members of the “Statistical Methods Work-
ing Group” of the Cochrane Collaboration. Methods for conducting and re-
porting of meta-analyses of published data need to consider the basic limita-
tions. While significant progress has been made in the systematic approaches
for meta-analyses of randomized clinical trials, limitations in observational
studies may not be overcome by too simple statistical methods. However, an
equally rigorous standard is needed as more public health decisions will be
relying on the results of meta-analyses. Hence, the research community must
ensure that the validity, reliability, and overall quality of these methods is im-
proved.
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Summary

Meta-analysis of randomized clinical trials plays an important role in sum-
marizing available evidence with respect to the comparison of different
drugs for the same indication. In contrast, up to now meta-analysis is of
only minor importance in the process of new drug application despite the
fact that also in this situation a summary evaluation of available evidence
from a, although limited, number of independent clinical trials is neces-
sary. The main reason is, in our opinion, that presented meta-analyses
often are not completely convincing because objectives are not appropri-
ately chosen and conduct or presentation are not sufficiently detailed so
that the reader can assess provided evidence. This chapter is intended to
clarify why some meta-analyses have higher credibility than others and
provide some guidance to how the credibility of meta-analyses can be in-
creased. Presented ideas are, hopefully, not only in the regulatory setting
of importance.
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7.1 INTRODUCTION

Meta-analysis has been defined to be a quantitative and systematic summary
of a collection of separate studies for the purpose of obtaining information
that can not be derived from any of the studies alone (Boissel et al., 1988).
With this definition, meta-analysis implicitly is also a technique that should
lead to reproducible results and that can be distinguished from the classical
review or overview, where results from various studies might be collected and
qualitatively weighted by an expert in the field.

Originally invented in the social sciences, meta-analysis has found wide-
spread use in clinical research during the last two decades and the per-year
number of published meta-analysis is still increasing. However, only in rare
cases has the discussion about the appropriateness of biostatistical methodol-
ogy in medical research been as intensive as was the case with meta-analysis.
From the very beginning meta-analysis has split up the community into clear
proponents and those who completely dislike this type of analysis.

Feinstein (1995) named meta-analysis a synonym for “statistical alchemy
for the 21st century”, and others expressed their doubts on the credibility of
results “proven” by means of meta-analysis. It has repeatedly been empha-
sized that pivotal trials should be designed to stand on their own and that in
consequence meta-analyses should not be necessary (“If a treatment has an ef-
fect so recondite and obscure as to require meta-analysis to establish it I would
not be happy to have it used on me” (Eysenck, 1994, p. 792)). And also em-
pirical comparisons of the results from meta-analyses with results from large
randomized clinical trials (Villar, Carroli, & Belizan, 1995) or critical expert
reading of meta-analyses do not support the hypothesis that a meta-analysis
can replace randomized clinical trials (“In my own review of selected meta-
analyses, problems were so frequent and so serious, including bias on part of
the meta-analyst, that it was difficult to trust in the overall ’best estimates’ that
the method often produces” (Bailar, 1997, p. 560)).

A positive view on meta-analysis is best summarized by a citation from a
recent paper by Resch (1996), who wrote:

I disagree, however, that a meta-analysis should exclusively be viewed
as “hypothesis generating”. This proposal denies the fact that, however
biased, a high-quality meta-analysis quantitatively summarizes the exist-
ing evidence. What could be a better basis for a clinician’s treatment deci-
sion at the time it must be made? (p. 621)

Meta-analyses – being retrospective and non-experimental investigations
– are in a strict sense observational studies (Victor, 1995). Comparing, how-
ever, the evidence gained from a prospective observational study and a meta-
analysis based on randomized clinical trials, clarifies that this can not be the
whole truth, as the latter are based on what has often been termed “best avail-
able evidence”, and at least on the study level distribution of covariates is con-
trolled.
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Approval of a new drug by national or European agencies is one of the
most sensitive areas of evaluation of knowledge provided by clinical trials: If
in a certain indication there is not yet a standard treatment, the approval of a
new drug defines this standard and all future developments will be validated
against this standard. In addition, an acceptable benefit/risk-ratio is in general
taken for granted whenever a new drug is licensed.

International guidelines on statistical principles in clinical trials (ICH Topic
E9) have made a valuable contribution to clarifying methodological principles
for clinical trials in the regulatory setting. In this document reference is made
to the use of meta-analysis or pooled analyses in general, and subsequently
various meta-analyses have been presented in new drug applications. Not in
all cases have these analyses been appropriate from a regulatory viewpoint,
and the need for further clarification became obvious. This is also reflected
in the current attempt to harmonize the opinions of the European regulatory
authorities in a Points to Consider document, which is intended to provide
better guidance for the pharmaceutical industry.

This chapter is not intended to summarize the discussion on the develop-
ment of the Points to Consider document. Instead, ICH-E9 statements on
meta-analysis are briefly reviewed and given recommendations are summa-
rized. Instances are mentioned where these recommendations might need ad-
ditional clarification or give the impression that the view on meta-analysis in
the regulatory setting is very narrow. From a scientific viewpoint arguments
why credibility of meta-analysis is in some instances greater than in others are
given, and factors that can influence credibility are named. Some sample situ-
ations are discussed for illustration. A more appropriate use of meta-analysis
will hopefully help the technique find greater acceptance in the regulatory set-
ting.

7.2 QUOTES FROM “THE GUIDELINE”

In chapters II (Considerations for overall clinical development) and chapter VII
(Reporting) direct or indirect reference is made to techniques of summarizing
results from more than one clinical trial. The exact wordings are:

Interpretation and assessment of the evidence from the total program-
me of trials involves synthesis of the evidence from the individual trials.
This is facilitated by ensuring that common standards are adopted for a
number of features of the trials such as dictionaries of medical terms, def-
inition and timing of the main measurements, handling of protocol devia-
tions and so on. A statistical summary, overview or meta-analysis may be
informative when medical decisions are addressed in more than one trial.
Where possible this should be envisaged in the plan so that the relevant
trials are clearly identified and any necessary common features of their
designs are specified in advance. Other major statistical issues (if any)
that are expected to affect a number of trials in a common plan should be
addressed in the plan. (Section 2.1.1: Development plan)
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An overall summary and synthesis of the evidence on safety and ef-
ficacy from all the reported clinical trials is required for a marketing ap-
plication [...]. This may be accompanied, when appropriate, by a statis-
tical combination of results. [...] addressing the key questions of efficacy
by considering the results of the relevant (usually controlled) trials and
highlighting the degree to which they reinforce or contradict each other;
[...]. During the design of a clinical programme careful attention should
be paid to the uniform definition and collection of measurements which
will facilitate subsequent interpretation of the series of trials, particularly
if they are likely to be combined across trials. A common dictionary for
recording the details of medication, medical history and adverse events
should be selected and used. A common definition of the primary and
secondary variables is nearly always worthwhile, and essential for meta-
analysis. The manner of measuring key efficacy variables, the timing of
assessments relative to randomization/entry, the handling of protocol vi-
olators and deviators and perhaps the definition of prognostic factors,
should all be kept compatible unless there are valid reasons not to do
so. Any statistical procedures used to combine data across trials should
be described in detail. Attention should be paid to the possibility of bias
associated with the selection of trials, to the homogeneity of their results,
and to the proper modeling of the various sources of variation. The sen-
sitivity of conclusions to the assumptions and selections made should be
explored. (Section 7.2: Summarizing the clinical database)

Individual trials should always be large enough to satisfy their ob-
jectives. Additional valuable information may also be gained by sum-
marizing a series of clinical trials which address essentially identical key
efficacy questions. The main results of such a set of trials should be pre-
sented in an identical form to permit comparisons, usually in tables or
graphs, which focus on estimates plus confidence limits. The use of meta-
analytic techniques to combine these estimates is often a useful addition,
because it allows a more precise overall estimate of the size of the treat-
ment effects to be generated, and provides a complete and concise sum-
mary of the results of the trials. Under exceptional circumstances a meta
analytic approach may also be the most appropriate way, or the only way,
of providing sufficient overall evidence of efficacy via an overall hypoth-
esis test. When used for this purpose the meta-analysis should have its
own prospectively written protocol. (Section 7.2.1: Efficacy data)

In summarizing safety data it is important to examine the safety data-
base thoroughly for any indications of potential toxicity, and to follow up
any indications for an associated and supportive pattern of observations.
The combination of the safety data from all human exposure to the drug
provides an important source of information, because its larger sample
size provides the best chance of detecting the rarer adverse events and,
perhaps of estimating their approximate incidence. [...] The results from
trials which use a common comparator (placebo or specific active com-
parator) should be combined and presented separately for each compara-
tor providing sufficient data. (Section 7.2.2: Safety data)
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In summary, ICH-E9 makes the following proposals and recommendations
on the use of meta-analysis:

1. Objectives for meta-analyses might be the gain of more precise overall
estimates of the size of the treatment effect, the gain of a complete and
concise summary of trial results, and the assessment of consistency of
results across trials.

2. Meta-analysis should be prospectively planned with the clinical trials
programme in the development of a new treatment. This is extremely
important if the meta-analysis is the most appropriate or the only way to
provide sufficient evidence of efficacy.

3. Sensitivity analyses are necessary if assumptions or selections are neces-
sary to justify the combination of study results.

4. Safety-results from trials where the same active treatment has been com-
pared with different active substances or placebo should not be com-
bined into an overall estimate of “a treatment effect”. In general, separate
analyses should be presented for different comparators.

Some other recommendations might be seen too narrow or even contradic-
tory:

1. Studies should address essentially identical efficacy questions (not nec-
essary: The only question is whether the design of the studies and the
query for variables, relevant for the meta-analysis, is sufficiently similar)

2. Presentation of results of the single trials should be done by means of
estimates and confidence intervals (better: In general, the number of suc-
cesses and events per treatment group for dichotomous endpoints or suf-
ficient statistics in general should be provided in order to give the reader
the option to make his own mind).

3. “Studies should stand on their own” and “studies should address es-
sentially identical key efficacy questions” (little dissent exists on how to
interpret the results of meta-analysis in this situation).

And in some instances further clarification is needed:

1. No guidance is given with regard to the exceptional circumstances, for
which a proof of efficacy by means of a meta-analysis might be accept-
able.

2. Supposed it is accepted that a meta-analysis can increase the precision
of an estimate for the treatment effect in a certain situation, then meta-
analysis can in fact be confirmatory.

3. The term “prospectively” needs clarification: Should the meta-analysis
be planned before the first study that is intended to be included in the
meta-analysis is undertaken, or is it sufficient to plan the meta-analysis
before its conduct.
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7.3 HOW CAN THE CREDIBILITY OF META-ANALYSIS BE
INCREASED?

Meta-analyses are non-experimental studies. As a consequence, the classical
framework of error probabilities is not applicable for decisions based on p-
values or confidence intervals that have been computed in a meta-analysis of
results from independent trials. Like in observational studies in general, p-
values are primarily a measure for the distance between two success-rates or
between two means computed in two different groups in relation to the re-
spective variance. And like in observational studies, too, the author of a meta-
analysis must justify his belief that observed differences between two groups,
defined by means of the absence or presence of a certain treatment, are in fact
due to differences between the two treatments and not a consequence of bias
(e.g., due to selection of trials (i.e., publication bias), patients and interven-
tions, or the statistical methodology for the combination of the results from
independent trials).

Results and conclusions from meta-analysis are thus more or less credible
and this credibility – in contrast to randomized clinical trials – does not only
depend on design issues but also on sound argumentation on the absence of
bias. The following sections name the factors that influence to our opinion this
credibility and name prerequisites for meta-analysis, performed “in an almost
confirmatory way”. A number of situations are proposed where meta-analysis
therefore can contribute valuable information for the decision on licensing of
new drugs.

7.3.1 The Aspect of Objectives for Meta-Analyses

For a long time, meta-analyses have had little impact on decisions made by
regulatory authorities. This was mainly due to the fact that meta-analyses
have been presented almost exclusively in situations where proof of efficacy
in two independent clinical trials deemed necessary in the beginning, and this
attempt failed in the end (i.e., one significant and one insignificant trial; two
only borderline significant results etc.). Whenever meta-analyses are misused
to counterbalance for shortcomings in the respective primary research (i.e., the
studies to be included in the meta-analysis), credibility is affected: The only
aim of this type of meta-analysis is the demonstration of a “significant” treat-
ment effect. Chances are not too bad that at least this aim is reached due to
the mere fact that sample size is increased. This unpleasant situation has post-
poned considerations on good objectives for meta-analyses in the regulatory
setting:

1. Substantiation of additional claims on secondary endpoints, especially in
a situation where the primary endpoint is based on a surrogate-variable,
or on components of multiple endpoints:

Various situations exist, where in a collection of clinically important vari-
ables the choice of the primary endpoint is not only driven by the attempt
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to select the most important one, but also by feasibility considerations.
This is especially true if the incidence of some of the endpoints is higher
and some other endpoints are rare. An example is provided by studies in-
vestigating postoperative prophylaxis against thromboembolic compli-
cations, where the incidence of deep vein thromboses is usually selected
as the primary endpoint. The rare event of a pulmonary embolism is,
however, an at least equally important endpoint. The demonstration of
equivalence or superiority or equivalence with respect to the rate of the
rare event would demand larger clinical trials. A good basis for a claim
with respect to the rare endpoint might be a meta-analysis of all pivotal
trials.
Similarly, a double endpoint (death or reinfarction) is selected in studies
in the treatment of acute myocardial infarction. An additional claim “the
experimental treatment reduces the rate of death” may be substantiated
by means of a meta-analysis of all pivotal clinical trials.

2. Proof and investigation of efficacy and safety in subgroups of the patient
population:
As soon as the global superiority of an experimental treatment over con-
trol has been established by means of evidence from more than one piv-
otal clinical trial, investigations into subgroups of the patient popula-
tion might help to understand better for which patients the benefit of
the experimental treatment is greatest (e.g., to justify higher costs of the
experimental treatment). Similarly, one might be conscious whether a
consistent safety profile exists across subpopulations. In both instances a
meta-analysis can be helpful to provide evidence based on an acceptable
sample size.

3. Proof of efficacy in situations where single studies are contradictory or
inconclusive:
Despite the fact that meta-analysis should not be used to compensate for
shortcomings in the pivotal trials, meta-analysis can be helpful to come
to a decision if results of clinical trials are not homogeneous. In this sit-
uation meta-analysis must be understood as a tool to demonstrate ro-
bustness of results and conclusions by means of sensitivity analyses. In
general, the same methods should be applied that were proposed for the
investigation of heterogeneity in multicenter clinical trials. It should be
noted that, due to currently existing limitations with respect to statisti-
cal methodology, two studies can not be regarded sufficient to assess an
overall “impression” by means of a meta-analysis. This is due to the fact
that the likelihood to detect important differences between studies with
respect to the treatment effect is small.

4. Evaluation of signals for serious adverse events of treatment:
In many situations a meta-analysis of “all randomized evidence” will be
the only chance to detect early whether a risk for serious adverse events
is associated with the experimental treatment at the time a decision on
marketing of the new drug has to be made. Whereas in early years simply
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a summary of the combined database was provided, during the last years
it has been recognized that formal methods for the combination of results
from independent studies should also be used in this situation to avoid
bias.

7.3.2 The Aspect of Planning

Planning of experimental investigations in humans or animals is mandatory
by law. As has been pointed out in the discussion on the need for randomiza-
tion in clinical trials, the object of trials is both to ensure a high probability of
identifying the better treatment (if there is one) and to convince others of the
validity of the conclusions (Byar et al., 1976).

In consequence, all scientific investigations and especially observational re-
search should be planned. The crucial point in the context of meta-analysis is
that the need for a meta-analysis can become obvious at various points during
the conduct of a clinical programme consisting of more than one clinical trial.

It is, however, not only a question of credibility of results whether such a
meta-analysis has been planned together with the whole clinical programme
or after completion of the most recent study in the program: Credibility is af-
fected if the applicant can not assure that presented conclusions are not driven
by observed results and ruling this out is obviously easier in the first case.

One might believe that the credibility of a meta-analysis planned after the
completion of the last clinical trial might be increased if the meta-analysis has
been performed by a site that is independent or quasi-independent from the
sponsor. Even in this situation it might be difficult to assure that results of the
meta-analysis have not been known to the sponsor before the “independent”
re-analysis has been performed.

When planned in the beginning of the clinical program, the additional op-
portunity exists to care for consistency in the conduct of the clinical trials that
are intended to be included into the meta-analysis. This reduces the need to
make assumptions on what can be safely combined (e.g., a study lasting three
weeks and another study lasting four weeks, studies where variables have
been transformed differently in different studies, or studies with slightly dif-
ferent questionnaires that might affect clinicians behavior with respect to an-
swering), reduces potential sources of heterogeneity, and thus also improves
the quality of the meta-analysis.

A meta-analysis planned before the inception of the last study in a clinical
program ranges in between the before mentioned extremes: The conformity
of the study plans can at this point hardly be influenced. However, which
endpoints and which analysis are presented in the end can not be completely
derived from the observed results but at least some sort of internal validation
is available. This is the reason why one positive meta-analysis and a subse-
quently initiated clinical study with positive results may constitute a sufficient
basis for a licence application (see Example 2 in Section 7.4).
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A minimal requirement for meta-analysis in the regulatory setting is that
the meta-analysis has been planned in advance to its conduct. In this situation
it is, of course, difficult to demonstrate that results have not been available at
the point in time, where the plan for the meta-analysis has been presented.

7.3.3 The Aspect of Conduct

Due to unfavorable experiences with publication based meta-analysis recently,
meta-analyses based on individual patient data have been recommended and
termed the current gold standard in meta-analysis (Clarke & Stewart, 1994).
To our present opinion and experiences this might be somewhat too restric-
tive. Obviously, more questions can be addressed in a meta-analysis based on
individual patient data, as the full information on covariables is available. It is
also true that more insight into the data at hand is needed to perform this type
of meta-analysis. Keeping in mind, however, the enormous workload that is
needed to perform a re-analysis of the individual trials, one should also keep
in mind that the method which is used for combination of study results should
be justified by the question that is to be answered (e.g., in case subgroup anal-
yses are of interest and the respective information is not available from the
study report, a re-analysis can not be avoided).

At least in the regulatory framework and with respect to the primary and
secondary end-points of pivotal trials, in contrast, it would shade suspicion
on the original trial report if results of meta-analyses based on individual pa-
tient data and meta-analyses based on published data from the original report
would come to different conclusions. Re-definitions of success and treatment
failure, in addition, might raise suspicion that again attempts are made to fish
for significance (i.e., why should definitions that seemed reasonable at the time
when the individual trials had been planned now be obsolete?). Obviously, the
plan to perform a meta-analysis based on original patient data can not be the
justification for the exclusion of trials from the analysis where original patient
data are not available, although it is expected that this problem (like publica-
tion bias more generally) is of minor importance in the regulatory setting.

7.3.4 The Aspect of Analysis and Presentation of Results

During the first years the term meta-analysis has been associated in medicine
almost completely with the aspect of summarizing the evidence from indepen-
dent clinical trials. Summary estimates and overall tests of effect or confidence
intervals have been presented exclusively. Due to bad experiences the view
on meta-analysis is nowadays more differentiated and meta-analysis is more
understood as a tool for investigating similarities and dissimilarities between
trials that should, at least in principle, be combinable. Unfortunately, in the
regulatory setting the mere provision of a summary p-value is still the rule
and not the exception. As the evaluation of consistency of results across trials
is very important for claims on efficacy, this is not acceptable.
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Statistical information on similarities and dissimilarities of study results are
important. Critics might say that the currently used tests for homogeneity
that are based on weighted squared differences between estimates from the
single trials and the meta-analysis estimate have insufficient power to detect
departures from the null-hypothesis (Jones, O’Gorman, Lemke, & Woolson,
1989). Critics might further object that they are in addition usually used “to
proof their null-hypothesis”. As a consequence, it should be not acceptable to
conclude that no heterogeneity exists, unless the test for homogeneity rejects
the null-hypothesis at a conventional 5%-level. This is true but should, to our
opinion, not prevent from making all attempts to use the test as a diagnostic
tool (as a well known statistician has pointed out: Statistical methods need
not be perfect, it is sufficient if they are better). The following example might
support this opinion:

Two randomized double blind placebo controlled studies have been under-
taken to investigate the efficacy of omeprazole in functional dyspepsia (Bond
study and Opera study) (Talley et al., 1998). Both studies are three armstud-
ies comparing two dosage regimens to placebo. Results of the comparison of
the higher dose and placebo are reported here in a slightly simplified way not
to discredit a potentially efficacious treatment but to construct an instructive
example for decision making. Conclusions of the authors are: Omeprazole
is modestly superior to placebo in functional dyspepsia. On an intention to
treat analysis (n = 1248), complete symptom relief was observed in 38% on
omeprazole 20mg compared to 28% on placebo (p = .002).

Table 7.1 Complete Relief of Dyspeptic Symptoms

Omeprazole 20mg Placebo
Study Relief / Treated Relief / Treated

Bond 93 / 219 57 / 219
Opera 68 / 202 62 / 203

Results of the two studies are summarized in Table 7.1. The paper reports
results for the combination of the two trials only. The meta-analysis estimate
for the difference of the relief rates in the two treatment groups is 10% with
a 95% confidence interval ranging from 3.7 to 16.3%, and from this a modest
superiority of the experimental treatment over placebo is concluded.

Our confidence in the drawn conclusion might change if it was clearly sta-
ted, that first, it is only the Bond-study that came up with a significant treat-
ment effect (p = .001), the p-value for the treatment effect in the Opera study
was p = .501, and that second, despite the fact that tests for heterogeneity
are blamed for being insufficient, a clear warning might have been achieved
(p = .039 for heterogeneity).

This should be general guidance for analysis and presentation of results:
Confinement to only meta-analytic results in terms of a summary estimate of
the treatment effect and the respective confidence interval or a simple hypoth-
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esis test resulting in just one p-value is not appropriate in the setting of obser-
vational studies. As has been pointed out before, argumentation is necessary
with observational studies. Analysis and presentation of results should al-
ways emphasize the need to also clarify the contribution of a single trial to the
combined result. Respective recommendations date back to 1993 (Thompson,
1993): For every study the relative weight in a fixed effects model should be
presented together with the contribution of the study to the statistics of the
heterogeneity test. The first information gives the reader an impression on
whether meta-analysis can add useful information to the knowledge from the
larger studies (e.g., in a situation with one large trial and two small studies
given weights 80%, 10%, 10%, it is very unlikely that the combined analysis
will add new information, as the size of the estimate is completely driven by
the result of the large trial). The second information can descriptively be as-
sessed with a rule of thumb, comparing each of the contributions to the hete-
rogeneity statistics with the critical value of a χ2-distribution with one degree
of freedom and deciding whether results are homogeneous or whether some
extreme results might drive the overall impression.

7.4 SAMPLE SITUATIONS

A series of sample situations of appropriate or inappropriate use of meta-
analysis, all motivated by recent applications or collected from the literature,
are presented to illustrate the considerations above.

Example 1: Meta-Analysis and Borderline Significant Pivotal Studies

In a situation where proof of superiority has to be based on two separate piv-
otal trials, both demonstrating that the experimental treatment is superior to
control, both studies ended up with only borderline significant results (e.g., a
p-value between 5% and 10% was achieved, where the level of significance was
initially set to 5%). A combined re-analysis of the two pivotal trials demon-
strates “significant” superiority of the experimental treatment over control for
the primary endpoint of the pivotal trials.

Even if the meta-analysis has been planned before its conduct, a meta-analy-
sis in this situation is not acceptable. Meta-analysis should not be used as a
safety-belt against non-significant results from pivotal trials that were planned
to stand on their own.

In a very dialectic discussion on meta-analysis Senn (1997) argued that clin-
ical trials are notoriously too small and that even small true effects might be of
enormous public health importance (for example, in the treatment of cancer or
myocardial infarction) and that many small drops can make a hole into stone.
Nevertheless, he admits that a difference to the drug development setting ex-
ists, where the way how experimentation is performed is under the control of
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the pharmaceutical company that must demonstrate efficacy beyond reason-
able doubt.

If studies that have been planned to stand on their own fail to proof efficacy
as expected, this is a strong indication that something substantial went wrong
with the original plan.

Example 2: Meta-Analysis and the Need for Replication of Results

Imagine a situation where the sponsor has decided to proof efficacy in a series
of three phase III pivotal clinical trials. After a first “significant” trial the spon-
sor decides to make some minor modifications to the study design (e.g., small
changes in the criteria for inclusion or exclusion of patients from the trial or
a modification of the primary variable). His intention is to demonstrate even
better the superiority of the experimental treatment over control.

Unfortunately, this second and a third attempt with again minor modifica-
tions both fail to demonstrate superiority of the experimental treatment over
control. However, a meta-analysis including the first trial and “similarly de-
fined subgroups” of the following two trials demonstrates a significant superi-
ority of the experimental treatment over control. Again this is, in our opinion,
no appropriate use of meta-analysis. If a need for replication of scientific re-
sults exists, this need can not be substituted by a (retrospective) subgroup (or
a combination of subgroups) analysis. The sponsor still needs to demonstrate
in an independent study that he now can correctly identify those patients that
will benefit more from the experimental treatment than from the control treat-
ment.

In consequence, the reversed situation might well be acceptable: Based on
two (or more) non-significant trials the sponsor now believes that he can iden-
tify the patient population that will benefit from the experimental treatment.
A meta-analysis of the respective subgroups of the first two trial populations
demonstrates “significant” superiority of the experimental over the control
treatment. A new trial is planned according to these restrictions and can ver-
ify the result of the meta-analysis. Meta-analysis should thus only be used to
replace the first experiment, not the verification step.

The need for independent verification of scientific results has been discussed
controversially in the literature (Högel & Gaus, 1999), and it has been even
questioned whether the usual procedure of just performing two trials at the
same time in different geographical hemispheres reflects a true verification of
results. It should be pointed out that in this discussion the question is not
whether verification is necessary or not, but that discrepancies between expec-
tation and results need further investigation.

It should be noted that this is also one solution for the problem posed in
Example 1: The meta-analysis of the two borderline significant results might,
given that no other problems with study design and conduct exist, be accepted
as a first pivotal trial. A third study should, however, be planned that can then
successfully reproduce this first result.
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Example 3: Meta-Analysis and Claims for Secondary Endpoints

Very often in clinical trials the selection of one variable as primary endpoint
from a series of others, which then are termed secondary, is not only influenced
by clinical importance of the various variables but reflects also considerations
on feasibility (i.e., if a more important endpoint (e.g., pulmonary embolism in
thrombosis prophylaxis) is a very rare event, chances for demonstrating supe-
riority increase if an endpoint with higher incidence (e.g., deep vein thrombo-
sis) is selected instead). A whole clinical trials program, however, might be
designed such that also differences in mortality can be detected. The sponsor
might decide to use the more frequent endpoint as primary, however, to plan a
meta-analysis of pivotal trials in order to demonstrate superiority with respect
to the less frequent event.

Given appropriate results, this is an acceptable prerequisite for an addi-
tional claim regarding the secondary, less frequent but potentially clinically
more relevant endpoint.

7.5 CONCLUSIONS

Meta-analysis, even if restricted to the combination of only two pivotal tri-
als, might be an extremely helpful tool for decision making in the regulatory
setting. This technique could in principle support the task of the medical re-
viewer, who, at the end of the day, must integrate all the presented knowledge
and come to a final decision. Meta-analysis is not playing this role up to now.
This is mainly due to the fact that presented meta-analyses fall short with re-
spect to the addressed objective, the conduct and the presentation of results:
Still too much emphasis is given to combined estimates of the treatment effect
and summary p-values. The potential of meta-analysis to show similarities
and dissimilarities between the trials that are to be combined has not been
used too often.

Meta-analysis, sometimes routinely presented as part of the clinical expert
report, often fall short with respect to the presentation of results: Again, only
summary information is presented and the reviewer is referred to the single
documentation of clinical trials if he is interested in the consistency with re-
spect to certain information.

Meta-analysis “is here to stay”, however, careful consideration of the above
mentioned points will help to sharpen the general understanding, where meta-
analysis can be helpful and where not, will help to bring up better results and
lastly help to find the place for meta-analysis that it should have.
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Summary

If vigorous physical exercise increases cognitive skills among elderly resi-
dents of San Diego, California, will it do the same for the elderly in Mün-
ster, Westphalia? This chapter examines the role of meta-analysis in justi-
fying generalized causal inferences. In the experimental tradition of the so-
cial, behavioral, and natural sciences, such causal generalizations can be
justified through a complete understanding of the causal conditions and
mechanisms that bring about a phenomenon. Thus, rigorous experimen-
tation and causal modeling of micro-mediating processes should provide
the keys to valid causal generalization. In the observational and correla-
tional tradition of the social, behavioral, and natural sciences, these gen-
eralizations are often justified through the correspondence between sam-
ples (or cases, instances, exemplars) and the populations (or universes,
constructs, categories, classes) they are meant to represent. This empha-
sis on correspondence between samples and populations about which in-
ferences are sought suggests that causal generalization may be best ac-
complished through rigorous random sampling. This chapter argues that,
causal explanation and random sampling are of limited use for justifying
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generalized causal inferences because the causal moderating and mediat-
ing mechanisms are often poorly or incompletely understood and because
random sampling – if at all possible – is infrequently practiced. Following
a review of different validity models, Cook’s (1990, 1993) five principles
for strengthening empirical generalizations are presented in detail and il-
lustrated in the context of meta-analysis. Finally, some conditions are out-
lined that promote generalizable inferences. The chapter concludes that
valid empirical generalizations are best achieved through the synthesis of
multiple studies, conducted by many research teams, with different pop-
ulations, in different settings, with multiple operationalizations of inter-
ventions and outcomes. One form of research synthesis, meta-analysis,
has particularly great promise to facilitate generalized inferences. Even
though the best meta-analysis presents no shortcuts or guarantees for
valid generalizations, it does provide research design and analytical tools
to conduct principled investigations of generalizability claims, thus yield-
ing stronger generalized inferences than are possible based on a single
study alone.

8.1 INTRODUCTION

Imagine you just submitted a study for publication of the effects of physical
exercise on cognitive skills in the elderly. The journal editor replies, wonder-
ing whether your findings apply only to the 49 volunteers from the retirement
home across the street, your specific exercise regimen (i.e., ballroom dancing),
the poorly-ventilated activity room at the retirement home, the specific opera-
tionalization of “cognitive skills” (e.g., standardized test involving verbal and
numeric problems), and the foggy and cold November of 1999 when data were
collected. Few scientific journals are interested in publishing a study if the re-
search findings only apply to the unique circumstances in which they were
conducted. In fact, textbooks on scientific methods (e.g., Babbie, 1995; Ker-
linger, 1986) identify the pursuit of general truths as a defining feature of sci-
ence. Do the findings from this study apply to other circumstances, possibly
volunteers from other local retirement homes, other forms of exercise, better
ventilated rooms, and different seasons? How can we justify such conclusions
in the absence of strong sampling designs and strong causal explanatory theo-
ries?

This chapter deals with the empirical generalizability of causal relation-
ships, the types of relationship that are at stake when we study the effects
of a new drug to delay the onset of Alzheimer’s disease, the effects of a “tough
love” program for teaching employment skills to the long-term unemployed,
or the effects of physical exercise on cognitive skills in the elderly. Follow-
ing the work of Campbell and Stanley (1966), Cronbach (1982), and Cook
(1993; Cook & Campbell, 1979), I will distinguish three types of empirical (i.e.,
data-driven) generalizations. The first concerns inferences to target popula-
tions, classes, or universes (e.g., the population of elderly, the class of retire-
ment homes, the universe of cognitive skills). The second involves generaliza-
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tion across populations or sub-populations (e.g., public and private retirement
homes, men and women, verbal and numeric skills). The third involves extrap-
olation and interpolations about novel universes. After presenting some of the
traditional approaches to justifying generalized inferences, I will review five
principles proposed by Cook (1990, 1993) to strengthen empirical generaliza-
tions, illustrate their application in the context of meta-analysis, and discuss
the conditions under which valid generalizations are most likely to emerge.
The chapter argues that strong generalizations are rarely – if ever – possible
based on single studies. Instead, generalizations are best justified by program-
matic reviews of findings from many studies, the type of reviews to which
carefully conducted meta-analyses can make significant contributions.

8.2 THE DIFFERENT MEANINGS OF GENERALIZATION

The term “generalization” has many meanings and connotations in everyday
life and in scientific discourse. Some of these meanings are briefly reviewed in
the following.

8.2.1 Crisp and Fuzzy

In everyday discourse, “generalization” refers to a proposition that applies to a
large number of instances of a class or group (Webster, 1986). For instances, “It
never rains in Southern California.” could be interpreted in a crisp manner to
mean that there are zero days with precipitation south of Santa Barbara, CA. In
addition, “generalization” has the connotation of “vague” or “fuzzy” in that
the proposition may not always apply in exactly the same way to each and
every member of a group or class (Zadeh & Yager, 1987). That is, that fact that
San Diego is in Southern California, receives on average 10 inches of rain per
year, and received about 1/2 inch of rain last night does not necessarily disprove
the “fuzzy” generalization that one should not expect rain on prototypical days
in southern California.

8.2.2 Inductive and Deductive

Generalizations are often the result of inductive inferences, in which general
statements are made based on specific observations. Watching a few episodes
of Baywatch may lead many TV viewers to the conclusion that, in general,
residents of Southern California are very attractive, athletic, and adventurous.

Generalizations may also be the result of deductive inferences in which a
general proposition leads to more specific conclusions. Given the general wis-
dom that Westphalians are stubborn but produce excellent ham, one would ex-
pect to find headstrong persons and excellent hams throughout Westphalia’s
large industrial area around Essen, university towns like Münster, its hamlets
along the Dutch border, and its expatriates in Wisconsin.
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8.2.3 Logical, Empirical, and Theoretical

In formal logic the validity of an inference depends entirely on its form or
structure and not on the subject matter (Groeben & Westmeyer, 1975). A valid
inference is one in which a proposition (e.g., a general conclusion) follows with
strict necessity from a set of premises (e.g., syllogism). The deduction of the
conclusion from the premises must follow the formal rules of logic. For in-
stance, given the premises that “All psychotherapies are effective” and that
“Interpersonal therapy is a form of psychotherapy”, it follows that “Interper-
sonal therapy is effective”. As soon as the truth of the premises has been es-
tablished, the validity of the argument is ensured based on the structure of the
argument alone. Formal logic is concerned with inference forms rather than
with the particular instances.

In contrast, empirical generalizations – the topic of this chapter – are in-
formed primarily by patterns of observations made in particular instances,
with inference forms playing a secondary role (Groeben & Westmeyer, 1975).
The logic underlying empirical generalizations is closely related to Popper’s
falsificationist (Popper, 1959, 1972) approach as applied in quasi-experimental
designs where plausible alternative hypotheses are identified and ruled out
(Cook & Campbell, 1979). The goal of empirical generalizations is not to es-
tablish truth but to explore the dependability of generalization claims by sub-
jecting them to falsification tests. That is, empirical generalizations are always
tentative and approximate. The more a generalization has been subjected to
credible empirical falsification tests, the stronger the belief in its validity.

Empirical generalizations also have to be distinguished from the class of
general propositions that make up a theory. Theoretical generalizations are
law-like statements that do not directly apply to the empirical world. Instead
they rely on theoretical constructs, abstractions and simplifications of complex
empirical phenomena, and idealized conditions. Theoretical generalizations
present an ideal model of the real world; empirical generalizations present an
empirical model of the real world.

8.2.4 Universal and Specific

Universals are empirical generalizations that are of near complete generality
(Abelson, 1995) such that they apply to all humans or all humans of a cer-
tain type (e.g., retirees taking physical exercise classes). While there are more
universals in the natural sciences, there are many near universals in the so-
cial and behavioral sciences as well. Examples of nearly universal findings in
psychology include: (a) Limitations of short-term memory cause humans to
chunk information into groups of no more than about seven items (i.e., Magic
Number 7± 2); (b) Language acquisition only occurs in humans if they have
had exposure to a language community during a critical period in infancy; (c)
When deciding among courses of action with equal objective payoffs humans
are risk-averse and select the least risky option; and (d) The emotional inter-
pretation of prototypical facial expressions. While exceptions exist to all these
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near universals, these exceptions are rare, highlighting that they are “excep-
tions to the rule”, thereby corroborating the existence of the rule.

Generalizations do not have to be universals. Instead, propositions can be
phrased at different levels of generality, ranging from near universals to state-
ments identifying specific circumstances under which the proposition holds.
The higher the level of generality, the broader the range of circumstances across
which the proposition presumably holds.

8.2.5 Transfer, Extrapolation, and Analogs

Transfer refers to a form of generalization where observations made in one
condition are extrapolated to another. In learning theory (Estes, 1978; Hommel
& Prinz, 1997), transfer is said to have occurred when a subject who learned
to respond to a particular stimulus (e.g., a 440 Hz sound) responds as well
to similar stimuli beyond the original conditions of training (e.g., 597 Hz, 293
Hz). As differences between two conditions increase, the effects of general-
ization decrease until there may be no transfer from one situation to another.
Alternatively, the more the two situations have in common, the greater is the
amount of predictable transfer.

The transfer view of generalizability underlies training approaches in ar-
eas where learning on the job can be prohibitively expensive, outright danger-
ous, or inappropriate for practical and ethical reasons (Cormier & Hagman,
1987). For instance, training pediatric surgeons on critically ill infants to per-
form a new form of heart catherization, training navy F-14 fighter pilots in
actual war situations for combat missions, or training operator personnel of
nuclear power plants in actual catastrophic accidents are ethically indefensi-
ble. In all of these examples, an important training component takes place on
analog counterparts of the actual situations, such as animal models, flight sim-
ulators, or analog control rooms. These analogs are designed to maximize the
amount of positive transfer (i.e., training that facilitates actual performance),
and minimize negative transfer (i.e., training that hinders actual performance).

The transfer view of generalizability is also at the core of technology trans-
fer models that aim at facilitating the transition of research findings obtained
under laboratory conditions to commercial applications (National Academy
of Sciences, 1997). A good example of the implementation of the technology
transfer model is the approval process that guides the development of new
pharmaceutical products in the U.S.A. (U.S. Food and Drug Administration,
1998). Experimental new drugs are first tested in preclinical studies for safety
and efficacy, involving cell cultures, computer models, or animals. If the Food
and Drug Administration (FDA) review panels come to the conclusion that
findings from the lab are likely to extrapolate to humans, approval is granted
for Phase I clinical studies in humans. These are short-term studies on small
samples, focusing on safety, and often involve healthy subjects. If these initial
studies demonstrate a drug’s safety, Phase II studies follow, in which short-
term efficacy and drug safety are investigated in larger samples. If Phase II
studies continue to demonstrate a drug’s safety and efficacy, large-scale Phase
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III clinical trials are conducted with a focus on drug dosage, long-term effec-
tiveness, and drug safety. Data collected in the preclinical and clinical trials
are again reviewed by FDA expert panels to approve, to request additional
studies, or to deny approval of a new drug. Following the approval of a new
drug, monitoring systems are put in place to detect adverse reactions and to
investigate quality control. The FDA estimates that only 5 of 5,000 compounds
entering preclinical testing make it to human testing. Of those, only 1 in 5 are
eventually found to be safe and effective and approved for marketing.

8.2.6 Replicability and Robustness

The better research findings replicate across different conditions, the more gen-
eral the effect is said to be. Robust empirical findings suggest broad main ef-
fects of interventions, the type of effects that are particularly useful for policy
decisions affecting large and diverse constituencies (Abelson, 1995).

If research findings are replicable within conditions but vary across condi-
tions, interaction effects are present that moderate the direction or magnitude
of an effect. Such interactions help identify the boundaries of generalizabil-
ity. Of particular interest are conditions that reverse the direction of an effect
(i.e., qualitative interaction) as is the case when physical exercise lowers blood
pressure in some groups but increases blood pressure in others.

8.2.7 Fixed and Random

While robust main effects promise broad generalizability, Abelson (1995)
points out that there is a catch. If main effects were investigated based on a
limited number of fixed levels (e.g., 7 hours vs. 0 hours of vigorous exercise
per week), a disclaimer is necessary stating that the generality is limited to the
specific levels represented by the factor. To avoid the limitations of a fixed fac-
tor, contexts across which one intends to generalize should be considered as
random factors with many different levels from which a sample is being in-
vestigated to draw inferences about the whole (e.g., many different durations,
types, and intensities of physical exercise).

While a random effects model of contexts will be desirable in many general-
izability situations, there are exceptions. Sometimes, researchers deliberately
constrain their inferences to particular fixed levels on some factor and random
levels on some other factors. For instance, a new psychotherapeutic interven-
tion may rely on a highly standardized treatment manual, administered in con-
trolled inpatient hospital settings for a specific eating disorder (e.g., binge eat-
ing). Similarly, the effects of a new drug may be of interest at limited and fixed
dosages and for a carefully selected subset of persons suffering from a specific
illness.
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8.3 A FRAMEWORK FOR EMPIRICAL GENERALIZATIONS

The following framework relies on the work of Brunswik (1947), Campbell and
Stanley (1966), Cronbach (1982), and Cook (1990, 1993) on the validity of causal
inferences in field settings.

8.3.1 Representative Designs

Brunswik (1947) and Hammond (1948, 1951) were among the first psycholo-
gists to raise objections against studying macro-level behaviors with experi-
mental methods under laboratory constraints. Brunswik (1952) argued that
when studying behavior at a macro-level “. . . care must be exercised not to
interfere with naturally established mediation patterns.” (p. 26). Such an ap-
proach calls for research designs that are representative of the natural con-
ditions in which the behavior takes place, that is, designs which Brunswik
referred to as having situational representativeness, “naturalness, normalcy,
’closeness to life’ ” (Brunswik, 1952, p. 29). Clearly, at issue are designs with
ecological or situational validity.

For Hammond (1948, 1951) and Brunswik (1952), representative designs
lead to generalized statements if a reference class or universe has been speci-
fied from which situations are sampled and about which inferences are sought.
To achieve a representative design requires not only representative sampling
of individuals but also sampling the situational circumstances under which a
person functions outside of the research laboratory. This includes stimuli or
interventions, responses or outcomes, and settings.

8.3.2 Domains About Which Generalizations May Be Desired

Campbell and Stanley (1966), Cronbach (1982), and Cook and Campbell (1979)
have identified five entities about which generalizations may be desired. First
are persons or, more generally, the units (U) to which treatments have been
assigned. Units may consist of individual humans, animals, or cells as well as
larger aggregates such as families, schools, neighborhoods, or states. A sec-
ond entity is treatments (T), for which a specific operationalization was im-
plemented in a study (i.e., cause constructs). A third entity is outcomes (O)
of which specific operationalizations were used to measure effects of interest
(i.e., effect constructs). A fourth entity is settings (S), referring to the social
and physical environment in which the study takes place. A fifth entity is time
(Tm), indicating the historical context in which the study takes place1.

Each of these domains can involve universes at different levels of generality.
For instance, the domain of U may consist of U.S. residents 60 years and older

1Note that Cronbach subsumes time in his definition of setting, a distinction with minor influ-
ence for the discussion that follows. I will keep with Cook and Campbell’s (1979) distinction
to better reflect distinct generalizability questions with regard to the social/physical and his-
torical contexts.
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or the subset (i.e., sub-U) of residents living in California with annual house-
hold income between $20,000 and $30,000 who are registered as independent
voters. Similarly, the domain of T may consist of all types of vigorous physical
exercises or the subset (i.e., sub-T) of exercises involving stationary bicycles.

A domain may consist of a few fixed levels or an infinite number of ran-
dom levels. For instance, in some clinical trials of new drugs great efforts are
made to control (i.e., fix) as many components of a study as possible. Research
protocols are designed and their implementation is carefully monitored in dif-
ferent sites, prescribing in detail the specific characteristics of subjects to be re-
cruited, specific levels of drug dosages to be administered, specific end points
to be measured, and specific settings in which treatments are administered and
patients are monitored. The goal of these studies is to collect evidence about
a specific type of patients, specific dosage levels, specific outcomes, and in
closely controlled settings.

In other studies, the aim is to draw inferences about universes consisting of
large number of instances. In these situations, the researcher samples a subset
of instances to represent the entire domain. For instance, a new algebra cur-
riculum may be tested in public and private schools, with junior and senior
instructors, in rural, suburban, and urban areas to draw inferences about the
curriculum’s effectiveness across a wide variety of school and students.

8.3.3 Generalizability Questions

In their classic work on quasi-experimentation and the validity of causal in-
ferences in field settings, Cook and Campbell (1979) distinguish two major
generalizability questions. The first question concerns generalizations to well-
explicated target domains. This question is invoked when we ask whether a
particular sample of retired persons allows valid inferences about the target
population consisting of all retired persons. In Cronbach’s notation, this ques-
tion asks whether we can draw inferences from utos to UTOS where u, t, o, s
designate the samples of U, T, O, S realized in a particular study. These con-
cepts will be elaborated on later. The first question is most closely associated
with inductive probabilistic inferences from samples to populations.

The second question concerns generalizations across well-explicated subdo-
mains (i.e., inferences about sub-UTOS). This question is invoked when we
ask which different populations or subpopulations (e.g., rural vs. urban vs.
suburban; public vs. private; 8th grade vs. 9th grade vs. 10th grade) have been
affected by an intervention. The second question is most closely associated
with deductive inferences, in which the robustness of a general proposition is
investigated across different context conditions. In Cronbach’s notation, this
question asks whether we can draw inferences from utos to different subsets
of UTOS.

Cronbach argues that there is a third generalizability question, which is of
particular concern in applied areas of research. This question involves general-
izing from the specific samples and the universes they represent to novel universes not
yet studied. For instances, having found that co-payments for doctor’s visits
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reduce the number of unnecessary visits in San Diego, CA, will co-payments
have the same effect in Münster, Westphalia? In Cronbach’s notation, this
question concerns inferences from utos to *utos, inferences from the domain of
observation to the domain of application. The third generalizability question
is closely related to the transfer view of generalizability as it clearly invokes an
extrapolation from conditions in which a research finding was investigated to
related yet new and distinct conditions.

8.3.4 Justifying Empirical Generalizations

8.3.4.1 Complete Causal Explanation In the experimental tradition of the
social and behavioral sciences, generalizations are justified through complete
explanation, that is the complete understanding of the causal conditions and
mechanisms that bring out a phenomenon. The assumption behind this be-
lief is that when we understand how or why a phenomenon occurs, we can
recreate that phenomenon wherever and however its causal ingredients can be
brought together (Bhaskar, 1978). This is why causal explanation is often con-
sidered the “Holy Grail” of science and the scientific method the path leading
to it.

Take for instance the recent approval of thalidomide (alias Contergan) for
the treatment of uncontrolled blood vessel growth and severe immuno-modu-
lated diseases. In the 1950s, Chemie Grünenthal, a German pharmaceutical
company, developed a sedative called thalidomide so harmless to rodents that
an LD50 could not be established (i.e., lethal dose 50 is a measure of acute sin-
gle exposure toxicity; it indicates the dosage at which 50% of the animals die).
The causal mechanisms set in motion by thalidomide were not completely un-
derstood, a situation not uncommon even today in many popular drugs (e.g.,
aspirin, ibuprofen). In the late 1950s and early 1960s, at least 10,000 pregnant
women in 46 countries took the sedative in their first trimester, eventually giv-
ing birth to infants with missing or stunted limbs. In the early 1960s McBride
(1961), Lenz (1962), and Pfeiffer and Kosenow (1962) reported the association
between maternal thalidomide usage and limb defects in babies, leading to a
world-wide ban. It was not until 30 years later, that an explanation was found
for how this potent human teratogen caused missing and stunted limbs.

D’Amato, Loughnan, Flynn, and Folkman (1994) discovered that thalidomi-
de inhibits angiogenesis (i.e., blood vessel growth) in rabbit corneas, changes
similar to those found in the deformed limb bud of thalidomide-exposed em-
bryos. It is the ability to inhibit angiogenesis that most likely caused limb
defects in babies after maternal thalidomide usage. The causal understanding
of how thalidomide works is now being applied to treat conditions character-
ized by uncontrolled angiogenesis, including diabetic retinopathy and macu-
lar degeneration in populations not at risk of becoming pregnant (e.g., Verheul,
Panigrahy, Yuan, & D’Amato, 1999).

8.3.4.2 Sampling Theory In the observational and correlational traditions
of the social and behavioral sciences, causal generalizations are often justi-
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fied through the correspondence between samples (or cases, instances, exem-
plars, etc.) and the populations (or universes, constructs, categories, classes,
etc.) they are meant to represent. The assumption behind this belief is that
causal relationships must be easiest to reproduce under the same or simi-
lar circumstances they were originally demonstrated. Carefully selecting the
specific conditions under which causal effects are demonstrated (e.g., subject
characteristics, outcome measures) may allow to approximate important larger
classes in which the causal effects hold.

To justify inferences from samples to populations, statistical sampling the-
ory has long played a crucial role in survey research and quality control in in-
dustry (Kish, 1965). The crucial element in sampling theory involves selecting
units (e.g., persons, hospitals, observers, therapists) with known probability
from some clearly designated universe so as to match the sample and popula-
tion distributions on all (measured and unmeasured) attributes within known
limits of sampling error. That is, if one can demonstrate that co-payments for
doctor’s visits causally reduce unnecessary visits in a random sample of doc-
tors’ offices belonging to a particular HMO, the effect in the entire population
of HMO subscribers can be estimated.

Note that valid causal explanations are neither a necessary nor a sufficient
condition for causal generalizations based on sampling theory. Instead, the
causal generalizations based on sampling theory may be a particularly useful
tool when complete causal explanations are not available. Similarly, causal ex-
planations may be achieved based on careful experimentation on a few speci-
mens and under highly controlled conditions with little consideration given to
sampling theory. For instance, probability sampling did not play a significant
role in the original development of thalidomide as a sedative, in the discovery
of its devastating side effects, or in the recent approval for new medical indica-
tions. However, a case could be made that the thalidomide tragedy could have
been reduced had more careful attention been given to sampling principles, in-
cluding the definition of the universes of persons and outcomes about which
inferences are desired and the selection of exemplars from these universes.

8.3.4.3 Campbell’s Models for Increasing External Validity Campbell and
Stanley (1966) distinguished internal validity from external validity to high-
light two distinct inferences about the validity of experiments in field settings.
Internal validity refers to the approximate validity with which we infer that
the relationship between the manipulated cause and the measured effect is
causal. External validity refers to inferences about the approximate validity
with which we can infer that the presumed causal relationship can be general-
ized to and across alternate measures of cause and effect, and across different
persons, settings, and times.

Campbell and Stanley (1966) and later Cook and Campbell (1979) acknowl-
edge that internal validity by itself is concerned only with the specific circum-
stances of how a presumed cause was manipulated and how a presumed effect
was measured. Clearly, external validity is necessary before we can expect to
replicate a causal relationship in a different sample of persons, with different
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manipulations of the presumed cause, different operationalizations of the out-
come, or in different settings.

To strengthen external validity in an individual study requires implement-
ing strategies to better represent classes of persons, treatments, outcomes, or
settings. If feasible, such strategies include random sampling (e.g., drawing
a sample of affectively valenced words from a list of all such words in the
English language), impressionistic samples of modal instances (e.g., selecting
prototypical public and private schools from rural, urban, and suburban ar-
eas), or the deliberate sampling for heterogeneity (e.g., recruit diverse partici-
pants with respect to gender, age, income, ethnicity).

While some of these strategies may work in some studies and for some of
the entities about which generalizations are desired, they are unlikely to work
in most studies and for all generalizations of interest. With few exceptions, in-
dividual studies are often constrained by the unique selection of persons, set-
tings, and times, rendering it impossible to draw generalized inferences about
larger classes. In many studies, researchers do not have adequate access, bud-
gets, or time to carefully select probability samples from target universes – if
meaningful sampling frames for such target populations exist at all. Instead,
researchers often select fixed levels from these populations, limiting inferences
to such fixed instances. Or, researchers rely on convenience samples, in which
cases inferences about a target populations can not be made based on sampling
theory. Clearly, external validity is the Achilles’ Heal of causal inferences based
on an individual study.

8.3.4.4 Cronbach’s Model-Based Reasoning for Justifying Internal and Exter-
nal Inferences Cronbach (1982; Cronbach, Nageswari, & Gleser, 1963; Cron-
bach, Gleser, Nanda, & Rajaratnam, 1972) made two significant contributions
to our understanding of generalizability. The first concerns the dependability
of observations known in the literature on measurement theory as generaliz-
ability theory or G-Theory. G-Theory provides a framework for designing and
investigating reliable observations by reinterpreting classical reliability theory
(Nunnally & Bernstein, 1994) as a theory regarding the adequacy with which
one can generalize from a sample of observations to a universe of admissible
observations. The universe of admissible observations consists of observations
that are interchangeable for the purposes of making a measurement decision.
Observations are “dependable” or “generalizable” if they permit accurate in-
ferences about the universe of admissible observations.

Cronbach’s second contribution concerns the generalizability of program
evaluations. Similar to G-theory, Cronbach defines a domain of admissible op-
erations about which an investigator asks questions and would like to draw
inferences. This domain consists of subjects or units (U), interventions or treat-
ments (T), procedures for collecting data on outcomes (O), and the historical
and cultural conditions or settings (S). To draw inferences about UTOS, an in-
vestigator collects data on instances of the various domains, referred to with
lower case letters u, t, and o. Because researchers have little control over the
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social and historical context of their research, they can rarely sample instances
from S.

According to Cronbach’s model, internal inferences are involved when mak-
ing statements about UTOS on the basis of observations on utoS. Questions
about the trustworthiness of these inferences are questions about internal va-
lidity. Note that Cronbach’s internal validity is identical to Campbell’s exter-
nal validity when generalizations to a particular universe are of interest.

In addition to statements about UTOS, investigators and as consumers of re-
search may be interested in domains that are different from the original. Cron-
bach calls this the domain of application and refers to it as *UTOS. The second
generalizability question thus concerns inferences from utos to *UTOS. State-
ments about *UTOS involve external inferences or extrapolations if we would
like to draw inferences about subjects populations, treatments, or outcomes
not included in the original study. According to Cronbach’s model, questions
about the trustworthiness of external inferences are questions about external
validity. Note that Cronbach’s external validity concerns a generalizability
question that Campbell did not consider in his model of external validity.

To justify internal and external generalizations, that is inferences from utos
to UTOS or and from utos to *UTOS, Cronbach proposes reasoning by means
of models. To justify internal inferences, models are constructed that simu-
late specific research problem. Models may be descriptive, explanatory, physi-
cal, mathematical, or logical, including the blueprints of an architect, the scale
model of an engineer, the micromediational model of a microbiologist, for the
mathematical model of a survey researcher. Conclusions are drawn in the
model and then translated to the real world. Whether conclusions about UTOS
are trustworthy depends on the extent to which the model is complete and
credible.

Cronbach (1982) describes inferences about *UTOS “as a multi-track, if not
trackless process” (Cronbach, 1982, p. 166) because different types of evidence
and reasoning have to be combined. Any conclusion about *UTOS must be in-
formed by the differences and similarities between *UTOS and UTOS. Clearly,
the more *UTOS and UTOS differ the more has to be filled in to bridge the gap
through complementary evidence and credible models to permit trustworthy
projections. In general, external inferences about *UTOS are associated with
considerably more uncertainty than statements about UTOS.

Cronbach’s model-based justifications of generalized inferences include and
go beyond the traditional justifications provided by sampling theory or causal
explanation. Models may include the complex sets of mathematical equations
used by economists to project the effect of increasing oil prices on inflation
and unemployment rates. They may also involve informal heuristic models in
which many of the premises may not be explicit and in which judgment and
formal reasoning have to be combined. Regardless of the model, the credibility
of the generalized inference rests on the extent to which the relevant research
community accepts the assumptions it is build on. As Cronbach points out, the
acceptance of generalized conclusions rests as much on social psychological
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processes as it rests on the sheer strength of the empirical evidence with which
different parts of a model can be supported.

8.3.4.5 Cook’s Five Principles for Strengthening Causal Generalizations
Building on Campbell and Cronbach’s work, Cook (1990, 1993) set out to ex-
amine how researchers have achieved generalizable causal relationships in the
absence of strong causal models and probability sampling. While Cronbach
provides a theoretical account of how generalizable claims are substantiated,
Cook proposes five principles that researchers use to strengthen claims about
the generalizability of causal claims. Cook’s work is particularly interesting
because it points to strategies and conditions that can be applied in planning
individual research studies and be helpful when synthesizing findings from
many individual studies.

The Principle of Proximal Similarity. Campbell (1969) introduced the notion of
proximal similarity in the context of construct validity. In the context of gen-
eralizability, Cook (1990) expands its definition to refer to the correspondence
in manifest descriptive attributes between a class of persons, settings, causes,
outcomes, and times about which generalizations are sought and the instances
based on which empirical evidence about a causal relationship are available.
The similarity is proximal because samples and universes match in observ-
able characteristics and not necessarily in any of the more latent explanatory
components that link a cause to an effect (Cook, 1990). Proximal similarity is
clearly in the spirit of Brunswik’s (1956) “situational representativeness”.

Demonstrating proximal similarity to the critical standards of the research
community is the first necessary condition for generalizing to target universes
(i.e., first generalizability question). Proximal similarity is achieved by expli-
cating and then matching the multidimensional content of the classes and in-
stances involved in the generalization. But matching cannot be achieved on
all components. Therefore, matching is most importantly achieved with those
components that theoretical analysis suggests are central to the construct de-
scription.

Cronbach’s notion of a domain of “admissible observations” may also be
used to argue for proximal similarity. The idea is that a convenience sample
of persons, treatments, and so forth may be considered representative if the
instances included in the sample and the instances not included in the sample
are equally acceptable or exchangeable. Shavelson and Webb (1981) even ar-
gue that under these conditions a sample should be considered random. What
defines a domain of admissible or exchangeable instances depends on the set
characteristics a researcher considers substantive irrelevant (i.e., exchangeable)
and the set of characteristics deemed substantively relevant (i.e., prototypical).
The latter defines the necessary conditions and the former the unnecessary
(i.e., irrelevant) conditions of group membership.

The Principle of Heterogeneous Irrelevancies. A causal relationship will be eas-
ier to generalize if it has been replicated in multiple studies especially if these
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replications involved different research teams, multiple populations, in multi-
ple settings, with multiple implementations of treatments, and multiple out-
come measures. Of interest are replications that are proximally similar with
respect to conceptually relevant components but differ in all conceptually irrel-
evant ones. The principle of heterogeneous irrelevancies can strengthen causal
generalization by examining whether the cause-effect relationship under in-
vestigation is robust or contingent upon a particular irrelevancy or set of irrel-
evancies. This is exactly what Cronbach et al. (1972) argue when generalizing
from a sample of observations to a universe of admissible observations. In
synthesizing findings across irrelevancies, we ask whether the irrelevancies
make a difference and whether the causal relationship is obtained despite the
irrelevancies.

The principle of heterogeneous irrelevancies provides a second necessary
condition for generalizing to target universes (i.e., first generalizability ques-
tion). Findings regarding the benefits of physical exercise in the elderly become
trustworthier if they are robust across different type of exercise, different pop-
ulations of elderly, for different levels of functioning, in different settings. As
part of the new drug approval process, the FDA requires preclinical trials to
involve at least two animal species to make heterogeneous the presumably ir-
relevant aspects of the genetic make-up (U.S. Food and Drug Administration,
1998). Clinical trials of new drugs have to be studied in different age and gen-
der groups to determine the robustness (or lack thereof) across these groups.
Perhaps the most elaborate application of this principle can be found in meta-
analyses of psychotherapeutic interventions, demonstrating the robustness of
effects (in causal direction) across a wide variety of different irrelevant charac-
teristics of the researchers, the research design, the intervention, patients, and
so forth.

The Principle of Discriminant Validity. The principle of discriminant validity
calls for investigations that disentangle the many constituent components of
a setting, cause, population, outcome, and time period, to determine the ex-
tent to which these components are necessary, sufficient, or irrelevant to the
causal relationship under investigation. Through experimental manipulation
and observational studies, the goal is to investigate treatment effects in sub-
populations, in different settings, with different treatment components, and
across different outcome constructs to identify the causal efficacious conditions
and discriminate them from related though inefficacious conditions.

This approach does not help, however, if the variations in subpopulations,
settings, and so forth are limited such that they all share a common bias. For in-
stance, when all subjects are male or all outcome measures rely on self-report,
treatment effects are confounded with gender and assessment method. To ap-
ply the principle of discriminant validity, treatment effects have to be studied
across populations, treatments, outcomes, and settings with many levels, rep-
resenting the range across which generalizations are desired.

Moderator effects play an important role in characterizing the boundaries
of generalizability and identifying the conditions under which the direction or
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strength of a relationship may vary. If this moderator involved a hypothesized
substantive irrelevancies, its status now changes from that of a substantive rel-
evancies and attempts should be made to better understand the role of this
theory-relevant construct. Investigations of moderator effects are closely asso-
ciated with the second generalizability question when generalizations across
different UTOS to sub-UTOS are of interest.

Discriminant validity is a necessary condition for generalizing across uni-
verses. In combination with proximal similarity and heterogeneous irrelevan-
cies, discriminant validity strengthens generalizations by identifying the lim-
its of generalizability and the conditions under which effect changes in sign or
magnitude. The principle of discriminant validity is invoked when researchers
study dose-response relationships, examine treatment effects across different
populations, or distinguish target outcome from side effects.

The Principle of Causal Explanation. While causal relationships are concerned
with establishing whether a causal link exists, causal explanations are con-
cerned with identifying how or why a causal connection occurs. They involve
specifying the full set of conditions promoting the cause-effect connection,
which often entails identifying the mediational forces set in motion when the
treatment varies and without which the effect would not occur.

Causal explanations strengthen empirical generalizations. However, they
are not sufficient nor are they necessary conditions for generalizations. Cook
(1990, 1993) concludes that the role of causal explanations for justifying gener-
alizations may be overrated. He argues that given the paucity of strong causal
explanations and the nature of many problems investigated in the behavioral
sciences, it is often unrealistic – if not unethical – to expect and wait for com-
plete causal explanations before attempts are made at causal generalizations.
For instance, understanding the micro-mediating processes of a new drug on
a molecular level has great significance for making predictions about potential
effects in humans. However, it is neither a necessary nor a sufficient condi-
tion for the FDA to consider a drug safe and effective. The FDA approval
rests primarily on the body of empirical evidence regarding the drug’s safety
and effectiveness for a particular indication in particular populations and at
particular dosage levels. At the same time, a complete causal explanation for
the operation of a drug is not sufficient to justify that it is safe and effective
for marketing. The recent FDA approval of thalidomide was only given after
comprehensive clinical trials despite the fact that the causal mediating mecha-
nisms are quite well understood.

The Principle of Empirical Interpolation and Extrapolation. Populations, treatments,
outcomes, settings, and times can vary along many different dimensions. Some
of these dimensions are quantitative, in which case special opportunities arise
for justifying certain generalizations. Examples for such quantitative dimen-
sions are age, income, weight, family size, treatment dosage or duration, and
quantitative outcomes. If we consider these dimensions as fixed factors and
collect data at strategically spaced levels (Abelson, 1995), we create the oppor-
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tunity to describe the quantitative relation between effect and dose, duration,
age, income, and so forth. Assuming valid characterizations of these quan-
titative relationships, we can derive interpolations and extrapolations about
levels of these factors that have not yet been studied. This form of empirical
extrapolation and interpolation may strengthen inferences about novel condi-
tions for which no empirical data are available. Thus, empirical interpolations
and extrapolations are at the center of the third generalizability question (i.e.,
generalizations to novel universes).

Interpolation is involved when characteristics can be ordered along a quan-
titative dimension (e.g., dosage) and when inferences about this characteristic
are desired at a level that falls between two known levels. For instance, this
is the case when we infer the effects of a drug dosage at 450 mg based on in-
dividual studies of the effects at 200, 300, 400, 500, and 600 mg. The narrower
the gap and the more data points are available below and above the gap to be
interpolated, the more confident are we about our interpolation because the
dose-effect relationship is less likely to change abruptly over the interpolated
gap.

A similar rationale holds for extrapolations, where we have studied treat-
ment effects at levels 5, 6, 7, 8, 9, 10 and are interested in generalizing to treat-
ment effects at levels 2 and 4, or 12 and 20. Again, the shorter the gap across
which we extrapolate and the wider the range of levels across which we stud-
ied the relationship, the more confident we are in the extrapolation inferences.
Moreover, the wider the range of levels across which we have studied the rela-
tionship, the more confident we are that we have identified the proper math-
ematical model to make the extrapolation (e.g., linear or logarithmic). The
shorter the extrapolation leap, the less likely it is that the relationship between
level and effect does not change abruptly.

The extrapolation inference will always be weaker than the interpolation
inference because we have collected evidence regarding the nature of the rela-
tionship from only one direction. From this perspective, interpolations can be
sought of as two extrapolations that can be pooled to yield a better estimate.

Interpolations and extrapolations are model-based predictions, whose va-
lidity hinges on the assumption that the model holds in between the levels to
be interpolated and at the levels to be extrapolated. There are many examples
in the natural and behavioral sciences where such assumptions are patently
false and relationships change abruptly or take on new qualitative forms. For
instance, the physical properties of water change dramatically at specific tem-
peratures. Many pharmaceutical compounds have beneficial effects across a
certain range of dosage but may have no effect below and lethal effects above
that range. Similarly, in certain problem solving tasks motivation and perfor-
mance are positively related up to a point at which increases in motivation lead
to a decline in performance.
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8.4 COOK’S PRINCIPLES APPLIED TO META-ANALYSIS

As a tool for “communal testing of generality” (Abelson, 1995), meta-analysis
holds great promise for justifying generalized inferences regarding all three
generalizability questions. Matt and Cook (1994) have argued that the gener-
alizability of meta-analytic inferences is particularly justified when

a) the universes about which generalizations are desired are well matched
by the instances represented in individual studies (i.e., proximal similar-
ity),

b) individual studies share substantively relevant features but are hetero-
geneous with respect to irrelevant features (i.e., heterogeneous irrelevan-
cies), and

c) studies can be disaggregated to investigate substantively meaningful
subclasses (i.e., discriminant validity).

8.4.1 Meta-Analysis and the Principle of Proximal Similarity

Psychotherapy outcome studies are perhaps the best reviewed body of empir-
ical research using meta-analytic methods (Matt & Navarro, 1997). Following
Smith and Glass’ (1977) initial meta-analysis of about 500 psychotherapy out-
come studies (see also Smith, Glass, & Miller, 1980), more than 50 additional
meta-analyses had been conducted by 1992, with many more since then. Glass
and colleagues set out to investigate whether psychotherapy in general is ben-
eficial. In the framework presented above, this question implies the desire
to generalize to the universe of interventions labeled psychotherapy (T), the
universe of persons receiving treatment (U), the universe of settings in which
the treatment takes place (S), the universe of outcomes used to assess effects
(O), and the historical period during which psychotherapy has been practiced
(Tm). Smith and Glass (1977) estimated that psychotherapy treatment group
patients did about eight-tenths of a standard deviation better on the outcome
variables than did patients in the control groups. Overall, the empirical gener-
alization appears warranted that psychotherapy works.

How can such a general conclusion be justified? The justification begins
with investigating the proximal similarity between target universes and in-
stances included in the meta-analysis. Evidence has to be generated that the
broad universes of UTOSTm were well represented by samples included in
the meta-analysis. The goal is not an exact match or probabilistic representa-
tion as sampling theory suggests. Instead, the goal is to achieve an approxi-
mate match on prototypical components with multiple operational represen-
tations. Or, in Cronbach’s (1982) terms, one has to argue that the instances of
UTOSTm included in the meta-analyses are exchangeable with the instances
not included. In Smith and Glass’ meta-analysis (1977), “psychotherapy” in-
cluded a variety of orientations and techniques such as psychodynamic, be-
havioral, cognitive, interpersonal, hypnosis, bibliotherapy, eclectic, and others.
Similarly, outcomes included a multitude of measures, ranging from global in-
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dices of adjustment to frequency counts of a specific symptom and from stan-
dard trait inventories to ad hoc therapist ratings. It appeared that key proto-
typical characteristics of “psychotherapy” were represented in the sample of
studies included in Smith and Glass’ meta-analysis.

8.4.2 Meta-Analysis and the Principle of Heterogeneous Irrelevancies

Once a case has been made for proximal similarity, meta-analysts have to gen-
erate evidence that a causal connection is not completely confounded with any
specific characteristic of u, t, o, s, tm. This calls for the application of the prin-
ciple of heterogeneous irrelevancies. The greater the number of irrelevancies
across which primary studies differ, the greater the chance that a causal con-
nection is not completely confounded. The assumption that substantive ir-
relevancies are heterogeneous should not be made lightly. It has to be based
on evidence that mono-operation biases are not present across the domains of
which generalizations are desired.

Lack of heterogeneity was not a problem in the Smith and Glass meta-
analyses. Smith and Glass coded primary studies to collect data on many
substantively relevant and irrelevant study characteristics, including year and
source of publication, professional affiliation of authors, age, gender, socio-
economic status of participants, type and reactivity of outcome measures, type
of control conditions, sample size, duration of therapy, experience of therapist,
recruitment of subjects, and setting in which therapy took place.

Overall, the heterogeneity in the sample of studies appeared to match the
heterogeneity of the domain about which inferences are desired. That is, psy-
chotherapy outcome studies are conducted by many different research teams,
researchers with training in different disciplines and with different profes-
sional affiliations. Researchers use different approaches for recruiting subjects,
implementing treatments, and measuring outcomes. Similarly, psychother-
apy is conducted across a wide range of settings, including private practices,
schools, community mental health centers, and university-affiliated hospitals.

Within specific subclasses of treatments, heterogeneity was reduced, giving
rise to potential mono-operation biases. For instance, some of the subclasses
of interventions relied more heavily on small sample sizes, student volunteers,
school settings, short therapies, and certain types of outcome measures. Hete-
rogeneity in studies is welcomed if it matches the heterogeneity of the domain
about which inferences are desired. However, any restriction would limit con-
clusions regarding the generalizability, as was the case with certain subclasses
of psychotherapeutic interventions (Matt & Navarro, 1997).

8.4.3 Meta-Analysis and the Principle of Discriminant Validity

While proximal similarity and heterogeneous irrelevancies are at the center of
generalizations to target domains (i.e., first generalizability question), the prin-
ciple of discriminant validity plays a key role when generalizing across subdo-
mains. Rather than lumping heterogeneous studies together, meta-analysts
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can test whether the heterogeneity in treatment effects is larger than expected
due to chance alone (Hedges & Olkin, 1985). Equally important is the deci-
sion whether to rely on a fixed, random, or conditional random effects model
(Hedges, 1994; Hedges & Vevea, 1998). This decision is influenced by whether
a researcher is interested in drawing inferences about a few clearly defined
(i.e., fixed) subclasses of a domain or to the entire domain consisting of a large
number of admissible parts.

Depending on the statistical model chosen and sample size permitting, het-
erogeneous domains of U, T, O, S, Tm may be disaggregated to identify more
homogeneous subdomains. This starts the exploration of potential interaction
effects, that is, substantively relevant and substantively irrelevant characteris-
tics that moderate the size or direction of treatment effects. For instance, such
analyses may indicate that different types of interventions or different outcome
constructs (e.g., a substantively relevant heterogeneity) are associated with dif-
ferent effect sizes but that treatment effects are robust with respect to the type
of setting or subject recruitment.

The principle of discriminant validity is applied in meta-analyses when
studies are stratified to investigate moderator conditions (e.g., gender, treat-
ment types) or to distinguish important cognate constructs from each other
(e.g., functional disability, life satisfaction, self-esteem, symptoms, adjustment).
As mentioned above, Smith and Glass’ meta-analysis spawned a large number
of additional meta-analyses on psychotherapy effects (Matt & Navarro, 1997).
The purpose of these additional meta-analyses was to explore whether psy-
chotherapy effects generalize across different types of interventions, outcomes,
settings, and populations. While there is evidence that certain conditions mod-
erate the magnitude of psychotherapy effects, none of the meta-analyses iden-
tified conditions associated with harmful effects (Matt & Navarro, 1997). That
is, the beneficial effects of psychotherapy generalize across wide range disor-
ders, types of interventions, outcomes, settings, and time periods.

The principle of discriminant validity was also applied in meta-analytic in-
vestigations of the placebo effect in psychotherapy (Matt & Navarro, 1997). At
issue is the question whether a treatment group, which is presumed to be re-
ceiving psychotherapy, is actually receiving both psychotherapy and a host of
nonspecific placebo interventions. The latter include, for example, the mere
attention given by a caring person, the expectation of improvement brought
about simply by being seen by a mental health professional with credentials
for dealing with psychological problems, or by the simple fact of talking with
another human being about the problem. Such placebo effects have proven to
be so powerful in medicine that they need to be controlled by using double-
blind designs and introducing placebo control groups.

To examine the role of placebo effects in psychotherapy, at least eight meta-
analyses compared experimental studies in which patients in psychotherapy
were compared against patients who received placebo treatment that did not
include the presumed active therapy ingredient (Bowers & Clum, 1988; Casey
& Berman, 1985; Clum, Clum, & Surls, 1993; Kazdin, Bass, Ayers, & Rodgers,
1990; Landman & Dawes, 1982; Lyons & Woods, 1991; Matheny, Aycock, Pugh,
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Curlette, & Silva, 1986; Miller & Berman, 1983). Pooling estimates across these
meta-analyses suggest that about 20% of the total psychotherapy effect could
indeed be attributed to nonspecific treatment components (i.e., placebo effect;
d = .18). However, the remaining 80% of the total effect can be attributed to
the unique treatment components of psychotherapy (d = .68). Thus, the total
psychotherapy effect appears to be a combination of specific and nonspecific
treatment effects (dTotal = .68 + .14 = .82).

8.4.4 Meta-Analysis and the Principle of Empirical Interpolation and
Extrapolation

Empirical interpolation and extrapolation are most closely linked to the third
generalizability question, in which inferences about novel universes are de-
sired. Because individual studies are often limited in the range of u, t, o, s that
are included, combining different studies may be of great benefit if each study
investigates a different level of a quantitative dimension.

It is common in meta-analyses to model dose-response relationships where
different studies contribute effect estimates at different dosages. Similarly,
meta-analyses frequently examine the stability of treatment effects over time
by combining data from studies in which effects were assessment at different
time intervals after treatment ended. Such models may then be used to inter-
polate or extrapolate effects at levels not studied.

Recently, Shadish, Matt, Navarro, and Phillips (2000) applied an extrapola-
tion strategy in a meta-analysis of psychotherapy outcomes in “the lab” (i.e.,
efficacy conditions) versus “the clinic” (i.e., effectiveness conditions). Briefly
put, the “lab vs. clinic” debate arose because the vast majority of psychother-
apy outcome studies are conducted in ways that are not very representative of
the conditions under which therapy is actually conducted by practicing ther-
apists. For example, lab studies often are conducted at universities with clin-
ically inexperienced graduate student therapists who are trained intensively
and specifically in a single treatment that is then applied uniformly to a highly
selected patient population with a narrow range of problems that the treat-
ment is deliberately designed to help. Such therapy is quite different from
the real world of clinic therapy in which experienced therapists work in busy
clinics giving an eclectic array of therapy to patients with diverse problems.
If this criticism is true, then there might be serious doubts about whether the
results of psychotherapy meta-analyses generalize to clinically representative
conditions. Indeed, in a preliminary examination of this issue limited to child
psychotherapy, Weisz, Weiss, and Donenberg (1992) concluded that the very
few studies of clinic therapy that they could locate showed little or no effects
compared to no treatment control. Shadish et al. (1997) revisited the same is-
sue, asking the authors of published meta-analyses to identify studies in their
data bases that were conducted outside of research labs. They found that the
effects of studies approximating clinical practice were about the same as those
conducted in research labs. However, like Weisz et al. (1992), Shadish et al.
(1997) found very few studies of clinic therapy, and concluded that the gener-
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alizability of psychotherapy meta-analysis results to clinically representative
settings was a topic that still needed far more study.

Recently, Shadish et al. (2000) reinvestigated this issue and conducted a new
meta-analysis of 90 psychotherapy outcome studies, differing in the degree to
which they approximate prototypical conditions of clinical practice. They con-
cluded that therapy effects do not deteriorate over the range of clinical repre-
sentativeness that was present in the 90 outcomes studies. Shadish et al. (2000)
also found that effects increase with larger dose, and when outcome measures
are specific to treatment. Thus, clinic therapies may be able to produce larger
effects by providing longer and more intensive treatments. Moreover, some
clinically representative studies used self-selected treatment clients who were
more distressed than available controls, and these quasi-experiments under-
estimated therapy effects. Given the range of clinical representativeness in
existing outcome studies, Shadish et al. (2000) extrapolated effects of an ideal
study of clinically representative therapy. This projection suggests that effects
are similar to those reported in past meta-analyses of studies conducted in re-
search settings.

8.4.5 Meta-Analysis and the Principle of Causal Explanation

There are two major strategies with which causal explanation may strengthen
generalized inferences based on meta-analysis. The first strategy involves de-
composing domains to isolate those components that are involved in the gen-
eration and moderation of a treatment effect. Meta-analyses contribute to
causal explanation to the extent that the studies allow meaningful decompo-
sition of treatments, outcomes, persons, or settings. For instance, decompos-
ing treatment effects in specific and nonspecific components contributes to the
causal explanation of how psychotherapy effects come about. Similarly, differ-
entiating between different settings in which services are delivered (i.e. clinic
vs. lab), between levels of therapist experience and training, between types
and modalities of psychotherapy, or between effects on target behaviors and
peripheral symptoms contribute to a better understanding of the causal effects
of the intervention.

A second strategy involves identifying the causal mediating processes that
are set in motion by a treatment. Although there is nothing in theory that
would prevent meta-analyses to strengthen inferences about causal mediat-
ing processes, such contributions are unlikely to be made routinely. The rea-
son for this is that our best explanatory models are typically phrased at levels
far below that of a meta-analysis aggregating across studies. For psychother-
apy this may involve theories of behavior change at the level of an individual
person or family. For meta-analyses to synthesize studies of micro-mediating
processes at that level, theories must have reached a level of maturity and con-
sensus such that multiple studies of the same theory and of the same micro-
mediating processes are available. In many disciplines within the social and
behavioral sciences, researchers tend to pursue different causal explanations
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and measure different explanatory processes, providing little opportunity to
accumulate multiple studies from different research groups.

There are some more mundane constraints for meta-analyses of micro-me-
diating processes. There is the paucity of detail about treatment components
in many publications. Unless additional detail can be obtained by contacting
the original researchers, a meta-analysis can often contribute very little to fur-
ther causal explanation at the level of micro-mediating processes. There is also
a considerable amount of selective reporting that takes place when publish-
ing study findings. Thus, a study may highlight the significant contribution
of some micro-mediating processes but fail to report the nonsignificant contri-
bution of others. Such a reporting bias (Matt & Cook, 1994) favors Type I er-
rors and limits generalizability of meta-analytic conclusions. Finally, reported
methods often reflect what was planned rather than what was achieved, in
which case meta-analysts are in a poor position to accurately describe the con-
ditions under which a particular process was observed. There are a few no-
table exceptions in behavioral science meta-analyses (e.g., Harris & Rosenthal,
1984; Becker, 1992; Devine, 1992; Shadish, 1992) and there may be more in the
natural sciences where theories have reached more mature levels.

8.5 CONDITIONS THAT FACILITATE GENERALIZED
CAUSAL INFERENCES

Generalizations based on single studies are usually weak. This is the case be-
cause an individual study can only do so much to make heterogeneous the
substantive irrelevancies and explore potentially interacting moderator condi-
tions. At the same time, the fact that many studies have been conducted on a
particular topic does not guarantee valid empirical generalizations. What fol-
lows is an outline of some of the conditions that promote generalizable causal
inferences.

8.5.1 Individual Programs of Research

Programs of research are collections of multiple connected studies conducted
by one or more researchers or research groups on a particular research ques-
tion or family of questions. Studies conducted as part of a research program
play a crucial role in generating generalizable knowledge, particularly if they
involve different research designs, different populations, interventions, mea-
sures, and settings. Multiple studies generated by such research programs
facilitate the generalization of findings by probing the robustness of causal re-
lationships in the face of substantively irrelevant aspects, by identifying the
substantive factors that moderate an effect, and by elaborating explanatory
processes. They provide evidence based on which interpolations and extrapo-
lations can be based and the proximal similarity between sample and universes
can be justified.
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8.5.2 Integrative Reviews

Different from individual programs of research, integrative reviews involve
collections of primary studies that are not necessarily well connected or orches-
trated by a network of researchers. Instead, such studies often cover many dif-
ferent research programs, published over many decades, by researchers from
different countries on different continents, subscribing to different research
paradigms. While integrative reviews are less likely to advance causal expla-
nations – a particular strength of individual research programs – their ma-
jor contribution is likely to come from exploring heterogeneous irrelevancies
across the large diversity of populations, outcomes, interventions, historical
and cultural contexts, and so forth. Because integrative reviews are likely to
involve large numbers and diverse characteristics, they provide a particularly
good opportunity to explore the robustness of a causal relationship, to inves-
tigate factors that may moderate its direction or size, and to interpolate and
extrapolate to new domains.

While meta-analyses have many potential benefits for facilitating general-
ized inferences, they cannot provide a panacea for generalization questions.
As is the case with quasi-experimental designs of primary studies, the non-
experimental nature of meta-analyses makes it necessary to carefully examine
and rule out plausible alternative explanations to claims of causal generaliza-
tion (Matt & Cook, 1994).

8.5.3 Critical Multiplism

Focused research programs and integrative reviews will provide little evidence
to support causal generalizations if individual studies rely on the same sub-
ject populations, recruitment strategies, interventions, measures, and settings.
Such shared research design and interventions characteristics are likely to pro-
duce the same method biases masquerading and confounding underlying cau-
sal effects. Synthesizing individual studies that share the same biases yields
biased meta-analytic findings, leaving the meta-analytic evidence of little use
to support any of the principles discussed above.

To provide a rich foundation for causal generalization, critical multiplist
methods should be applied whenever possible at the level of the individual
study, the focused research program, or the integrative review (Cook, 1982;
Shadish, 1993). To mention a few, such methods call for the investigation of
multiple methods to assess outcome, multiple settings to investigate interven-
tions, several smaller studies rather than a single large study, multiple subject
population, multiple research groups, and so forth.

8.5.4 Public Debates

By their nature, causal generalizations are at the center of many public pol-
icy debates. Such debates play a crucial role in forcing out hidden assump-
tions and assuring that important stakeholders have been taken into account.
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Because of public debates, new sources of bias or important new contextual
conditions may be discovered. Public debate will draw attention to the per-
sonal and public costs and benefits of more stringent or liberal policies. In
addition, public debates help establish the extent to which more liberal or
more conservative generalizations may be implemented. In the case of Cali-
fornia’s public policy regarding second-hand smoke exposure, public debates
(including a public referendum) led to the adoption of a more liberal general-
ization regarding the health effects of low-level second-hand smoke exposure.
In this instance, the public health benefits of “overgeneralizing” (i.e., second-
hand smoke exposure is toxic at any level) were found to outweigh the risk
of policies mandating ventilation systems to reduce second-hand smoke expo-
sure levels even though such harsher policies interfere with the civil rights of
smokers.

8.6 CONCLUSIONS

Rarely – if ever – do researchers and consumers of research believe that find-
ings apply only to the specific circumstances of a specific study. Instead, we
believe – or behave as if – findings apply to larger domains of persons, in-
terventions, outcomes, settings, and times than were included in a study. At
issue are three types of empirical generalizations with respect to persons, treat-
ments, outcome, settings, and times. The first type of generalization involves
inferences to target universe based on specific samples, a form of inductive
empirical generalizations. The second involves inferences across target uni-
verses or across sub-universes, a form of deductive empirical generalizations.
The third involves generalized inferences to novel universes, closely related to
empirical interpolation and extrapolation.

Empirical generalizations are best achieved through the synthesis of multi-
ple studies, conducted by many research teams, with different populations, in
different settings, with multiple operationalizations of interventions and out-
comes. One form of research synthesis, meta-analysis, has particularly great
promise to facilitate generalized inferences. Meta-analysis provides no short-
cuts or guarantees for generalizations. However, it does provide research de-
sign and analytical tools to conduct principled investigations of generalizabil-
ity claims and increases the likelihood of better inferences compared to indi-
vidual studies.
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Summary

Meta-analysis represents an advanced methodological approach to the
(quantitative) synthesis of different studies within a research field. How-
ever, meta-analytical integration is mostly not pursued further after sev-
eral moderators have been identified that are responsible for much of the
heterogeneity of results across primary research. In this chapter, the ne-
cessity of completing a meta-analytical integration of previous research by
independently conducting primary research is stressed. It is shown that
this approach to meta-analysis allows one to distinguish between merely
potential moderators and real ones. This approach particularly consid-
ers meta-analysis a tool for the generation of new hypotheses as well
as for the design of precise and sensitive decision studies. As an exam-
ple, research on the self-reference memory effect is presented to demon-
strate how to use meta-analysis not only to integrate a research field, but
also to identify theoretical and empirical shortcomings within primary re-
search. Discussing several possible objections against meta-analysis, it is
concluded that meta-analysis, if adequately conducted and interpreted, is
not only a tool for research integration, but may also be used in a theoret-
ically fruitful way.
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9.1 INTRODUCTION

During the last decades, meta-analysis has frequently been proven to be a col-
lection of useful statistical techniques for the quantitative integration of results
from different fields (e.g., Cooper & Hedges, 1994; Hedges, 1992). In com-
parison with other approaches to assessing the state of research in a specific
area (e.g., narrative review, simple vote counting; see Bushman, 1994) meta-
analysis relies upon statistical indices that represent the magnitude of an em-
pirical effect, investigated by means of, for example, experimental or corre-
lational techniques on a common scale of measurement that is independent
of a study’s sample size. Using the notion of this so-called effect size(ES; e.g.,
Richardson, 1996; Rosenthal, 1994; Tatsuoka, 1993), different meta-analytical
approaches have been developed, depending not only on the type of ES but
also on the kind of investigation predominantly used within a research field.
For example, collections of studies using Cohen’s d (standardized difference of
means; see Cohen, 1988) as ES for experiments or quasi-experiments may be
integrated using procedures described by Hedges and Olkin (1985), whereas
research described best by variance-compound-directed ESs, for example, es-
timated ω2 (Hays, 1994) or the correlation coefficient r, might be integrated by
applying a “psychometric” meta-analysis as described by Hunter and Schmidt
(1990; see also Johnson, Mullen, & Salas, 1995; Schmidt & Hunter, 1999). Fur-
thermore, different procedures for the combination of ESs for categorical data,
for example, rate ratios or odds ratios (see Fleiss, 1994), are widely used in
medicine and epidemiology (e.g., Petitti, 1994). In general, meta-analytical in-
tegration is directed to present an average ES for a group of studies investigat-
ing the same empirical effect. In the simplest case, the mean ES for i studies to
be integrated can be computed as a sum of i weighted ESs, divided by the sum
of i weights (Shadish & Haddock, 1994). It is generally assumed that there are
only two possible sources of variation of ESs: Variation can occur by chance if
all studies share a common population ES, and additional systematic variation
between studies can arise if they do not. In the latter case, categorical variables
(moderators) are investigated to determine if they are responsible for this sys-
tematic variation. This is known as the moderator analysis approach. Another
strategy to cope with unexpected systematic variation is known as the random
effects model. This statistical model does not assume that each study effect es-
timates the same population effect, but rather that each single effect represents
a random variable with its own distribution (e.g., Raudenbush, 1994; Shadish
& Haddock, 1994).

In this chapter, the moderator analysis approach will be discussed in more
detail. It will be shown that an independent investigation of moderators is nec-
essary to cope with uncertainty of the state of potential moderators, especially
if data from experimental studies have been integrated meta-analytically. The
usefulness of directly manipulating moderating variables in subsequent exper-
imentation has already been demonstrated, for example, in a study conducted
by Bornstein, Kale, and Cornell (1990; see also Eagly & Wood, 1994). However,
although this study has been inspired by a previous meta-analysis (Bornstein,
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1989), it is not directed to an experimental evaluation of moderators that have
been drawn from meta-analytical integration. Furthermore, the use of research
syntheses for theoretical progress has been discussed extensively by Cook et al.
(1992) as well as Miller and Pollock (1994).

In this chapter, it will be demonstrated how information on a tentatively
hypothesized moderating variable can be used for a direct evaluation of its
actual meaning. In addition, it will be shown that by tying meta-analysis to
primary experimental research, more general problems of meta-analytic ap-
proaches can be solved in a simple way. Most important, it will be demon-
strated how meta-analysis as well as primary experimental research inherit
the specific advantages of each other by this link, and how this link may lead
to theoretical progress that cannot be obtained without the interplay of meta-
analytical integration and experimental validation.

9.2 MODERATORS IN RESEARCH INTEGRATION: AN
EXAMPLE

Suppose we conduct a meta-analysis on a specific memory effect that has been
investigated in, say, 72 different experiments. Most of these experiments sup-
port the idea that presenting an orientation task like “Does the following word
describe you?” leads to better recall for subsequently presented words than the
orientation task “Does the following word describe Bill Clinton?”. This recall
difference is known as the so-called ”self-reference effect” in memory (SRE).
Suppose further that our meta-analysis supports the conclusion that the first
condition (self-reference) actually does result in better memory performance
than the second (other-reference). The average ES for this comparison is about
r = .25 (we conducted a meta-analysis following the approach of Hunter &
Schmidt, 1990). Our analysis reveals noteworthy heterogeneity, so that a mod-
erator analysis seems to be indispensable. Fortunately, we are able to identify
two variables, hardly compared within single studies but quite often between
studies: intimacy with the person referred to in the other-reference condition
(high vs. low) and type of material presented (adjectives vs. nouns). Further anal-
ysis has revealed that both variables seem to moderate our previously noted
results. The magnitude of recall enhancement under a self-referential instruc-
tion is only marginal when compared with a high-intimacy target person in the
other-reference condition, but substantial if a low-intimacy person is referred
to. However, this effect is only observable for adjectives; it disappears when
nouns are to be recalled. To sum up, on a meta-analytical level we observed a
pattern indicating an interaction between intimacy and word type (see Figure
9.1).

9.3 WHAT IS THE REAL MEANING OF A MODERATOR?

The question remains, however, whether a difference between two or more
groups of studies that has been identified by means of a moderator analysis
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Figure 9.1 Interaction of SRE for intimacy and word type.

actually does represent a valid difference, or whether it merely represents an
explanation by chance. This uncertainty can be reduced by selecting a more
appropriate statistical model; that is, to interpret an effect size as a random ef-
fect allows a higher degree of generalizability than to consider it as fixed. Still,
the basic problem remains unsolved even if we regard an effect size as random:
A successful categorization of a collection of effect sizes by a specific variable
that differentiates between different studies does only allow a post-hoc expla-
nation of some of the variation between effect sizes that differs from random
error. But in this case a meta-analytical approach is basically correlational (see
Hall & Rosenthal, 1991); that is, no causal relationship can be established with
this procedure. Even if a moderating variable can differentiate sufficiently be-
tween subgroups of effect sizes, the conclusion cannot be drawn that this vari-
able has actually caused these differences. Since causation can generally be
inferred only if based on experimental manipulations with results supporting
this relation, a strong requirement can be formulated concerning the state of a
moderator: A moderating effect of a variable that has been identified post-hoc
based on meta-analytical results should be treated as a tentatively accepted po-
tential moderator. Its state as a real moderator has to be evaluated by means of
independent follow-up experiments. If this validation procedure is omitted, a
scientific explanation of the differences between primary studies by means of
the supposed moderator under study is not justified, even if a statistical expla-
nation of the observed heterogeneity has been obtained by meta-analysis.
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9.4 TESTING MODERATOR HYPOTHESES EMPIRICALLY

At this point we can pick up the thread again and discuss in more detail how
to proceed with the result pattern presented in Figure 9.1. It has been noted
that the meta-analysis on the difference in memory performance between re-
calling words under a self-referent task and an other-referent task seems to
be moderated by at least two moderating variables, intimacy and word type.
Taking both as potential moderators as discussed above, we may now use the
meta-analytical results directly. The average ES for a group of integrated stud-
ies actually represents the most exact estimate of a population effect available,
since it covers more data than a single study could provide. Furthermore, we
are not required to conduct an exploratory study to estimate an expected ef-
fect. Relying on the given ES estimate, we are now able to design a decision
study that enables us to decide with maximum precision whether our poten-
tial moderator does actually have explanatory power for the observed hetero-
geneity of ESs or whether the meta-analytical results should be taken merely
as chance hits. Let us consider the result that the memory advantage of a self-
referential orientation task compared with low-intimacy other-referential en-
coding is strong for adjectives (r = .44), but only marginal for nouns (r = .11).
For the moment we will put aside a discussion of this puzzling result and the
interesting question of whether the contrast between adjectives and nouns is
meaningful at all. We will return to these topics below.

If we are interested in testing for the above-mentioned result pattern, we
only have to specify the smallest difference to be detected between two con-
ditions that should be shown as different and to specify appropriate levels for
the first-order and second-order errors (e.g., .05 and .20). Then the required
sample size for an adequately designed experiment (e.g., Keppel, 1991) can be
computed or taken by power tables as published by Cohen (1988). In the case
at issue, a group size of about 22 persons is required to test for the difference
of r = .39 between two SREs (low- and high-intimacy others) for adjectives
both exact and sufficiently sensitive (α = .05, β = .20). If only the SRE with
low-intimacy other persons (r = .44) is to be tested, N = 18 are required, pro-
vided that the references will be compared within subjects (as is mostly done
in primary research).

As the reader may already have guessed, our examples are not fictitious
but are results drawn from a meta-analysis on the self-reference effect that has
actually been published (Czienskowski, 1997). In comparison with the meta-
analysis on the SRE by Symons and Johnson (1997), the main aim of the inte-
gration by Czienskowski was to identify subordinate moderating patterns, us-
ing a hierarchical breakdown strategy (Hunter & Schmidt, 1990). Furthermore,
it was attempted to test some predictions generated by this meta-analysis by
means of further experiments. For example, Czienskowski (1997, 1998) reports
experiments showing that intimacy with a person referred to seems actually to
be a central factor that determines the magnitude of the investigated advan-
tage of self-referential encoding. If an extremely low-intimacy other-reference
condition is used, Czienskowski (1998, Exp. 2) reports a much stronger SRE
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(r = .61). Further experiments indicate that for average low-intimacy other-
referents the SRE is approximately the same as predicted from meta-analysis
(r = .43 resp. r = .41), but no remarkable difference can be obtained for
the contrast between self-reference and high-intimacy other-reference (Czien-
skowski, 1997, Exp. 2; 1998, Exp. 1). Moreover, other results seem to confirm
the prediction that only the use of adjectives, but not nouns, can produce the
difference reported above. Problems related to the investigation of an SRE us-
ing nouns will be discussed below.

To sum up, it seems very promising to take an apparent moderator from
meta-analysis as a merely potential moderator, which has to be tested indepen-
dently. Since an empirical test of a prediction generated by moderator findings
may also fail, this requirement is not at all trivial but indispensable to protect
a meta-analysis against the obvious problem of “capitalizing on chance”.

9.5 IS META-ANALYSIS USEFUL FOR THEORY
DEVELOPMENT?

Although this leading question is answered affirmatively by most researchers
who rely on meta-analytical techniques (e.g., Hall, Rosenthal, Tickle-Degnen,
& Mosteller, 1994; Cook et al., 1992), it is often taken for granted that meta-
analysis represents a powerful statistical toolbox that can be used to integrate
different studies but that has no influence on the development of scientific
theories. Actually, an ignorant use of meta-analytic tools may result in in-
correct conclusions and remarkable confusion. But this is not only true for
meta-analysis but for all advanced statistical technologies. To show how an
adequate meta-analytical approach may in fact be used in a theoretically fruit-
ful way, I will now focus on a special problem of the meta-analytical results
referred to above.

As previously noted, it seems puzzling that a strong SRE is obtained for a
low-intimacy other-referent condition if adjectives are used, but not if nouns
are used. A closer look at the meta-analytical database suggests that these re-
sults actually may be an artifact. The database of studies included in the meta-
analysis does not contain any study that compares adjectives with abstract
nouns, but only with rather concrete nouns. On the other hand, one study
that investigates a somewhat different kind of SRE (i.e., the recall difference
between a self-reference and a merely semantically directed orientation task)
using at least partly abstract nouns (Bock, 1986), indicated a very strong SRE.
Since especially the distinction between concreteness and abstractness repre-
sents a central dimension for the explanation of memory performance (e.g.,
Gee, Nelson, & Krawczyk, 1999; Holcomb, Kounios, Anderson, & West, 1999;
Marschark & Surian, 1992; Paivio, Walsh, & Bons, 1994), it can reasonably be
assumed that the meta-analytical results could be confounded with a further
but uncontrolled factor called “concreteness of word type”. To examine this
assumption further, Czienskowski (1997) reports an experiment that compares
self-reference and low-intimacy other-reference using adjectives and matched
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abstract nouns. For both materials a strong SRE has been found, which is com-
pletely incompatible with results yielded by the meta-analysis. In a second ex-
periment, the assumption was tested that the SRE is obtained if abstract nouns
but not concrete ones are used, and moreover, that this effect holds only for
low-intimacy and not for high-intimacy other-referents. Planned simple effects
analyses and simple comparisons are reported that support the expected re-
sult pattern. Simple comparisons between low-intimacy other-reference on the
one hand and high-intimacy others and self on the other hand indicate strong
memory differences (about r = .41) only for abstract nouns, whereas concrete
nouns do not produce any detectable difference. More important might be that
this effect is only due to a reduced recall performance for low-intimacy other-
referents under the abstract noun condition. When exclusively explaining the
SRE by referring to special features of self-referent encoding processes (e.g., as
Rogers, 1981, does), this result still remains puzzling, because then it cannot be
explained why an SRE should only occur when using abstract nouns. More-
over, the results reported seem to indicate that the SRE, at least for the compar-
ison of self and others, is not an effect of enhanced self-referent encoding but
of reduced recall for abstract material if low-intimacy others are referred to.

Focussing now on the fact that the critical difference causing the result pat-
tern just discussed seems to be the concreteness or abstractness of the stimulus
word presented, a reasonable assumption might be that the so-called SRE is
actually a subordinate effect occurring only if other conditions are absent that
could support encoding processes. More precisely, in the above case a con-
creteness effect as described, for example, by the dual-coding theory (DCT;
Paivio, 1971, 1991) seems to be superior, whereas a self-reference effect (which
rather seems to be an effect of intimacy or familiarity) takes place only if the
concreteness of a stimulus is too low for promoting memory encoding. Czien-
skowski and Giljohann (2002) report two experiments indicating that a recall
advantage of self-reference and high-intimacy other-reference can only be de-
tected when abstract nouns are presented. With concrete nouns, the recall un-
der self-reference is substantially lower (about r = .30) than for both other-
reference conditions. The results confirm the expectation that only the absence
of a possibility to encode information pictorially may result in a strong and
unequivocal self-reference effect and support the view that the self-reference
effect is not a general memory effect, but only a subordinate one. It may buffer
the decrease of memory performance if pictorial coding is not possible, but it
is not able to compensate this.

9.6 META-ANALYSIS AS A TOOL: IDENTIFYING
THEORETICAL DEFICIENCIES AND NEW
HYPOTHESES

Collecting the evidence from different sources, we are now able to conclude
that an adequate application of meta-analysis in a rather more developed field
of empirical research does not necessarily represent mere integration but can
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also be used for the theoretical refinement or even reformulation of existing
and frequently tested theoretical assumptions. In the case discussed above,
the quantitative integration of studies investigating a rather prominent effect
of cognitive social psychology has revealed both theoretical problems as well
as new empirical hypotheses that might not have been detected without the
application of meta-analytical methods. Admittedly, we can imagine a situa-
tion in which these problems and new hypotheses might have been developed
by an attentive researcher interested in the SRE and aware of the DCT with-
out making use of meta-analysis. However, in this case the predictions and
the tests conducted subsequently would be much more imprecise than the ex-
pectations generated by research integration because only rough predictions
of expected effects are possible. Thus, the state of the obtained results would
remain rather unclear. Moreover, the evidence for a primary result is inferior
compared to the evidence given by a decision study based on meta-analytical
predictions drawn from a rather large set of primary studies.

It is quite obvious that this approach is not only applicable to the quantita-
tive integration of research, but also, for example, if more evidence is required
for an appropriate use of a therapy, for the development of educational strate-
gies, or for a decision between two competing theories of memory. On the
contrary, different fields of primary research could profit from this approach.
In general, the determination of an adequate sample size for an experiment
requires fixing an ES as precisely as possible if it is to be tested adequately
by an experiment (i.e., both controlling the risk of rejecting both types of hy-
potheses, i.e., H0 and H1, falsely). Since theories in behavioral sciences are
mostly not able to specify the exact magnitude of an effect to be tested, the in-
tegration of meta-analytical procedures into the process of designing primary
studies should be seen as a opportunity to avoid wasting effort on conduct-
ing uneconomical (i.e., the sample size is too large for an effect to be tested) or
meaningless (i.e., the sample size is too small for sensitively detecting an effect)
experiments. The integration of meta-analytical procedures seems to be partic-
ularly favorable, too, just because several studies (e.g., Cohen, 1962; Sedlmeier
& Gigerenzer, 1989) have reported that the average power of experiments pub-
lished in certain journals only amounts to about .50 or even less. Thus, the use
of meta-analytical tools can been seen as an indispensable supplement to the
use of other design tools as, for example, power analysis, at least in a field of
research that is rather developed.

9.7 CONCLUSION

In the previous parts of this chapter, a perspective on meta-analysis has been
developed that is motivated mainly by requirements predominantly stated
within the realm of primary experimental research. Hence, the orientation
is directed to fields that can be investigated experimentally, at least in prin-
ciple. With this restriction in mind, I can now discuss some conclusions that
could bring about a new evaluation of several objections directed against meta-
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analytical approaches. I will concentrate on some topics that are generally re-
ferred to as main problems of meta-analysis (e.g., Glass et al., 1981; Beelmann
& Bliesener, 1994).

Let us first investigate the so-called apples-and-oranges problem. It is stated
that, because the main feature of a study is its theoretical background, dif-
ferent operationalizations indicate different concepts so that different studies
cannot be compared. But this conjecture is not convincing, since it implies the
impossibility of modifying theories with the help of statistical meta-analysis.
However, theories are quite often affected or even falsified by data. Since an
empirical hypothesis cannot be rejected by any a priori argument, no a priori
evaluation of the empirical relevance of any potential moderator hypothesis is
possible. If a moderator variable can be identified that is able to explain the
difference between studies not merely statistically, but also within an indepen-
dent study, a theory not predicting this effect must be characterized as deficient
(for sure, many possible moderators are theoretically irrelevant or even trivial,
but since a meta-analyst is expected to be an expert in the field to be integrated,
these irrelevant “moderators” will probably be sorted out early). Thus, the
conjecture that meta-analysis is not able to provide more theoretical informa-
tion than primary research can be refuted. Moreover, from a primary research
point of view it could actually be advantageous to analyze some theoretical
relations across different studies before more primary research is conducted.
A meta-analytic integration of research and its use for the design of new stud-
ies does allow a goal-directed and precise search for theoretical relations to be
identified empirically. By comparison, without any information from research
synthesis, tests of these effects would be imprecise at best, but mostly these
effects would not be identifiable at all.

A more general problem of meta-analysis could be its epistemological as-
sumption of the possibility of accumulating scientific knowledge. From the
author’s point of view, the method of meta-analysis is indifferent to the prob-
lem if accumulation within the progress of science is really possible. Actually,
it does not seem very useful to integrate empirical results of studies from dif-
ferent research fields, even if the results seem to be similar or at least compara-
ble to each other. However, within a field in which a specific research question
is investigated, a meta-analytical integration across different studies may be
used to acquire higher precision of empirical statements. If meta-analysis is
thus simply taken as a statistical tool, basically neither better nor worse than
other statistical tools widely used (or misused) in behavioral sciences, there is
no need to emphasize some of its problems more than, say, the problem of ap-
plying analysis of variance on ordinal dependent variables. Meta-analysis can
be misused as much as other statistical procedures can, but there are many re-
search problems that can be solved by this approach, therefore rejecting the im-
portance of meta-analytical research integration would be throwing the baby
out with the bathwater.

Some further problems of meta-analytic approaches, for example the “gar-
bage in – garbage out problem” (i.e., a meta-analysis that integrates across
poorly designed studies will probably be biased), can be resolved in a straight-
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forward manner by explicitly testing potential moderators. The crucial ques-
tion is whether the relevance of a possible moderator can be confirmed em-
pirically. An empirical test will yield significant differences between different
levels of the moderator if the effect size estimation from meta-analysis does
actually represent a population effect, but it will fail if no population differ-
ence exists. This means that if moderators are indicated on the basis of biased
samples or simply by chance, these potential moderators will be rejected if
their test fails, otherwise the effect seems to be real, even if indicated by poorly
designed studies.

Finally, to sum up the arguments given in this chapter, we can state that
meta-analytical methods are powerful techniques and should be seriously con-
sidered if their integration into the methodological toolbox, especially the tool-
box of primary research, could have advantages. On the other hand, research
synthesis could benefit from this link, too, because some severe shortcomings
that could affect the meaning of a research synthesis can be avoided if the pre-
sented techniques are applied. This approach seems especially useful if the
real meaning of moderating variables is to be understood.
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Summary
In the past few years meta-analysis has become increasingly popular in
many areas of science such as medicine and pharmacy, psychology, and
other social sciences. In these areas of application meta-analyses have
been performed in order to obtain a pooled estimate of various single
studies. Obtaining a single summary measure implicitly assumes homo-
geneity of these studies, that is, the results of individual studies differ
only by chance. In this case a combined estimate of the individual studies
provides a powerful and important result. However, this pooled estimate
may be seriously misleading if study conditions are heterogenous. Thus,
an approach which considers meta-analysis as a study over studies has
increasingly been advocated. This approach seeks to investigate heteroge-
neity between studies. An important feature of this type of meta-analysis
lies in the fact that it tries to identify factors which cause heterogeneity. It
is the aim of this contribution, in corporation with the unit of quality as-
surance of ASTA Medica at location Künsebeck, to extend this approach
appropriately to the area of quality control, where batches of the produced
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goods replace the role of studies in medicine or the social sciences. Clearly,
in this setting an investigation of heterogeneity is equally attractive, since
identification and modeling of heterogeneity help to improve the produc-
tion process.

10.1 INTRODUCTION AND PREVIEW

The chapter reviews an approach which enables a global perspective on as-
pects of homogeneity and heterogeneity which occurs in quality control and
quality assurance in the pharmaceutical industry. In conventional meta-analy-
sis, investigations are done in such a way that a specific measure can be com-
puted utilizing numerous single studies. Frequently, statistical questions of
efficiency are dominating in the literature (Hedges & Olkin, 1985). Efficiency
is achieved by pooling the various single studies, thus yielding an increased
sample size. This procedure, no doubt, is of great benefit, if the various studies
to be combined in the meta-analysis have emerged under comparable condi-
tions and are different in a statistical sense only by chance. This is the situation
of homogeneity. However, pooled analysis is often considered problematic if
study conditions are heterogenous, especially if the interpretation of pooled
estimators is kept in a traditional way.

The chapter at hand underlines parallel aspects of meta-analysis and qual-
ity control. The cornerstone of this analogy are the numerous batches which
are drawn in quality control for monitoring purposes, which play the role of
the single studies in meta-analysis. Here, measures of interest are frequently
count variables (counts of contamination particles) or other quality indices. In
this situation – even if homogeneity conditions are present – deviations from
a given standard might occur as well. It is quite important whether these de-
viations might have emerged from a homogenous process (as random vari-
ations) or are due to certain heterogeneities present in the production process.
By means of the mixture distribution analysis, we are able to model poten-
tially present heterogeneity and, further on, to classify each batch into one of
the heterogeneity components. This might allow the researcher to diagnose
certain common attributes and therefore enables him to explore the causes of
heterogeneity.

10.2 LEGAL BACKGROUND FOR PHARMACEUTICAL
PRODUCTION

Pharmaceutical production of drug products and drug substances is regulated
worldwide by the rules of Good Manufacturing Practices. For Europe and
Germany, producers have to follow the regulations of

• Arzneimittelgesetz (AMG)

• EU-Guideline for Good Manufacturing Practices (1989)
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• “Betriebsverordnung für pharmazeutische Unternehmer” (PharmBetrV
1994)

Production and quality control of drug products and drug substances have to
recognize state of the art and current worldwide practices in accordance with
the application. All procedures used in production and quality control must
be validated and regularly revalidated. Drug products are mainly produced
in batches, which should conform with the specification from batch to batch.
Drug products brought into the market should be produced and controlled
according to the application and the quality has to be confirmed before a batch
can be released for distribution.

The quality of a drug product or a drug substance is defined by identity,
assay, chemical, physical and biological properties. A batch is the quantity of
a drug produced under suitable uniform conditions to guarantee a homoge-
neous quality.

10.3 THE TASKS AND OBJECTIVES OF QUALITY
ASSURANCE IN PHARMACEUTICAL INDUSTRY

The production of drugs is accompanied by

• batch- and product related in-process controls (on-line)

• batch- and product related controls (off-line)

• not batch and not product related controls

Parenteral drugs are products which have to comply with additional, specific
properties like sterility and are essentially free of visible particles because of
their parenteral application. Sterility is controlled by a sterility test which is a
destructive test on limited samples of a batch. In connection with in-process
controls for the clean environment of rooms, air, surface, and personnel hy-
giene during production, especially parenteral drugs produced by aseptic pro-
cessing sterility can be assured in all parts of a batch.

Each parenteral container is controlled by a 100%-inspection for particulate
matter. The quality of this inspection is controlled by samples which are again
inspected for subvisual particles. These are destructive tests on a limited num-
ber of samples. The quality is evaluated on the basis of a quality index like the
one which can be found in the Deutscher Arzneimittel Codex (DAC), Codex
Probe no. 5. The particulate matter is evaluated for particles which can be seen
easily, well, or with difficulties.

For instance:

• No visible particle: no point

• Particle difficult to be seen within 5 seconds: one point

• Particle easily to be seen within 5 seconds: two points

• Particles to be seen immediately and in higher numbers: ten points
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The formula for evaluation is: QTR = A
N , where A stands for the number of

points recorded by three test persons and N stands for the number of con-
trolled containers.

The results of all controls for one batch and from batch to batch is very
important for the evaluation of the quality and the release for distribution.
Trends for a homogeneous or heterogeneous process should be addressed and
recognized as soon as it happens. Statistical evaluation of all available data is
essential for the routine evaluation of the drug quality.

10.4 META-ANALYTIC MODELING OF DATA OCCURRING
IN QUALITY ASSURANCE

Very often quality assurance is based on the availability of a number of batches
each having a certain number of items. For example, we might consider again
QTR and define X as

X = Number of times with QTR positive in a series of n investigations.

This is best demonstrated by means of an example which is taken from the
book of Derman and Ross (1997). The data are provided in Table 10.1 and visu-
alized by means of a confidence interval plot (proportion with 95% confidence
interval) in Figure 10.1.

Table 10.1 Number of Defective Items for 20 Batches of 200 Items Each

Batch Number of Defectives Batch Number of Defectives

1 24 11 4
2 22 12 13
3 12 13 17
4 13 14 5
5 15 15 9
6 11 16 0
7 25 17 19
8 16 18 0
9 23 19 22

10 14 20 17

As has been pointed out in the literature (Petitti, 1994), the area of meta-
analysis has received various impulses during its historic development. In
psychology, the development of measures was achieved which could be suit-
ably used for meta-analysis such as the standardized effect difference. Another
impulse was the development of suitable statistical methods such as the appro-
priate form of a pooled mean. Meta-analysis experienced tremendous impulses
by means of embedding important application areas such as evaluation re-
search or health reporting. It is hoped that both areas discussed in this chapter,
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namely quality control and assurance and meta-analysis, experience a similar
impulse from each other.

It is quite obvious that in quality control the single batch can play the role
of a single study in conventional meta-analysis. This can avoid various tech-
niques including control charts and repeated testing, which can be statistically
flawed. For example, if 20 binomial tests are employed for the data provided in
Table 10.1, it can be expected that one of these will show a significant deviation
from a desired standard though there is in fact no deviation from the desired
standard (process is still in control). Similarly, if control charts are used, it is
well-known that the boundaries of these charts are reached for some batch,
though the process is still in control. As a consequence, investigators in qual-
ity assurance are forced to investigate for a non-existing source of deviation of
the production process.

Figure 10.1 Confidence interval plot from the package META for a textbook example
of proportion of defective items for 20 batches with 200 items each.
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10.5 THE PROBLEM OF HETEROGENEITY

In fact, we are interested in separating random deviations, which are occurring
always in non-deterministic systems1, and systematic deviations. Only the latter
are relevant and prone for further investigation and research.

How can we accomplish this separation? The first step is to model the situa-
tion when the process is in control, which is called the situation of homogeneity.
Typically, it is possible to derive some probability distribution for the measure
of interest under homogeneity. We call the associated density of the measure
of interest X: f (x, θ), where θ is some parameter involved in this density. In
our example, the number of defective items, X, follows a binomial distribution
with density f (x, θ) = (n

x)θx(1− θ)n−x, where n is the size of the batch and the
parameter θ corresponds to the allowed number of defectives.

The question at hand is: What will happen if a deviation (loss in quality)
occurs and how is this reflected in the statistical model? Clearly, if this hap-
pens, homogeneity conditions no longer hold and the simple statistical model
f (x, θ) will no longer be correct.

There are some simple tests available which allow to diagnose this situation
rather quickly. One of these tests is based upon the defined as

χ2 =
k

∑
i=1

(Xi − E(Xi))
2

Var(Xi)
.

Typically, E(Xi) and Var(Xi) will be functions of the unknown parameter θ
and plug-in-estimates must be utilized. These plug-in estimators must be con-
structed with care to achieve χ2-distribution under homogeneity, at least ap-
proximately. To give a demonstration, we note that in our binomial quality
control example E(Xi) = nθi and Var(Xi) = nθi(1 − θi), which might lead
to the plug-in estimates Ê(Xi) = Xi and V̂ar(Xi) = Xi(1 − Xi/n). It can be
shown that the associated distribution under homogeneity is quite different
from a χ2-distribution with k− 1 degrees of freedom if sample sizes per batch,
n, are small or moderate, even if the number of batches k becomes large. The
right thing to do here turns out to be a variance estimate utilizing information
from all batches: V̂ar(Xi) = Sk(1− Sk/n), where Sk = ∑k

i=1 Xi/k. The associ-
ated χ2-statistic (with E(Xi) = Sk) can be shown to be validly approximated
by a χ2-distribution with k− 1 degrees of freedom even for small batch size n
(like n = 5). For further discussion, see Böhning (2000b) as well as Hartung
and Knapp (Chapter 4, this volume). To finish this aspect, we find a value
of χ2 = 70.41 with 19 degrees of freedom for the data of Table 10.1, which
indicates strongly the presence of heterogeneity.

1The question which system is deterministic and which is not is a mere philosophical question.
Our point of view is that it is appropriate and useful to consider stochastic variation even when
measurements and processes are done with the highest accuracy.
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In the following section we will concentrate on the aspect: What can be done
if heterogeneity is present?

10.6 MODELING HETEROGENEITY USING MIXTURE
DISTRIBUTIONS

If heterogeneity is present it is implied that the proportion of defectives in the
batch is deviating in a systematic way from the required standard, in other
words, it can be assumed that the hypothesis θ1 = θ2 = . . . = θk = θ is wrong
and it is more reasonable to assume that for certain parts of the population of
all possible batches a value (for the proportion of defectives) of θ1 – for other
parts a value of θ2 – is valid and so forth. That is, the population of possible
batches consists of a proportion pj of batches with θj, for j = 1, . . . , k. It can be
shown (Böhning, 2000a) that in this situation Xi has a mixture distribution

f (xi, P) =
k

∑
j=1

f (xi, θj)pj

which takes the form of a mixture of binomial distributions for our textbook
example:

f (xi, P) =
k

∑
j=1

(
n
xi

)
θ

xi
j (1− θj)n−xi pj. (10.1)

The distribution which gives probability mass pj to θj is called mixing distri-
bution and is denoted by P. To estimate the parameters involved in Equation
10.1, in other words the mixing distribution P, we use maximum likelihood
estimation including the number of components in the mixture k. This can be
accomplished with the computer package C.A.MAN (see Böhning, Schlattmann,
& Lindsay, 1992; Böhning, Dietz, & Schlattmann, 1998). The associated maxi-
mum likelihood estimate of k and θj, pj for j = 1, . . . , k is called nonparametric
maximum likelihood estimate (NPMLE) of the mixing distribution P. It is usu-
ally advisable to check whether the number of components k can be reduced,
which can be accomplished by comparing log-likelihoods for reduced values
of k such as k − 1, k − 2, . . . until no significant drop in the log-likelihood is
notable. For these fixed values of k estimation is done via the EM-algorithm
(Dempster, Laird, & Rubin, 1977).

To provide a demonstration for this technique, we study the data of Table
10.1 again and use the mixture model provided in Equation 10.1. Table 10.2
provides the results. There is empirical evidence for heterogeneity and that this
heterogeneity consists of 3 components.

It can be seen that the population of batches can be separated into three
components. One component consists of batches which are free of defective
items (9.9%). The second component has 2.87 defective items per 100 (13.3%),
whereas the last one has 8.6 defective items per 100, representing the majority
of all batches (76.8%).
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Figure 10.2 Classification of the batches into their associated components for the
textbook example of proportion of defective items for 20 batches with 200 items each.

Table 10.2 Identification of Heterogeneity Structure for 20 Batches of 200 Items
Each

Number of Components k Log-Likelihood

4 (NPMLE) −63.1454
3 −64.0984
2 −70.9835

Estimated Mixing Distribution for k = 3

Proportion θj Weight pj

0.0000 0.0996
0.0287 0.1326
0.0865 0.7678

Finally, it is even possible to allocate each observed (investigated) batch to
one of the components in the mixture. This can be accomplished by utilizing
Bayes theorem and calculate the posterior distribution of θ as

f (θj|xi) =
f (xi, θ̂j) p̂j

∑k
l=1 f (xi, θ̂l) p̂l

,
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where θ̂j and p̂j correspond to the maximum likelihood estimates identified
in the previous estimation process. Each batch i with number of defectives Xi
is allocated to that component j for which f (θj|xi) is largest of all j = 1, . . . , k.
This is done for the data in Table 10.1 and the results are provided in Table 10.3.
Figure 10.2 also visualizes this reclassification. This technique might enable the
practitioner to search for common sources for the occurred heterogeneity and
finally identify sources for the loss in quality standards.

Table 10.3 Classification of Each Batch Into the Components

Batch i Xi Component j Batch i Xi Component j

1 24 3 11 4 2
2 22 3 12 13 3
3 12 3 13 17 3
4 13 3 14 5 2
5 15 3 15 9 2
6 11 3 16 0 1
7 25 3 17 19 3
8 16 3 18 0 1
9 23 3 19 22 3

10 14 3 20 17 3

10.7 DISCUSSION

We touched upon an approach which explicitly allows the modeling of hetero-
geneity. To do this, it is important to emphasize that an appropriate measure of
interest (describing the quality standards) has to be chosen. Given the chosen
measure of interest, it is furthermore equally important to find the correspond-
ing statistical model under homogeneity conditions and further the associated
mixture model which models potential heterogeneity. A variety of situations
have been assembled to form a package META which allows the user in a simple
way to analyze heterogeneity problems in his/her application. For details, see
Schlattmann, Malzahn, and Böhning (Chapter 16, this volume).
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Summary

The diagnostic sensitivity and specificity of enzyme-linked immunosor-
bent assays (ELISAs) for the detection of Trichinella antibodies in humans
and swine was assessed by a systematic, quantitative literature review.
The objective was to identify influential factors for specificity and sensi-
tivity covering a wide range of technical and study design characteristics.
Nine out of 12 publications selected for analysis reported more than one
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pair of sensitivity/specificity. We suggest an explorative-analytical ap-
proach that accounts for these “multiple-study type” publications. Two
mixed logistic regression models that included study specific explanatory
variables, an adjustment for the cut-off value (both fixed effects) and a
random effects term (publication) were established for analysis of speci-
ficity and sensitivity. The use of an elaborated test antigen was associated
with perfect (100%) specificity. In studies that used crude antigen prepara-
tions, a positive effect on specificity was associated with publication after
1991, application of the test for humans (versus swine), single-point (ver-
sus titration) assays and testing of healthy or non-target (versus other)
populations. A positive effect on sensitivity was associated with appli-
cation of the test for swine (versus humans), testing of other populations
than experimentally infected swine or advanced human cases, testing af-
ter 26 (versus less than 26) days post infection and medium (versus small,
n < 16) sample sizes. The impact of the sample size and the status of the
positive reference population is obscure and may be due to uncontrolled
confounding. The other effects are plausible and show that this form of
“exploratory meta-analysis” of diagnostic tests is of practical concern.

11.1 INTRODUCTION

The evidence for the accuracy of a diagnostic test is usually based on multi-
ple primary validation studies rather than on a single study. Multiple stud-
ies cover a wider range of marginal conditions such as reference populations,
study design and laboratory proficiency and, therefore, are thought of yield-
ing more reliable test performance parameters. The planned multi-centre val-
idation study and the systematic review of published studies are important
realizations of a multiple-study based test validation and differ in the extent
to which the involved primary studies can be controlled for marginal condi-
tions. Various methods are described for a quantitative summary of multi-
ple validation studies which is here referred to as meta-analysis of diagnostic
tests (MADT). These methods include the summary receiver operating char-
acteristic (sROC) analysis (Hurblut III, Littenberg, & Diagnostic Technology
Assessment Consortium, 1991; Moses, Shapiro, & Littenberg, 1993), weighted
mean values of sensitivity and specificity (Carlson, Skates, & Singer, 1994),
relative risk (Mantha et al., 1994), and standardized mean difference (Hassel-
blad & Hedges, 1995). Irwig et al. (1994) pointed out that a simple pooling
of sensitivity (Se) and specificity (Sp) estimates across primary studies is not
appropriate because this would underestimate the overall accuracy. The meth-
ods for MADT usually presuppose that each primary study contributes exactly
one pair of Se and Sp, that is, one data point in the ROC space. We refer this
to as single study type. The data points are further assumed to be indepen-
dent. In practice we are concerned with deviations from this ideal situation
since published evaluation studies often provide more than one estimate of Se
and Sp. We refer such studies to as multiple-study type and distinguish three
cases. Firstly, more than one test entity (i.e., different tests or technical mod-
ifications or application of one test to different host species) is described in
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a single publication (multiple-study type I). Secondly, a set of different cut-off
values is used for evaluation (multiple-study type II). Thirdly, multiple refer-
ence populations are used (multiple-study type III). We further distinguish be-
tween an enrollment of distinct (mutually exclusive and independent) refer-
ence populations (multiple-study type IIIa) and repeated measurements on the
same reference population (multiple-study type IIIb). Combinations of various
multiple-study types may occur. We do not consider the case of multiple ref-
erence methods and argue for the selection of the most reliable (in terms of
accuracy) method as gold standard instead. The scope of a MADT is usually
restricted to a single test entity but situations may occur in which a compar-
ison of the test performance between different test entities is relevant (Irwig,
Macaskill, Glasziou, & Fahey, 1995). In analogy with the general meta-analytic
terminology we shall refer the estimate of the diagnostic test performance to
as effect size.

In this chapter, we describe a meta-analytic approach for the validation
of diagnostic tests when the source data include multiple-study type publi-
cations. Our data derive from a systematic review of published studies on
the validation of ELISAs for the detection of Trichinella antibodies in humans
and swine. Trichinellosis is a zoonosis with severe medical implications if un-
treated. The ELISA is recommended for diagnosis of both human (Ljungstrom,
1983) and porcine infection (Gamble, 1997). Furthermore, ELISA testing may
become mandatory for certification of “Trichinella free” pig production with-
in the framework of an anticipated modified trichinellosis control scheme in
countries of the European Union (Borowka & Ring, 1997). The emphasis of our
application is to identify influential factors for the diagnostic accuracy cover-
ing a broad range of marginal conditions rather than validation of a single test
entity.

11.2 MATERIALS AND METHODS

11.2.1 Literature Retrieval

The databases Medline ™, VetCD ™, BeastCD ™, and CAB Helminthological
Abstracts™ were used as searching frame as described elsewhere (Greiner,
Böhning, & Dahms, 1997). The list of retrieved publications was cross-checked
and supplemented by experts (Dr. K. Nöckler and Dr. W. P. Voigt, Federal Insti-
tute for Health Protection of Consumers and Veterinary Medicine, Berlin, and
Dr. K. Wacker, Institute for Epidemiological Diagnosis, Federal Institute for
Virus Diseases of Animals, Wusterhausen). Included for analysis were studies
on trichinellosis antibody ELISAs in humans and farm pigs published from
1990 to 1995, where the number of true positive, false positive, false nega-
tive and true negative test results was either indicated or derivable from the
published data. Furthermore, inclusion required a minimum of 5 subjects for
each reference sample. Positive subpopulations were not considered if sam-
pled before day 10 post infection or, in the case of repeated measurements
(multiple-study type IIIb), earlier than 10 days after the preceding sampling
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date. Generally, language was not an exclusion criterion except Chinese with-
out translation. A list of publications excluded from this study can be obtained
from the first author.

11.2.2 Data Transcription

One data base was constructed that included all available estimates of speci-
ficity. We considered here (where applicable) different test entities (i.e., dis-
tinct technical procedures) described in one publication as well as different
applied cut-off values, different negative subpopulations tested and different
time points at which the negative subpopulation was sampled for one test
entity, respectively. Basic outcome variables were the number of true nega-
tive observations (TN) and the sample size of the respective negative reference
population (NNEG), respectively (we omit the index for the unit of observa-
tion). We considered the sensitivity associated with one unit of observation
as the weighted (using the sample size) average of all available sensitivity es-
timates with the respective test entity. In case of repeated measurements, we
selected the first sampling date following the 35th day after infection as base
for sensitivity estimation. A second data base was constructed analogously
and comprised all available estimates of sensitivity. Basic outcome variables
were the number of true positive observations (TP) and the sample size of the
respective positive reference population (NPOS). We considered the specificity
associated with one unit of observation as the weighted (using the sample size)
average of all available specificity estimates with the respective test entity.

A set of variables was recorded as covariate information for each study. The
publication YEAR (0 = 1990, 1991, 1 = 1992+) was recorded from the biblio-
graphic data. The variable SPECIES (0 = human, 1 = swine) denotes the species
tested. Variables describing technical aspects were AGPREP (coating antigen;
0 = crude preparation or extract of larval antigen, 1 = excretory/secretory (E/S)
antigen or purified preparations), CONJUG (specificity of the anti species-
enzyme conjugate; 0 = anti whole-Ig fraction, 1 = anti IgM, IgG, or IgE fraction),
TITER (dilution of serum samples; 0 = single-point determination, 1 = titra-
tion). The selection of a cut-off value in favor of specificity (e.g., the confidence
limit of the negative reference population) was coded with SPW (specificity
optimized; 0 = no, 1 = yes). Design characteristics were recorded by the vari-
ables STATN (status of the negative reference population; 0 = healthy controls,
samples from a non-target population or unrelated diseases, e.g., atopic condi-
tions, 1 = any other selection), STATP (status of the positive reference popula-
tion; 0 = experimental infection or extreme cases, 1 = any other selection), DPI
(days post infection at which the positive reference population was sampled;
0 = 10–25, 1 = 26+, 2 = no information), NNEG and NPOS (categorized sample
size for the positive and negative reference population, respectively; 0 = 5–
15, 1 = 16–50, 2 = 51+) and RESUBST (identity of the reference population for
cut-off selection and test validation; 0 = no, 1 = yes).
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11.2.3 Analysis of Influential Factors for Specificity and Sensitivity

The analysis of influential factors on specificity and sensitivity was addressed
by two mixed logistic-binomial regression models for distinguishable data that
take into account the correlation within-publications. The fixed effects term
includes the intercept (αF), the logit transformation of the associated “counter-
parameter” (xi) and the row-vector of explanatory factors (zi). The random
effects term consists of the random effects parameter (αR). The data were
matched on the publication. The models have the general form

logit(pi) = αF + αR + βxi + γTzi.

For analysis of specificity, pi denotes the simple proportion of TNi/NNEGi, Xi
denotes the logit transformation of the associated sensitivity (with 1/2 correc-
tion) and zi denotes a row-vector of explanatory factors. The variables YEAR,
SPECIES, CONJUG, TITER, SPW, STATN, NNEG and RESUBST were selected
as candidates for explanatory variables in the analysis of specificity. Multi-
level variables were used after dummy coding. The inclusion of the counter-
parameter takes care for the part of the variance that can be explained by the
applied cut-off value. α̂F, α̂R, β̂ and the vector γ̂T are empirical coefficients
and were found with standard algorithms (logistic-binomial model for distin-
guishable data with 6 support points; EGRET LBDD(6) module; Statistics and
Epidemiology Research Corporation (SERC), 1988). A stepwise backwards fit-
ting strategy was used whereby the variable with the highest p-value of the
likelihood ratio statistic (LRS = deviance without/with variable, referred to
the chi-square distribution with degrees of freedom, df = number of levels of
the variables minus 1) was excluded. This procedure was repeated until the
LRS was significant (p < .05) for all variables. The goodness-of-fit of the final
model was assessed by the LRS of the final model. The candidate variables
were also analyzed in univariate mixed logistic regression models. The anal-
ysis of sensitivity was accomplished in a complementary manner. Candidates
for explanatory variables were YEAR, SPECIES, AGPREP, CONJUG, TITER,
STATP, DPI, NPOS, and RESUBST.

11.2.4 Further Analyses

The effect sizes in terms of sensitivity and specificity of the trichinellosis ELI-
SAs were displayed in the ROC space to visualize the scatter of the estimates
(Figure 11.1). All possible combinations of a sensitivity and a specificity es-
timate were considered in case of multiple-type studies. A summary ROC
function was established as described by Moses et al. (1993). A chi-square
test on homogeneity (α = .05; df = number of estimates minus 1) of sensi-
tivity and specificity estimates was done using TP and TN as observed fre-
quencies and NPOS×Ŝep and NNEG×Ŝpp as expected frequencies, respec-
tively (Stata macro “chitest” by Nick Cox, personal communication, StataCorp,
1997). Here, Ŝep and Ŝpp denote the pooled sensitivity and specificity, respec-
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tively. Using a total of r estimates of sensitivity,

Ŝep =

r
∑

i=1
(TPi)

r
∑

i=1
(NPOSi)

and using s estimates of specificity,

Ŝpp =

s
∑

i=1
(TNi)

s
∑

i=1
(NNEGi)

,

respectively.
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Figure 11.1 Summary ROC plot of the diagnostic specificity (Sp) and sensitivity (Se)
of Trichinella antibody ELISAs (meta-analysis of 12 studies published between 1990
and 1995). The points represent the reported pairs (Ŝe, Ŝp) in case of a single-type
publication and all possible combinations of the two estimates reported for one test
entity in case of multiple-type publication (refer to the text for further explanation).
The summary ROC function is displayed as solid line.

11.3 RESULTS

11.3.1 Data Transcription

The data from twelve publications (7 on human and 5 on porcine trichinel-
losis) were included in this meta-analysis (Arriaga, Yepez–Mulia, Morilla, &
Ortega–Pierres, 1995; Bruschi, Tassi, & Pozio, 1990; Chan & Ko, 1990; Dzeben-
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ski, Bitkowska, & Plonka, 1994; Gamble, 1995; Lind et al., 1991; Mahannop,
Chaicumpa, Setasuban, Morakote, & Tapchaisri, 1992; Mahannop, Setasuban,
Morakote, Tapchaisri, & Chaicumpa, 1995; Morakote et al., 1991; Morakote,
Sukhavat, Siriprasert, Suphawitayanukul, & Thamasonthi, 1992; Nöckler, Voi-
gt, Protz, Miko, & Ziedler, 1995; Serrano, Perez, Reina, & Navarrete, 1992).
Three studies belonged to the single study type, nine studies belonged to one
of the multiple-study types (Table 11.1). The null hypothesis of homogeneity
of the specificity estimates could not be rejected (χ2 = 3.87; df = 33, p = 1.0).
The null hypothesis of homogeneity of the sensitivity estimates was rejected
(χ2 = 132.53; df = 55, p < .001). The distribution of study characteristics
(here referred to as covariate factors) is described elsewhere (Greiner et al.,
1997).

Table 11.1 Types of Evaluation Studies of Trichinella Antibody ELISAs Published
Between 1990 and 1995 and Number of Analytical Units They Contribute to the
Analysis of Specificity and Sensitivitya

PUBNRb Study Type m c n p t Specificity Sensitivity

1 I/IIIa 3 1 4 1 1 12 3
2 IIIa 1 1 2 1 1 2 1
3 IIIa 1 1 2 1 1 2 1
4 I/IIIb 3 1 1 1 7 3 21
5 I/IIIa/IIIb 2 1 2 1 2 4 4
6 single 1 1 1 1 1 1 1
7 I 3 1 1 1 1 3 3
8 IIIa 1 1 2 1 1 2 1
9 single 1 1 1 1 1 1 1

10 II/IIIb 1 2 1 1 5 2 10
11 IIIb 1 1 1 1 9 1 9
12 single 1 1 1 1 1 1 1

Total 34 56

Note. aA published primary study that reports only one estimate of sensitivity and
specificity is referred to as single study type. A publication for which one or more
of the values m, c, n, p and t is greater than 1 is referred to as a multiple study, where
m is the number of test entities (m > 1 for multiple-study type I), c is the number of
cut-off values (c > 1 for multiple-study type II), n and p is the number of negative
and positive reference populations considered, respectively (n + p > 2 for multiple-
study type IIIa), and t is the number of time points at which the positive reference
populations was evaluated (t > 1 for multiple-study type IIIb).
bPUBNR=publication number.
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11.3.2 Influential Factors for Sensitivity and Specificity

We found a wide range of estimates for specificity and particularly for sensitiv-
ity. The variability was not only due to different cut-off values as suggested by
the deviations of data points from the summary ROC function (Figure 11.1).
The interest was to identify the main reasons for this variability. An over-
whelming positive effect of AGPREP on specificity was observed (Table 11.2).
Therefore, sub-studies that used an elaborated antigen (AGPREP = 1) were
excluded from the analysis of further explanatory factors for specificity.

Table 11.2 Impact of the Type of Antigen Preparation (Crude and Elaborated) Used
in Trichinella Antibody ELISAs on the Test Specificity (Ŝp) Based on 12 Studies
Published Between 1990 and 1995

Crude (AGPREP = 0) Elaborated (AGPREP = 1)

Ŝp < 1 19 0
Ŝp = 1 8 7

Using a stepwise backward fitting procedure of a mixed logistic regression
model, we identified four variables as potential factors for specificity. Four
other candidate variables (CONJ, SPW, NNEG, RESUBST) were excluded due
to non-significant LRSs. The extension of the base model that included the
fixed effects intercept, the counter parameter, and the random effects term by
the four explanatory variables was significant (LRS (df = 4) = 31.4, p < .001).
According to the (Wald test significant) effects in the final model, the specificity
appeared to be better in studies published after 1991 (YEAR, p < .001), better
in humans than in swine (SPECIES, p = .010), better in single-point assays
than in titration assays (TITER, p < .001), and better in healthy, non-target or
unrelated reference controls than in any other control samples (STATN, p =
.001). The counter-parameter (logit Se) had a significant (p < .001) negative
effect (Table 11.3).

The inferences from univariate analyses were consistent for two (TITER,
STATN) variables. The effects of YEAR and SPECIES were not discovered
whereas NNEG = 1 and RESUBST were associated with a positive and nega-
tive univariate effect. For the analysis of potential factors for sensitivity, we se-
lected (stepwise backward fitting procedure) four variables as potential factors
for specificity. Five other candidates for sensitivity analysis (YEAR, ANTIG,
CONJ, TITER, RESUBST) were excluded due to non-significant LRSs. The ex-
tension of the base model by the four explanatory variables was significant
(LRS(df = 6) = 321.6, p < .001). According to the (Wald test significant)
effects in the final model, the sensitivity appeared to be better in swine than
in humans (SPECIES, p = .005), better in any other than extreme cases or ex-
perimental infections (STATP, p = .005), better when samples where taken 26
days or more after infection (DPI = 1, p < .001), and better in sub-studies that
used a sample size between 16 and 50 in than smaller sub-studies (NPOS = 1,
p = .006). The counter-parameter (logit Sp) had a significant (p < .001) neg-
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Table 11.3 Coefficients (and Wald Test p-values) From Univariate and Multivariate
Mixed Effects Logistic Regression Models for Analysis of Explanatory Variables for
the Diagnostic Specificity and Sensitivity of Trichinella Antibody ELISAs (Meta-
Analysis of 12 Studies Published Between 1990 and 1995)a

Variableb Specificity (Sp) Sensitivity (Se)

Univariate Multivariate Univariate Multivariate

YEAR 0.31 (.439) 1.17 (< .001) 0.08 (.610) n.i.
SPECIES 0.71 (.258) −1.67 (.010) 0.22 (.119) 4.25 (.005)
AGPREP n.i. n.i. 0.86 (.001) n.i.
CONJUG −17.40 (.999) n.i. −1.58 (.061) n.i.
TITER −1.08 (.018) −1.70 (< .001) 0.02 (.936) n.i.
SPW 0.21 (.637) n.i. n.a. n.a.
STATN −2.07 (.006) −2.43 (.001) n.a. n.a.
STATP n.a. n.a. −0.19 (.162) 4.25 (.005)
DPI n.a. n.a. 21.3 (.995) 20.38 (.995)

3.5 (<.001) 3.65 (< .001)
NPOS n.a. n.a. −0.15 (.620) 0.23 (.455)

0 (.994) 0.96 (.006)
RESUBST −0.56 (.046) n.i. 0.32 (.461) n.i.
X n.a. −0.57 (< .001) n.a. −0.27 (< .001)

Note. n.i. = variable not included; n.a. = variable not applicable.
aFinal multivariate models (Sp: n = 27; Se: n = 56) obtained by stepwise backwards
fitting starting. Base models included intercept term, counter parameter (logit(Ŝe) and
logit (Ŝp) for analysis of Sp and Se analysis, respectively), and a random effects (RE)
term. The coefficient for the RE term was 0.23 × 10−14, and 0.95 for the Sp and Se
model, respectively.
bYEAR, publication year (0 = 1990, 1991, 1 = 1992+); SPECIES (0 = human, 1 = swine);
AGPREP, coating antigen (0 = crude preparation or extract of larval antigen, 1 = ex-
cretory/secretory antigen or purified preparations); CONJUG, specificity of the anti
species-enzyme conjugate (0 = anti whole-Ig fraction, 1 = anti IgM, IgG, or IgE); TITER,
dilution of serum samples (0 = no titration, 1 = titration); SPW, specificity optimized
(0 = no, 1 = yes); STATN, status of the negative reference population (RP) (0 = healthy
controls, samples from a non-target population or unrelated diseases, 1 = any other se-
lection); STATP, status of the positive RP (0 = experimental infection or extreme cases,
1 = any other selection); DPI, days post infection (0 = 10–25, 1 = 26+, 2 = no infor-
mation); NNEG and NPOS, categorized sample size for the positive and negative RP,
respectively (0 = 5–15, 1 = 16–50, 2 = 51+); RESUBST, identity of the RP for cut-off
selection and validation (0 = no, 1 = yes); X = counter parameter. The base category
is 0 for all variables. For variables with more than two categories, the coefficients are
shown for categories in decreasing order.
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ative effect (Table 11.3). By univariate analysis we found a consistent effect
of DPI = 1 whereas discrepant results were obtained for SPECIES, STATP and
NPOS = 1 (no effects) and for AGPREP (positive effect).

11.4 DISCUSSION

11.4.1 Parameter Heterogeneity and the Impact of Influential Covariate
Factors

The objective of the study was to analyze influential factors for specificity and
sensitivity of trichinellosis antibody ELISAs based on a systematic review of
the literature. Our intention was not to estimate the “global diagnostic accu-
racy” of trichinellosis serology. Such an enterprise was strictly invalid due
to the inclusion of different test systems in our review. The wide range of
marginal conditions in the published studies a priori justified the assumption
of parameter heterogeneity (i.e., differences in the diagnostic accuracy between
studies). In fact, homogeneity could be rejected for sensitivity but not for speci-
ficity. However, since the power of homogeneity tests is generally limited, we
continued to investigate explanatory factors for sensitivity and specificity us-
ing two separate logistic regression models.

11.4.2 Problem of Multiple Sub-Studies per Publication

Typically, test validation studies are pre-stratified in their design. That means,
sample sizes and population characteristics are pre-determined and, conse-
quently, Se and Sp are stochastically independent random variables. A prob-
lem arises when multiple estimates of Se and/or Sp are reported in primary
studies, for example, when more than two reference samples (multiple-study
type IIIa) or repeated measurements (multiple-study type IIIb) are encoun-
tered. Obviously, the pooling of type III study data results in a loss of in-
formation that may be useful to study influential factors for test accuracy. On
the other hand, since meta-analysis generally deals with summary measures of
sensitivity and specificity, a complete analysis should involve all possible com-
binations of the reported Se and Sp estimates, which results in a data augmen-
tation. A preliminary analysis of this data set treated these combinations as if
they were independent (Greiner et al., 1997). This approach was associated,
however, with (i) a substantial violation of the independence assumption, (ii)
a severe bias towards significant effects (due to artificially increased sample
sizes) and (iii) the risk of bias (with unpredictable direction) due to inappro-
priate weights. More stringent inclusion criteria and complete avoidance of re-
peated measurements at the same population were a solution to the problem if
the overall goal was to estimate the summary effect size. The separate analysis
of specificity and sensitivity may provide a solution to the problem. We have
included the counter-parameter into the explanatory part of the models in or-
der to account for the inherent impact of the cut-off value. The lack of inde-
pendence within publications was considered when we chose a mixed effects
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model with a random effects term and the publication as matching variable.
This approach allows an estimate of effect sizes in the presence of overdisper-
sion (as caused by correlation within publications).

11.4.3 Interpretation of the Multivariate Analyses

We started by postulating that certain covariate factors may be influential for
either sensitivity or specificity. Multivariate models that use summary mea-
sures (e.g., Moses et al., 1993; Hasselblad & Hedges, 1995) are not suitable
to discover such factors. Our analysis overcomes this problem but is limited
through the number of published, eligible studies. Petitti (1994, p. 126) argued
that a small number of studies should not preclude the application of regres-
sion methods, but the number of explanatory variables should be kept small.
Using stepwise backwards fitting, eight and nine variables could be investi-
gated simultaneously for analysis of specificity and sensitivity, respectively.
The final mixed effects logistic regression models included four explanatory
variables (in each case) besides the counter-parameter.

The test specificity was better in tests that used an elaborated antigen as
shown by cross-tabulation (Table 11.2). The results of the multivariate analysis
of specificity pertain to studies that used a crude or extract antigen prepara-
tion (AGPREP = 0). In these studies, the publication year was positively as-
sociated with an increase in specificity. Unobserved changes in technical or
other factors (as expressed by the surrogate variable YEAR) may have led to
a better specificity. Interestingly, a better specificity and worse sensitivity in
humans than in swine was found. This finding might reflect a different med-
ical decision making situation. Trichinellosis serology in medicine usually is
a confirmatory instrument (with emphasis on specificity) whereas screening
applications (with emphasis on sensitivity) are dominating in veterinary ap-
plications. This effect cannot be explained by the choice of the cut-off value
because the analysis was adjusted for the counter-parameter. The data also
suggest that titration methods do not improve the test properties. In fact, ac-
cording to our results, titration was associated with worse specificity. Single-
point ELISAs - preferred for practical and economic reasons - have been recom-
mended for veterinary seroepidemiologic applications (Wright, Nilsson, van
Rooij, Lelenta, & Jeggo, 1993). The selection of reference populations is a criti-
cal factor in the evaluation process as pointed out elsewhere (e.g., Knottnerus
& Leffers, 1992). It is also well recognized that likelihood ratios of diagnostic
tests (i.e., combined expressions of Se and Sp used to establish post-test prob-
abilities) are not invariant to changes in the source population (e.g., Miettinen
& Caro, 1994). Our results confirm that the specificity may be overestimated
when using healthy or non-target populations or patients with unrelated dis-
eases as negative reference population. Experimental infections (in swine)
and clinically advanced cases (in humans) were unexpectedly associated with
worse sensitivity than other selections of positive reference populations. The
opposite seems to be a common finding in laboratory sciences according to
Gerhardt and Keller (1986). The duration of infection prior to sampling is re-



176 Meta-analysis of diagnostic tests using logistic regression

lated to the degree to which specific antibodies have been produced and, thus,
can be considered a true factor for sensitivity. The positive effect of medium
sample sizes on the sensitivity is obscure and may be due to uncontrolled con-
founding. Finally, the negative weights of the counter-parameters included
in the models underline the inherent effect of the cut-off value. We had ex-
pected that other variables such as the type of immunoglobulin detected with
the test would contribute to the explanation of the observed variability of sen-
sitivity and specificity as well. We cannot rule out any of those factors since
the number of studies included in our analysis was fairly small. Some of the
above mentioned effects were also detected by univariate analysis. However,
eight discrepant results show that the lack of adjustment for confounding and
interaction may lead to invalid inferences.

11.4.4 Limitations

Some potentially important design factors were not included in the analysis
because of their distribution. Blinding, for example, has been suggested as
a standard for validation studies (Mulrow, Linn, Gaul, & Pugh, 1989). The
knowledge of the true disease status might result in biased (too optimistic) ac-
curacy parameters (“test review bias”; Begg, 1987). Only one (human trichinel-
losis; PUBNR 1) of the reviewed studies indicated that samples were coded
prior to analysis. Furthermore, the diagnostic accuracy will be enhanced if test
results within an intermediate range (“grey zone”) were excluded from sen-
sitivity and specificity calculations. Two studies (one on human and one on
porcine trichinellosis; PUBNR 6, 9) used intermediate ranges.

11.5 CONCLUSION

The mixed logistic regression models described above have been found suit-
able to investigate influential factors for specificity and sensitivity of a diag-
nostic test based on a quantitative, systematic review of the literature. The
approach allows the inclusion of studies that contribute more than one pair of
parameters.
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Summary

Meta-analyses in the area of hospital and clinical epidemiology have been
done for quite some time. Typically, the quantitative part of such analy-
ses is to provide pooled estimators of new hygiene measures or clinical
interventions, respectively. If the sizes of the effect in the studies of a
meta-analysis were considered to be nearly identical, then the respective
pooled estimator could be interpreted as an estimate of the common ef-
fect of the new measure. Otherwise, it could be interpreted as an estimate
of a mean effect. To draw practical consequences from a mean effect es-
timation, a description of the heterogeneity of effects is necessary. Such
a description is not provided by the standard random effect estimator,
which assumes normal distributed study specific effects. As an alterna-
tive, a non-parametrical random effect estimator is suggested. This esti-
mator is based on a finite mixed generalized linear model. These models
have proven to be very flexible and useful to estimate mean effect sizes
and to explain heterogeneity, because they allow for non-normal random
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effects and to use covariables to explain baseline and effect heterogeneity
for several effect measurements. The method is illustrated using data of
two meta-analyses, which have been published recently by Thompson
and Sharp (1999) as well as Veenstra, Saint, Saha, Lumley, and Sullivan
(1999).

12.1 INTRODUCTION

A main task of hospital epidemiology is to evaluate the hygiene regulations
in hospitals with respect to hospital acquired or nosocomial infections. For ex-
ample, hospital epidemiological studies have to justify certain infection control
measures such as modification of central venous catheters to reduce catheter
related blood stream infections. For several reasons, hospital epidemiologi-
cal studies are usually small with respect to the number of patients. Hence,
a single study provides only little evidence to indicate that a certain hygiene
regulation is better than a standard one. Therefore, meta-analyses in this area
have been done for quite some time. The quantitative part of such an analysis
is to provide a pooled estimator of the effect of the new hygiene measure. If
the sizes of the effect in several studies of a meta-analysis were considered to
be nearly identical, such a pooled estimator could be interpreted as an estimate
of the common effect of the new measure. It could otherwise be interpreted as
an estimate of a mean effect. To draw practical consequences from a mean effect
estimation, a description of the heterogeneity of effects is necessary.

12.1.1 The Data Base

Meta-analyses in hospital epidemiology are typically based on count data ob-
tained in several studies. These are mostly intervention studies. The nature of
the count data that can be used does not only depend on the study design but
also on the available study report. Two typical types of data layout of studies
are shown in Tables 12.1 and 12.2.

Table 12.1 Prevalence Data

Hygiene Regulations Number of Patients Infected Number of Patients

Standard n0 N0
New n1 N1

Σ n N

Incidence data are published from cohort studies, whereas prevalence data
are published either from cohort studies or from cross-sectional studies. In ad-
dition to this count data, characteristics of the studies like “year of the study”
and “type of hospital” are also available. Mostly, the count data are also avail-
able for subgroups of the study populations. Such subgroups are defined by
cross classifications by characteristics like “hospital ward”, “gender”, “sever-
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Table 12.2 Incidence Data

Hygiene Regulations Number of Infections Patient Days

Standard n0 N0
New n1 N1

Σ n N

ity of disease”, and “age group”. These groups are called “units of the study”.
Their defining characteristics are called “first order variables”, whereas charac-
teristics of the studies are called “second order variables”. The binary indicator
variable “hygiene regulations” (1 = new regulations, 0 = standard regulations)
is an example of a first order variable. This is usually the variable of main inter-
est. Of course, it always has to be available. Sometimes, but very rarely, both
outcome and explanatory variables of individuals (patients) can be obtained,
that is, units are individuals. The meta-analysis can be considered then as the
evaluation of a multi-center study.

12.1.2 Effect Measurements and Baseline Heterogeneity

Let
RS =

n0

N0
and RN =

n1

N1

denote the infection rates under the standard and the new hygiene regulations,
respectively. These two quantities can be used to measure the effectiveness of
the new regulations. An overview of measures that are in some use is given
in Olkin (1999). The most popular ones are the logarithm of the relative risk
(log(RR)), the logarithm of the odds ratio (log(OR)) and the risk difference
(RD):

log(RR) = log(RN)− log(RS)
log(OR) = log(RN/(1− RN))− log(RS/(1− RS))

RD = RS − RN.

Another often used measure and one which can be derived from the risk dif-
ference is the number needed to treat (NNT):

NNT = 1/(RS − RN).

In cohort studies, an intuitively appealing measure of efficacy of new hygiene
regulations is

e f = RD/RS. (12.1)

It is just the probability that a certain patient who would be infected in a certain
period of time under standard hygiene regulations will not be infected in the
same period of time under the new hygiene regulations. From Equation 12.1 it
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follows that

OR =
1− e f − RS · (1− e f )

1− RS · (1− e f )
RR = 1− e f ,
RD = RS · e f ,

and

NNT = 1/(RS · e f ).

Thus, one reason for heterogeneity of OR, RD, and NNT in the several studies
could be baseline heterogeneity, which is the heterogeneity of the rates under
standard regulations RS. Baseline heterogeneity is very common in hospital
epidemiologic meta-analyses. The advantage of relative risk RR is that it does
not depend on baseline rates. The common efficacy e f can be estimated by the
common relative risk RR without considering the baseline heterogeneity and
explanatory variables of baseline heterogeneity.

In the case of cross-sectional studies, the odds ratio is preferred. Thereby, the
odds ratio is considered as an estimation of the relative risk. This is justified by
assuming the mean duration of an infection under the new regulations to be
about the same as under the standard regulations. Let D denote the common
mean duration of an infection and R

′
S and R

′
N the underlying incidence under

the standard regulations and the new regulations, respectively. Under steady
state conditions it holds

RS

1− RS
= R

′
S · D

and

RN

1− RN
= R

′
N · D.

Therefore,

RR
′
=

R
′
N

R′
S

=
RN · (1− RS)
(1− RN) · RS

= OR.

Thus, in the case of cross-sectional studies, we have an estimation of the odds
ratio OR, which is an estimation of the relative risk RR in the study popula-
tion. To compute asymptotical confidence intervals in the case of small sample
sizes, it is advantageous to use log(RR) and log(OR) instead of RR and OR,
respectively.
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12.1.3 Heterogeneity of Effect Size and Standard Methods of
Meta-Analysis

Let b̂1, b̂2, . . . , b̂J denote the effect size estimates in the J studies considered and
let w1, w2, . . . , wJ denote their respective inverse variances. Common effect size
(m) and its standard error (SE) are usually estimated by

m̂ =

J
∑

j=1
wjb̂j

J
∑

j=1
wj

and

SE(m̂) =

(
J

∑
j=1

wj

)− 1
2

,

respectively. The null hypothesis H0 : m = 0 is rejected if the absolute value
of

T =

J
∑

j=1
wjb̂j√
J

∑
j=1

wj

is larger than the (1− α)-quantile of the standard normal distribution, where
α is the test level chosen (Thompson, 1993). If the assumption of a common
effect size does not hold, a random effect has to be assumed. The standard
random effect model is

bj ∼ N (m, τ2)

and

b̂j ∼ N (bj, w−1
j ).

It is assumed that the effect sizes of the selected studies are normally dis-
tributed with a certain unknown mean value m and a certain unknown vari-
ance τ2. As a respective estimate of the mean effect size m,

m̂∗ =

J
∑

j=1
w∗

j b̂j

J
∑

j=1
w∗

j
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is used, where w∗
j = (w−1

j + τ̂2)−1 and τ̂2 is a suitable estimator of effect vari-
ance τ2. Confidence intervals and significance tests of the mean effect size can
be obtained in a similar fashion as for the common effect estimation. One has
simply to replace the wj by the w∗

j in the respective formulas above. As an
estimator of τ2,

τ̂2 = max

(
Q− J + 1

∑ wj −∑ w2
j / ∑ wj

, 0

)
(12.2)

can be used (DerSimonian & Laird, 1986). The quantity

Q =
J

∑
j=1

wj(b̂j − b̂)2

in Equation 12.2 can also be used as a test statistic of heterogeneity. If the null
hypothesis is true (no heterogeneity), then Q is distributed as χ2 with J − 1
degrees of freedom.

The assumption of a normal distribution of the effect size in the standard
random effect model is needed to theoretically justify the mean and variance
estimator of the effect size. On the other hand, this assumption provides the
“mean effect size” with a certain statistical meaning. However, this assump-
tion is rather restrictive. It is usually not provable, because of the relative
small number of studies in a meta-analysis. Consequently, the scientific value
and the clinical relevance of the result of meta-analysis based on the standard
model are limited. Therefore, more general approaches have been considered
recently (Thompson & Sharp, 1999; Aitkin, 1999a; Böhning, 2000a).

In this chapter, a certain generalization of the standard method above is
presented and applied to example data. The generalizations are

1 the allowance for non-normal random effects, and

2 the use of covariables to explain baseline and effect heterogeneity.

12.2 THE MODEL

Let yij denote the value of the count number observed at the ith unit in the jth
study, j = 1, 2, . . . , J; i = 1, 2, . . . , nj. The observations yij are assumed to be
independent random variables having expectations

E(yij) = µij, i = 1, . . . nj; j = 1, . . . , J.

In the case of prevalence data

yij ∼ Binomial(µij, Nij)
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is assumed. If the units are individuals, Nij = 1 ∀i, j. In the case of incidence
data

yij ∼ Poisson(µij)

is assumed. In both cases, the mean parameter µij is linked with a linear pre-
dictor LP

g(µij) = LPij

by a suitable link function g(·), as usual in generalized linear models. For
prevalence data (binomial models), we consider the linear predictor

LPij = βT
1 Xij + βT

2 Xj + zj + bjxij,

where Xij is a vector of first order variables, Xj is a vector of second order
variables, xij is the binary indicator of the new hygiene regulations (1 = new
hygiene regulations, 0 = standard hygiene regulations), and β1 and β2 are un-
known parameter vectors. zj and bj are random effects with a joint distribution(

zj
bj

)
∼ φ(z, b) ∀j.

φ remains completely unspecified. The expectation of bj is the mean effect size
m∗, which we are particularly interested in. If there is no effect heterogeneity,
then the linear predictor can be simplified by replacing bj by the fixed effect
parameter m in the linear predictor above. If the logit link function g(µij) =
log(µij/(1− µij)) is used, then m∗ is just the mean log odds ratio.

This model is very flexible and more general than the standard random ef-
fect model of meta-analysis. Baseline heterogeneity is explained by the covari-
ables and by the random effect zj. Effect heterogeneity is explained by first
level covariables and by the random effect bj of this model. Note, that in case
of the logit link the log odds ratio of the r1th unit versus r0th unit of the jth
study is

logit(µr1 j)− logit(µr0 j) = βT
1 (Xr1 j − Xr0 j) + bj(xr1 j − xr0 j),

where the second term of the right side simplifies to bj if the r1th unit is a
treatment unit and the r0th unit is a control unit. Another possibility to explain
effect heterogeneity is to augment the linear predictor by interaction terms of
second level explanatory variables and the treatment indicator xij.

For Poisson models, we consider the linear predictor

LPij = βT
1 Xij + βT

2 Xj + zj + bjxij + log(Nij).

The difference to the former linear predictor is the additional offset term
log(Nij). Using the log link g(·) = log(·) leads immediately to

m∗ = E(log(RR)).
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12.3 ML-ESTIMATION

To obtain maximum likelihood estimates of β1, β2, and the parameter vector θ
of φ, the likelihood function

L(β1, β2, θ) =
J

∏
j=1

∫ { nj

∏
i=1

f (yij | zj, bj, β1, β2, Xj, Xij)

}
φ(zj, bj)∂zj∂bj (12.3)

has to be maximized , where

f (yij | zj, bj, β1, β2, Xj, Xij) = f (yij | LPij)

denotes the respective conditional probability density distribution of yij given
the linear predictor. Because we have not specified the distribution φ(zj, bj), we
have to look for its nonparametric estimate. For this purpose, it is sufficient
to consider two-dimensional discrete distributions with less than J + 1 mass
points

φ(z, b) =

pk if

(
z
b

)
=

(
zk

bk

)
,

0 otherwise.

k = 1, . . . , K; K ≤ J.

(see Aitkin, 1999a, 1999b). This distribution has (3 · K − 1) parameters, which
are z = (z1, z2, . . . , zK), b = (b1, b2, . . . , bK), and p = (p1, p2, . . . , pK−1), where
pK = 1−∑K−1

k=1 pk. When using such a distribution, Equation 12.3 simplifies to

L(β1, β2, p, b, z) =
J

∏
j=1

K

∑
k=1

pk

nj

∏
i=1

f (yij | LPijk)

and the respective log likelihood function is obtained as

LL(β1, β2, p, b, z) =
J

∑
j=1

log
K

∑
k=1

pk

nj

∏
i=1

f (yij | LPijk),

where

LPijk = βT
1 Xij + βT

2 Xj + zk + bkxij

or

LPijk = βT
1 Xij + βT

2 Xj + zk + bkxij + log(Nij)

for the binomial model and for the Poisson model, respectively. These are the
likelihood function and the log likelihood function of a finite mixed general-
ized linear model. An EM-algorithm and respective GLIM programs to com-
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pute the ML-estimation of such models are described in Dietz and Böhning
(1994, 1995) as well as in Aitkin (1999b).

Note that K is an unknown parameter of the log likelihood function above.
To find the ML-estimate of K, we maximize LL for a fixed sufficiently large
value K. Next, we systematically reduce the value of K to that value K−, where
the maximum of LL decreases for the first time. Then, we consider K̂ = K− + 1
as the ML-estimate and the respective estimates of p = (p1, p2, . . . , pK̂), z =
(z1, z2, . . . , zK̂), and b = (b1, b2, . . . , bK̂) as the nonparametric estimate of φ. An
estimate of the mean effect can be obtained by

m̂∗ =
K̂

∑
k=1

p̂kb̂k

and its variance by

τ̂2 =
K̂

∑
k=1

p̂kb̂2
k −

(
K̂

∑
k=1

p̂kb̂k

)2

.

The posterior probability that the jth study comes from the kth mixture com-
ponent (C) can be computed by

pr(j ∈ Ck | y1j, y2j, · · · , ynj j, p̂, ẑ, b̂, β̂1, β̂2) =
p̂k ∏

nj
i=1 f (yij | L̂Pijk)

∑K̂
r=1 p̂r ∏

nj
i=1 f (yij | L̂Pijr)

, (12.4)

where
L̂Pijr = β̂T

1 Xij + β̂T
2 Xj + ẑr + b̂rxij + log(Nij)

for the Poisson models and without the last term for the binomial models.
These probabilities can be used to obtain a classification of the studies. Such a
classification is useful not only for a description of the heterogeneity but also
for identification of further explanations of the heterogeneity in addition to the
explanatory variables in the model. We now illustrate the method on data of
two recently published meta-analyses.

12.4 EXAMPLES

12.4.1 Central Venous Catheters

The first example is a meta-analysis to assess the efficacy of chlorhexidine-
silver sulfadiazine-impregnated central venous catheters for the prevention of
nosocomial catheter colonization (NCC) and catheter-related bloodstream in-
fection, described in Veenstra et al. (1999). We will reanalyze the published
NCC data. Table 12.3 contains the count data of the 12 studies included in this
meta-analysis. Here, the units are the sets of impregnated catheters and the
sets of non-impregnated catheters in the studies. Thus, we have two units per
study, totaling 24 units. The outcome variable is the number of catheter col-
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onizations identified by the same culture techniques of intravascular catheter
segments.

Table 12.3 Count Data and Characteristics of 12 Studies on the Efficacy of
Chlorhexidine-Silver Sulfadiazine-Impregnation of Central Venous Catheters for
the Prevention of Nosocomial Catheter Colonization

Impregnated Non-Impregnated Study Characteristics

Study n1 N1 MCD n0 N0 MCD YEAR CEX PP

1 8 137 5.1 32 145 5.3 1997 0 0
2 28 208 6.0 47 195 6.0 1997 1 0
3 4 28 6.6 10 26 6.8 1996 0 0
4 22 68 7.0 22 60 8.0 1996 - 0
5 0 14 7.0 4 12 7.0 1994 0 0
6 2 116 7.7 16 117 7.7 1996 0 2
7 60 151 8.5 82 157 9.0 1988 1 0
8 2 98 9.0 25 139 7.3 1999 1 3
9 15 124 9.6 21 127 9.1 1996 1 0

10 45 199 10.9 63 189 10.9 1994 0 0
11 16 123 11.2 24 99 6.7 1995 1 0
12 10 44 8.0 25 35 7.6 1997 1 1

Note. n1 = number of colonized impregnated catheters, N1 = number of impregnated
catheters, MCD = mean catheter duration, n0 = number of colonized non-impregnated
catheters, N0 = number of non-impregnated catheters, YEAR = year of study, CEX =
catheter exchange, PP = patient population.

Besides the count data, several characteristics of the studies and of the units
were obtained and could be used as first and second level variables in our anal-
ysis. Table 12.3 contains one first level variable, which is the mean catheter du-
ration (MCD) in the unit, and three second level variables, which are “year of
the study”, a binary variable, which indicates whether catheter exchange took
place within the study (CEX), and a 4-categorical characteristic of the patient
population of the study (PP). Their categories are: 1 = transplant ward, 2 = sur-
gical ward, 3 = emergency department, and 0 = other wards. The count data
in Table 12.3 yield prevalence rates. Therefore, it is reasonable to use the odds
ratio as measure of efficacy. Application of the standard method described in
Section 12.1.3 yields an estimate of a common odds ratio OR = 0.47 (0.38, 0.57),
where the numbers within the brackets are the lower and the upper bound of
its 95% confidence interval.

Since the heterogeneity of the 12 studies is highly significant (Q = 26.7,
p = .005), a common efficacy of all studies cannot really be assumed. There-
fore, confidence intervals cannot be interpreted. One has to switch to a ran-
dom effect model. After computing the effect heterogeneity as τ2 = 0.202
on the basis of the standard random effect model assumptions, the odds ratio
estimate OR∗ = 0.39 (0.27, 0.55) as a mean effect estimate is obtained. This es-
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timate indicates an even higher effect of the chlorhexidine-silver sulfadiazine-
impregnation than the common effect size estimate because its value and also
its upper confidence bound is lower.

Nevertheless, the standard random effect estimate is doubtful because its
assumption of a normal distributed random effect cannot be verified by the
data available. If this assumption is not true, and if nothing is known about
the real distribution of the odds ratios, then few practical conclusions can be
drawn from this result. Generally, it holds that a mean prevention effect does
not contradict the possibility that the prevention measure actually increases
the infection risk in some of the studies. So, a general recommendation of the
measure cannot be given.

To overcome the drawback of the standard method, the nonparametric max-
imum likelihood approach described in Sections 12.2 and 12.3 is used. In a
first step, mixed logistic regression models with a fixed treatment effect (bk =
m, ∀k) and without further covariables were fitted. The intercept was the only
random effect in these models. We call this step “analysis of baseline heteroge-
neity”. We started with K = 8 mixture components and reduced this number
systematically. The first increase of the deviance (decrease of log likelihood)
can be observed from K = 4 (deviance = 69.4) to K = 3 (deviance = 78.3). So
4 was considered as the maximum likelihood estimate of K. The mean treat-
ment effect estimate in this 4-component mixture model is OR∗ = 0.44 (0.33,
0.59).

In a second step, called “analysis of effect heterogeneity”, the fixed treat-
ment effect in the model is replaced by a random effect. Again, the respective
nonparametric maximum likelihood estimate of this model can be obtained by
the maximum likelihood estimation of a finite mixture model. As an estimate
of the number of components, K̂ = 5 with a deviance 49.1 is obtained. On
the basis of the 5-component mixture model, the mean effect size estimate is
OR∗ = 0.33 (0.22, 0.49). Note that, although this approach uses weaker model
assumptions, its effect estimator indicates a slightly stronger treatment effect
than those obtained as fixed model estimate and as standard random effect es-
timate. However, as already mentioned above, it is difficult to interpret a mean
effect size if nothing is known about the distribution of the random effect. One
nice property of our approach is that we have an estimate of the whole random
effect distribution as a byproduct. This is a finite mixture distribution with 5
components in this case. Each component has its own effect size estimate and
each study can be classified into one of these components by Equation 12.4.
The results are shown in Table 12.4.

Each of the 5 component effect size estimates are smaller than one, although
they are not statistically significant in the third and fourth component. Thus,
our meta-analysis provides some evidence that the use of chlorhexidine-silver
sulfadiazine-impregnation generally reduces the risk of catheter colonization.

There are two mixture components (1 and 5) with an especially high treat-
ment efficacy. Their odds ratio estimates are OR1 = 0.1 and OR5 = 0.11,
respectively, whereas the odds ratios of the other components are about 0.5.
Three studies (6, 8, 12) are allocated to these components. In order to describe
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Table 12.4 Nonparametric ML-Estimate of the Treatment Effect Distribution and
Classification of the Studies by Their Posteriori Component Membership Probabil-
ity

Component (k) ORk = exp(bk) CI pk Allocated Studies

1 0.10 (0.03, 0.42) .19 6, 8
2 0.44 (0.28, 0.69) .42 1, 2, 5, 9, 11
3 0.62 (0.36, 1.04) .21 3, 4, 10
4 0.60 (0.32, 1.14) .09 7
5 0.11 (0.03, 0.50) .08 12

Note. ORk = odds ratio as effect size estimate, CI = confidence interval, pk = posteriori
component membership probability.

situations where the efficacy of the prevention measure is particularly high,
one should try to characterize their study population. Study 12 is the only
study which was exclusively performed in a transplant ward. The patients
of the studies 6 and 8 were from a surgical ward and an emergency depart-
ment, respectively. Thus, if the patient population of the studies could be con-
sidered as a representative sample of the all patients in the respective wards,
then there would be some evidence that the chlorhexidine-silver sulfadiazine-
impregnation should be recommended especially in transplant, surgical, and
emergency wards. In order to obtain a more complete picture, we tried to ex-
plain the two kinds of heterogeneity in the studies not only by the variable
“patient population” but also by all covariables available. Only two second
level variables turned out to provide some significant explanation. These are
the mean catheter duration in the control group (MCD0) and the binary indi-
cator of the transplant ward (TU). In order to explain not only the baseline
heterogeneity but also the effect heterogeneity, we additionally included the
interaction terms TU · xij and ∆MCD · xij into the model, in which xij is the
treatment indicator and ∆MCD denotes the difference of the mean catheter
duration between control group and treatment group. The latter quantity is a
derived second level variable which serves to adjust the effect estimate for the
potential bias introduced by non-zero differences.

The inclusion of these variables explains a great deal of the heterogeneity
in the data. The respective nonparametric ML-estimate of the random effect
model is only a two-component mixture. Table 12.5 shows the effect estimates
of the covariables in this model.

Both TU and its interaction with the treatment are significant. Consequently,
the transplant ward study is a main source of both baseline heterogeneity and
effect heterogeneity.

Also, the baseline mean catheter duration has a significant positive effect.
That is, the larger the catheter duration, the higher the risk of catheter colo-
nization. The variable MCD0 can only explain baseline heterogeneity. The
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Table 12.5 ML-Estimates of the Coefficients of the Covariables in a 2-Component
Mixed Logistic Regression Model

Variable Estimate Standard Error

TU 1.156 0.531
MCD0 0.134 0.040
TU · xij −1.698 0.722

∆MCD · xij 0.010 0.086

Note. TU = binary indicator of the transplant ward, MCD0 = mean catheter duration
in the control group, xij = treatment indicator, ∆MCD = difference of the mean catheter
duration between control group and treatment group.

term ∆MCD · xij is not significant and provides only inconsiderable explana-
tion of effect heterogeneity.

Table 12.6 shows the nonparametric ML-estimate of the treatment effect and
the respective classification of the studies. Now, most of the studies are classi-
fied into one component with an adjusted effect estimate of OR = 0.43 (0.30,
0.62). Thus, some evidence has been obtained to recommend the prevention
measure in the patient population of all studies in this component. The high
efficacy of the catheter impregnation in the study 12 is already shown by the
significance of the term TU · xij of the model.

Table 12.6 Nonparametric ML-Estimate of Treatment Effect Distribution Adjusted
for Covariables and Classification of the Studies by Their Posteriori Component
Membership Probability

Component (k) ORk = exp(bk) CI pk Allocated Studies

1 0.43 (0.30, 0.62) .73 1, 2, 3, 5, 6, 8, 9, 10, 11
2 0.64 (0.37, 1.10) .27 4, 7, 12

Note. ORk = odds ratio as effect size estimate, CI = confidence interval, pk = posteriori
component membership probability.

The only populations where the efficacy of the prevention measure remains
questionable are those of studies 4 and 7, which are allocated to the second
component. The strategy of further research could be to look for specific char-
acteristics of these two studies, which can explain their worse results.

12.4.2 Ischaemic Heart Disease Events

The data of the second example are given by Thompson and Sharp (1999).
They are taken from 28 randomized trials in which ischaemic heart disease
events are considered as a response variable. An ischaemic heart disease event
is defined as a fatal ischaemic heart disease or a non-fatal myocardial infarc-
tion. Another response variable of these trials is the average serum cholesterol
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reduction. However, this variable will be used as an explanatory variable of
the effect and baseline heterogeneity.

This meta-analysis is not a very typical one in hospital and clinical epidemi-
ology because the prevention measures studied within the trials are very dif-
ferent. The spectrum of applied prevention measures includes dietary inter-
ventions, drugs, and even surgery. However, this meta-analysis is very suit-
able to demonstrate certain potentials of our method. It will be shown that a
meta-analysis can be accomplished sensibly even when the studies considered
have different study factors.

Trial-specific count data and cholesterol reductions are given in Table 12.7.
Also, the count data in Table 12.7 are prevalence-type data. Therefore, the
odds ratio is used again as measure of the efficacy. By applying the standard
method, an estimate of a common odds ratio OR = 0.82 (0.77, 0.88) can be
obtained.

The heterogeneity of the 28 studies is highly significant (Q = 49.1, p = .006),
which is expected because of the different study factors of the studies. The
estimated effect variance is τ2 = 0.202 and the respective mean odds ratio
estimate based on the standard random effect model is OR∗ = 0.81 (0.72, 0.90).

Now, one could proceed as in the previous example and estimate the ran-
dom effects distribution. The aim of this study is not to describe the random
effect distribution but to explain the variation of the odds ratios by the vari-
able “mean cholesterol reduction”. Therefore, we computed the nonparamet-
ric ML-estimation of a random effect model with the explanatory variables
“study” and “mean cholesterol reduction” and with a random treatment ef-
fect.

By assuming that the value of the mean serum cholesterol reduction is equal
to zero in the control groups, this variable can be considered a first level vari-
able. The categorical variable “study” provides the complete explanation of
baseline heterogeneity. K̂ = 1 is obtained as estimate of the number of mix-
ture components. Consequently, the respective table of the effect distribution
estimate and of the study classification has one line only (see Table 12.8).

Thus, the whole effect heterogeneity is explained by the variable mean cho-
lesterol reduction. Its estimated logistic regression coefficient is −0.479 (0.14),
where the number within the brackets is the respective standard error. The
adjusted common treatment effect estimate is ln(OR) = 0.122 (0.10). It is not
significant. The following conclusions can be drawn from these results now:

1 The heterogeneity of the effect sizes in this meta-analysis can be explained
by the variable “mean cholesterol reduction”.

2 The significant mean treatment effect size estimate can be explained by
the cholesterol reduction attained by the prevention measures.

3 The heterogeneity of the effect size can be explained by the heterogenous
effects of the several prevention measures on cholesterol reduction.

4 Serum cholesterol reduction should be a main goal for ischaemic heart
disease prevention.
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Table 12.7 Count Data and one Study Characteristic of 28 Clinical Trials on the
Efficacy of Diverse Prevention Measures to Reduce the Risk of Ischaemic Heart
Disease

Control group Treatment Group Cholesterol

Trial n0 N0 − n0 n1 N1 − n1 Reduction(mmol/l)

1 210 5086 173 5158 0.55
2 85 168 54 190 0.68
3 75 292 54 296 0.85
4 936 1853 676 1546 0.55
5 69 215 42 103 0.59
6 101 175 73 206 0.84
7 193 1707 157 1749 0.65
8 11 61 6 65 0.85
9 42 1087 36 1113 0.49

10 2 28 2 86 0.68
11 84 1946 56 1995 0.69
12 5 89 1 93 1.35
13 121 4395 131 4410 0.70
14 65 357 52 372 0.87
15 52 142 45 154 0.95
16 81 148 61 168 1.13
17 24 213 37 184 0.31
18 11 41 8 20 0.61
19 50 84 47 83 0.57
20 125 292 82 339 1.43
21 20 1643 62 6520 1.08
22 0.5 52.5 2 92 1.48
23 0.5 29.5 1 22 0.56
24 5 25 3 57 1.06
25 144 871 132 886 0.26
26 24 293 35 276 0.76
27 4 74 3 76 0.54
28 19 60 7 69 0.68

Note. IHD events = fatal ischaemic heart disease and non-fatal myocardial infarction,
n0 = number of patients with an IHD event in the control group, N0 = number of
patients in the control group, n1 = number of patients with IHD event in the treatment
group, N1 = number of patients in the treatment group.
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Table 12.8 Nonparametric ML-Estimate of Treatment Effect Distribution Adjusted
for Covariables and Classification of the Studies by Their Posteriori Component
Membership Probability

Component (k) ORk = exp(bk) CI pk Allocated studies

1 1.13 (0.92, 1.37) 1.00 all studies

Note. ORk = odds ratio as effect size estimate, CI = confidence interval, pk = posteriori
component membership probability.

12.5 CONCLUSION

Baseline and effect heterogeneity are almost always present in hospital and
clinical epidemiological meta-analyses. This makes the evaluation of a treat-
ment effect difficult and the use of some standard methods questionable. At-
tempts to restrict the meta-analysis on a homogenous selection of studies can
never be completely successful. On the other hand, such attempts usually
mean renouncing valuable information. It is now generally agreed that meta-
analysis can and should go further than simply producing overall summaries
of effects. In particular, understanding the possible causes of any heteroge-
neity can increase both the scientific value and clinical and epidemiological
relevance of the results from a meta-analysis. In this chapter, an appropriate
method for addressing this issue is presented. This method is based on finite
mixed generalized linear models (FMGLMs), which have proven to be very
flexible tools to estimate mean effect sizes and explain heterogeneity. Different
effect measurements can be considered simply by changing the link function
of the model. For example, using the identity link instead of the logit link leads
to meta-analyses of risk differences instead of odds ratios.

The analysis of the example data shows that much more information can be
gained by this approach than by the standard method. The second example
clearly shows that the heterogeneity itself can be the most interesting subject
of analysis.

There are of course some disadvantages and limitations to this approach.
The first limitation is the fact that the count data of the studies must be avail-
able, which is not always the case. A second limitation is that the number of
studies in the meta-analysis should be larger then 10. Otherwise, the nonpara-
metric maximum likelihood estimation will be doubtful. A third limitation
concerns the number of covariables. This number should not be too large in
comparison to the number of studies. Finally, it should be noted that misin-
terpretation of the effect of second level variables is possible, especially if they
are mean values of the study population.
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Measurement Error and Heterogeneity
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Results in Hodgkin’s Disease
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Summary

For a meta-analysis based on comparisons between studies rather than
controlled comparisons within studies, it is especially important to ex-
plain, estimate, and to allow for the heterogeneity in results between stud-
ies. The danger of bias in the use of “historical controls” is well known.
The aim of the present investigation was to develop a simple method to
analyze differences in results between paediatric and adult clinical trials
in Hodgkin’s disease, through meta-analysis of a full and extensive col-
lection of published results. Patient and treatment characteristics were
included as possible explanatory factors in a generalized linear model.
Sampling errors in the Kaplan-Meier estimates derived in the studies as
well as heterogeneity between studies were estimated iteratively in order
correctly to weight the observations and assess significance while fitting
the model and testing effects. A significant superiority of treatment re-
sults in children, compared with adults, was demonstrated, allowing for
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patient and treatment characteristics. A generalized linear model incor-
porating heterogeneity and explanatory factors was found to be a practi-
cable and flexible method for a “between-studies” meta-analysis, suitable
for investigations where controlled comparisons are not possible or not
available.

13.1 INTRODUCTION

The “standard” type of meta-analysis combines the results of several random-
ized studies, each of which makes the same (randomized) comparison as the
meta-analysis. The technique has been extended to non-randomized investi-
gations, for example, of diagnostic methods or prognostic factors (see Chap-
ters 11 and 6 in this volume). Again, such meta-analyses combine compara-
tive information (relative frequencies, correlations, etc.) from each study. The
meta-analysis addresses the same question as each component study, its ad-
vantage lying in the greater (combined) sample size and therefore power, and
in its greater representativity. In practice, many questions and hypotheses in
clinical research have not been – or cannot be – investigated within studies.
Tentative inferences are then made using comparisons between studies, for in-
stance, a historical comparison between a former treatment and a new treat-
ment. Such comparisons are liable to suffer from hidden or unquantifiable bi-
ases due to systematic differences between the patients, or their treatment, in
the compared studies. Two techniques may help to improve the reliability of
between-study comparisons: firstly, avoiding selection bias and “averaging-
out” of chance differences by systematic inclusion of a large number of rele-
vant studies; secondly, modeling the influence of known study characteristics
to make allowance for biases. This report applies these techniques to the com-
parison of treatment results in Hodgkin’s disease between paediatric and adult
institutions.

13.2 OBJECTIVE

In the development and optimization of therapy for malignant lymphoma it
has been widely observed during the last decades that paediatric treatment re-
sults, as a whole, are superior to those achieved in adults. Since there are sys-
tematic differences in treatment strategy between paediatric and non-paedia-
tric institutions (emphasis on combined chemo-radiotherapy even for early
stages, lower radiation doses, new and more intensive chemotherapies for chil-
dren), the reason for this superiority and the role of patient age were unclear.
Should the type of therapy rather than age per se be responsible for the good
paediatric results, then a rethinking of adult therapy and a borrowing of ideas
from children’s institutions might be fruitful (Magrath, 1997). The aim of the
present analysis was to model the dependence of cure rates in paediatric and
non-paediatric Hodgkin’s disease patient cohorts on the factors age-range of
patients, distribution of disease characteristics in the cohort and type of ther-
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apy. The size of differences, if any, in cure rates between children’s and adults’
cohorts with similar disease characteristics and therapy were to be evaluated.

13.3 METHODS

The publications of studies from which data were to be extracted were selected
using a systematic search in the medical literature database Medline (1980–
1997) followed by the application of several predefined criteria (first-line treat-
ment, sample size at least 30, chemotherapy as main therapy component, ade-
quate information and follow-up). Pure radiotherapy trials were omitted since
children are rarely treated with radiation alone. The patients reported in each
paper were, where appropriate and as far as the sample size and the reported
details allowed, divided into homogeneous cohorts according to disease char-
acteristics and therapy, avoiding subgroups of less than 30 patients.

Data concerning the type of institution or trial group, sample size, distribu-
tion of disease characteristics, type of therapy and Kaplan-Meier estimates of
cure rates (disease free survival (DFS) and overall survival (SV) rates) were ex-
tracted. Cure rates were adjusted to the time point 5 years after first diagnosis,
this adjustment being based on results of a linear regression on pooled data
at multiple time points from all those publications where a Kaplan-Meier plot
covering an adequate time span was given.

The form of this meta-analysis was a generalized linear model (McCullagh
& Nelder, 1989; for some further developments see Nelder, 1998) with cure
rate (S) as response variable:

log (− log(E(S))) = β0 + β1X1 + · · ·+ βkXk.

In order to restrict predicted rates to between 0 and 100%, the complementary
log-log link function was chosen to relate response variable S to the linear com-
bination of explanatory variables X and unknown parameters β. The observed
response is assumed to vary normally about the expected value with variance
comprising two components, namely the sampling error of the Kaplan-Meier
estimate σ2

P (P = variation between patients) and the heterogeneity σ2
C (C =

variation between cohorts):

S ∼ N
(

E(S); σ2
P + σ2

C

)
.

Nine potentially explanatory variables were considered, namely:

• type of institution (single-centre, oligocentric, multicentric)
• recruitment period
• sample size
• proportion with advanced disease (stages III and IV)
• proportion with systemic symptoms
• treatment modality (chemotherapy or combined chemo-radiotherapy)
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• type of chemotherapy

• number of different drugs

• number of cycles of chemotherapy.

The observations were weighted according to their estimated variance: the
standard error of the (iteratively estimated) cure rate according to the formula
of Greenwood (1926) plus a second component allowing for the heterogeneity
between cohorts. The amount of heterogeneity was estimated iteratively from
the sum of squared model residuals, allowing for the contribution due to σ2

P
(iterative reweighting).

Model fitting was performed in SAS by iterative use of the procedure GEN-
MOD. After each model fitting, the fitted values of cure rate and the residuals
were used to estimate the Greenwood standard errors and the heterogeneity
respectively. These estimates were combined to estimate the variance of each
observation and hence its weight for the next fit, until (after typically 4–5 it-
erations) the results were stable (Figure 13.1). Using stepwise regression tech-
niques, the effect of including or excluding each explanatory factor was as-
sessed by the change in log-likelihood. Thus, an “optimal” model including
only the significant explanatory factors was selected.

Initial values of s
C

2 and s
P

2 (Greenwood‘s SE)

START

Calculate weights = 1/(s
C

2+ s
P

2)

Fit model using weights (GENMOD)

Calculate residuals

Calculate s
C

2 from residuals

Calculate s
P

2 from fitted values

END

Iterate
until
stable

Figure 13.1 Iteratively reweighted fitting of the generalized linear model using the
SAS procedure GENMOD.
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The sensitivity of the results to small changes in the model (choice of ex-
planatory factors, logistic link function, uniform weighting, weighting pro-
portional to sample size) was investigated. The model was also fitted to sev-
eral subgroups of the available cohorts (combined modality treatments, pure
chemotherapy treatments, particular chemotherapy schemes, early stages, ad-
vanced stages, larger cohorts) to assess the generalizability of the results.

In order to correct for the poorer prognosis of the elderly patients who were
represented in almost all adult cohorts, the age-specific cure rates of patients
in the multicentre German Hodgkin’s Lymphoma Study group were analyzed.
The effect of older patients in lowering the cure rate of the whole cohort was
estimated. Allowing for this effect enabled us to use the meta-analysis results
to compare children with younger adults alone.

13.4 RESULTS

Thirty-eight paediatric and 85 adult cohorts were selected for inclusion. The
distribution of disease characteristics was similar, on average, in paediatric and
non-paediatric cohorts. However, consistent differences in type of cohort and
type of therapy were seen (Tables 13.1 and 13.2). Due to the lower incidence of
Hodgkin’s disease in children, the paediatric cohorts were on average smaller,
more often multicentric, and less often randomized. Children more often re-
ceived combined modality therapy and a lower radiation dose, and therapy
more often included a more modern, ABVD1-type regimen.

The heterogeneity of both DFS and SV rates between cohorts was signifi-
cant, according to the Q-statistic of DerSimonian and Laird (1986). For DFS,
heterogeneity represented about two-thirds of the residual variation and for
SV, about one-third.

Cure rates were consistently better, on average, for paediatric cohorts than
for adults. Figures 13.2 – 13.4 show examples of the distribution of paediatric
and adult DFS plotted against three of the potential explanatory factors, al-
lowing paediatric and adult results (with respect to the chosen factor) to be
compared. This graphical method of comparison is limited to single explana-
tory factors.

Using the generalized linear modeling technique with all the explanatory
factors listed above, highly significant differences of circa 13% in DFS (95%
confidence interval: 6–19%) and 12% in survival (95% confidence interval: 8–
15%) were found. These differences in cure rates were calculated from the
estimated regression coefficients for the factor paediatric/adult via the link
function (see above). Figure 13.5 shows estimated differences, which (due to
the curvature of the link function) vary according to the level at which the cure
rates lie. Alongside the factor paediatric/adult, the following factors were se-
lected as significant for DFS by the stepwise fitting procedure: type of institu-

1Adriamycin, Bleomycin, Vinblastine, Dacarbazine
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Table 13.1 Characteristics of Paediatric and Adult Cohorts

Pediatric Adult

Type of Cohort Single Centre 14 37% 50 59%
2-4 Centres – – 7 8%
Multicentre 24 63% 28 33%

Randomized No 29 76% 40 47%
Study? Yes 9 24% 45 53%

Number of < 40 9 24% 15 18%
Patients 41-60 11 29% 19 22%

61-100 15 40% 27 32%
101-200 3 8% 17 20%
> 200 – – 7 8%

Total 38 85

Note. Entries represent number and percentage of cohorts.

Table 13.2 Treatment in Paediatric and Adult Cohorts

Pediatric Adult

Chemotherapy MOPP or similar 8 21% 42 49%
ABVD or similar 7 18% 5 6%
MOPP/ABVD or similar 9 24% 13 15%
OPPA 9 24% – –
Other 5 13% 25 29%

Number of 2–3 7 20% 17 21%
Chemotherapy 4 6 17% 5 6%
Cycles 5–7 16 44% 40 49%

8 5 14% 14 17%
> 8 2 6% 6 7%

Radiotherapy None 5 13% 26 31%
Fields Localized 27 71% 18 21%

Extended 6 16% 33 39%
Various – – 7 8%

Total 38 85

Note. Entries represent number and percentage of cohorts. MOPP = Mustargen,
Vincristine, Procarbacine, Prednisone, ABVD = Adriamycin, Bleomycin, Vinblastine,
Dacarbazine, OPPA = Vincristine, Procarbacine, Prednisone, Adriamycin.
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Figure 13.2 Boxplots of (5-year-adjusted) disease free survival rates according to the
proportion of advanced stage patients in the cohort, for adult (left) and paediatric
(right) cohorts.

Figure 13.3 Scatterplot of disease free survival (5-year adjusted) against proportion
of patients with systemic (B) symptoms in the cohort, for paediatric and adult cohorts.
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Figure 13.4 Scatterplot of disease free survival (5-year adjusted) against year at mid-
point of recruitment period, for paediatric and adult cohorts.

tion, proportion with disease stage III-IV, proportion with systemic symptoms,
treatment modality).

Figure 13.5 Estimated differences in disease free survival rates between paediatric
and adult cohorts, calculated using the estimated parameter β = 0.442 from the gener-
alized linear model.

The paediatric/adult difference was not restricted to certain types of cohorts
but reappeared as significant in all main subgroups of cohorts, including the
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cohorts of predominantly early stage patients, the cohorts of predominantly
advanced stage patients, the cohorts receiving combined chemo-radiotherapy,
the cohorts of size over 80, the multicentre cohorts, and so forth. Small varia-
tions in modeling methods (weighting scheme, form of link function) did not
qualitatively change the results.

The reduction in DFS and SV due to the presence of patients over 45 years
old in the adult cohorts was estimated as 3% and 4% respectively. The remain-
der of 9% in each case therefore represents a difference between children and
young adults. This difference could not be accounted for by therapy-related or
other factors. It could be due to an intrinsic biological difference or to hidden
confounding factors such as quality of care in paediatric institutions.

13.5 CONCLUSIONS

A statistical model for the dependence of treatment results on explanatory fac-
tors relating to treating institution, patient cohort and type of therapy was
constructed and fitted, with the aim of estimating the difference in treatment
results attributable to the age range of the patients (paediatric or adult, respec-
tively).

The generalized linear model allows an appropriate form of dependence
and an appropriate specification of error to be incorporated. Heterogeneity
between cohorts was an important part of the random variation in both end-
points. The iterative estimation of heterogeneity together with an approximate
calculation of the standard error of each cohort-based Kaplan-Meier estimate
leads to an error structure which allows for both types of error and thus to
a plausible weighting scheme. In the application to Hodgkin’s disease, the
size of the effect of interest (superiority of paediatric cure rates) could be esti-
mated, although the precision was not high. The results were not sensitive to
small changes in modeling methods or inclusion criteria.

A more sophisticated, integrated approach would make use of a maximum
likelihood technique to fit a generalized linear model with variance compo-
nents, the heterogeneity between cohorts being represented by a cohort ran-
dom effect. Aitkin (1999) lists alternative techniques and proposes a nonpara-
metric approach.

The presence of hidden or non-quantifiable differences which occur system-
atically between paediatric and adult cohorts could influence the results of such
an analysis despite the attempt to explain and allow for heterogeneity. The
possible influence of such effects should be carefully assessed. In the present
analysis, intrinsic differences in curability between children and adults may
be confounded with different treatment strategies adopted by paediatric com-
pared with adult institutions. The inclusion of treatment type as a factor in
the model may only partially allow for such confounding. Furthermore, it has
been suggested that children systematically receive a more thorough staging,
treatment administration and care, factors which are not available for inclusion
in the model. Thus, the conclusion that paediatric results are superior, for com-
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parable patient characteristics and treatment schemes, applies only under the
current standards of care and management in paediatric and adult institutions
respectively.

The credibility of the results of any meta-analysis, but especially one based
on comparisons between studies, depends on the unbiased and representative
selection of studies for inclusion. In the present analysis, credibility was sought
through systematic inclusion of a large number of studies.
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Summary
Bias in clinical trials can be investigated by studying correlations between
design variables and outcome of clinical trials. 72 studies on the antide-
pressant effect of imipramine and amitriptyline as well as four serotonin
reuptake inhibitors were analyzed in a publication based meta-analysis.
Treatment outcome was operationalized as an effect size in the basis of
response rate differences between active drug and placebo or active drug
and active drug. It was found that the number of treatment cells included
in a study, the existence of a placebo cell as well as the severity of de-
pression at inclusion and placebo response rate are associated with study
outcome, and that they may interact with each other, presumably because
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of differences in drop-out handling. Main conclusion is that the existence
and the clinical results of a placebo cell are moderating variables for the
results of clinical trials.

14.1 INTRODUCTION

Meta-analysis is a tool to statistically integrate results of empirical studies from
publications or, less often, from raw data (Dickersin & Berlin, 1992). Two forms
of empirical studies can be distinguished: Experimental or quasi-experimental
studies with an independent and a dependent variable, such as clinical tri-
als, and epidemiological studies, such as case-control studies, in which there
is no independent variable that is manipulated (Petitti, 1994). Both kinds of
study are subject to methodological flaws which, in turn, affect interpretation
of meta-analytical results. A critical appraisal of these problems is presented
by Feinstein (1995). On the other hand, meta-analysis can serve as a tool to
investigate methodological questions arising from empirical studies; an exam-
ple of this is furnished by Gotzsche (1990), who presents an investigation of
methodological problems of trials in rheumatoid arthritis.

The present meta-analysis investigates the effects of design variables of clin-
ical antidepressant trials. Design variables are variables that are voluntarily or
involuntarily induced by all aspects concerning the design and the realization
of clinical trials. They are not welcome, as they may restrict the ability to gen-
eralize study results, and therefore risk impeding the interpretation of data.
Design effects can be caused by blindness, number of treatment conditions,
handling of placebo-responders, or the baseline severity of illness.

The term “Depression” is frequently used in colloquial language and means
sorrow or despair. As a psychiatric diagnosis it is actually operationalized
by the persistence of a number of certain, well-defined symptoms (depressive
mood, loss of interest, loss of weight, sleep disturbances, psychomotor agita-
tion or retardation, fatigue, cognitive feelings of guilt or worthlessness, dis-
turbances of thought, concentration, memory, decisiveness, suicidality) over
a given time period (American Psychiatric Association, 1994). It is one of the
most frequent diseases and has large economic consequences for a society as
well as, with its infringing symptoms and finally its high suicide rate, impor-
tant consequences for sufferers’ lives (Goodwin & Jamison, 1990). Therefore,
it constitutes one of the main psychiatric research areas, in which a large num-
ber of clinical trials has been conducted that need to be meta-analytically inte-
grated and investigated.

Concerning the drugs used in antidepressive therapy, one can distinguish
different groups: The first generation drugs were the tricyclic antidepressants
(TCA), which are considered as a standard treatment in depression drug ther-
apy. In the 1980s, the selective serotonin reuptake inhibitors (SSRI), which pos-
sess more specific receptor activity, were developed. They are considered to be
an alternative to their predecessors, as they induce less side effects (Möller &
Volz, 1996). Although a very large number of substances has been investigated



BACKGROUND 209

in clinical trials on drug therapy of depression, most of the studies included
TCA or SSRI.

14.2 BACKGROUND

We started from the following result of a former meta-analysis on the tricyclic
antidepressant imipramine, compared to placebo: Studies that compared imi-
pramine only to placebo, and not to a third or fourth treatment condition,
yielded considerably higher effect sizes (r = .34; N = 703)1 than studies
which included further treatment arms (r = .17; N = 4673). Thus, the dif-
ference between imipramine and placebo was higher if only imipramine and
placebo were investigated (z = 4.6; p < .001). Greenberg, Bornstein, Green-
berg, and Fisher (1992) proposed that a study is less susceptible to unblinding
if more than two treatment conditions are investigated. We dared not to join
this interpretation as there was a confounding with other variables we consid-
ered to have potential weight, that is, the year of publication and the status
of a substance as a new or as a control substance. Among the 11 studies pub-
lished before 1978, only 3 included more than three treatment arms, compared
to 60 among the 66 studies published after 1977. Nearly all studies with two
treatment conditions are older studies and may therefore be more prone to
bias, as methodology in the early years of clinical trials was less elaborate than
nowadays. Imipramine was investigated as the substance of interest mainly in
studies with only two treatment cells (14 out of 15), whereas it served as a con-
trol substance (logically) only in studies with more than two treatment cells.
Most of the studies with imipramine as a control substance were published
after 1978 (59 out of 62), whereas it was investigated as a substance of interest
before and after 1978.

We nevertheless considered the difference between studies with two and
those with more than two treatment cells being important and took a further
look at it by comparing placebo-controlled SSRI-studies. All studies were pub-
lished after 1977. There were no publications on placebo-controlled studies
with an SSRI as a control substance; all studies investigated the SSRI as the
substance of interest. No difference was found among studies with two ver-
sus those with more than two treatment arms (r = .17, N = 696 vs. r = .18,
N = 3155; z = 0.28, p = .78). Thus, the proposal based on the imipramine
results that the number of treatment cells is a decisive factor for the effect size
of a study was not affirmed by the SSRI data.

14.3 AIMS OF THE META-ANALYSIS

In the literature, further variables characterizing the design of clinical stud-
ies were identified that might influence effect sizes of antidepressant studies.

1Here, and in the following text, N always indicates the (total) number of patients.
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We investigated correlations between study characteristics and effect size in
a larger sample of controlled clinical trials. As outcome, the effect sizes for
active medication vs. placebo or standard medication were chosen; they repre-
sent differences in efficacy between the two treatment cells. Predictor variables
were the number of study centers, a placebo run-in vs. no placebo run-in, the
study duration and mean patients’ severity of depression at baseline.

14.4 METHODS

Controlled clinical trials on acute treatment of depression with imipramine,
amitriptyline, fluoxetine, paroxetine, or sertraline were included if one of these
substances was compared either to placebo and/or to one of the substances of
the other group. Studies had to be published between January 1979 and April
1997, and had to indicate response rates.

The difference in efficacy between two treatment cells was expressed by the
correlation coefficient r, based on the fourfold table ϕ, which corresponds to
the response rate difference and thus can be interpreted as being quite close
to clinical practice. Effect sizes were computed on an intent-to-treat-basis; all
randomized patients were included in the effect size calculation. It has been
discussed which effect size is preferable for clinical trials (Dickersin & Berlin,
1992; Fleiss, 1993), especially odds ratios are commonly used. We consider re-
sponse rate differences the appropriate measure in our case, for the very reason
that the original studies do not use odds ratios but response rate differences,
which are comparable to ϕ in a meta-analysis. Effect sizes were computed by:

ϕ =

√
χ2

N
.

They were weighted for sample size of the studies and averaged via Z-trans-
formation. Homogeneity of study effect sizes was assessed by the usual chi-
square test for homogeneity of correlation coefficients (Rosenthal, 1991; Mantel
& Haenszel, 1959). Explorative comparisons of specific effect sizes were per-
formed by means of contrasts for group comparisons (for details see Rosenthal,
1991; Rosenthal & Rubin, 1982), according to the following formula:

z =
∑k

j=1 λjZj√
∑k

j=1(λ2
j (Nj − 3))

with Zj being the Fisher-Z-transformed effect size coefficients for the jth of k
studies to be compared and λj being the orthogonal contrast coefficients sum-
ming up to zero. z is the standard normal deviate. For quantitative data, Pear-
son correlations were used; they were calculated with weights, but significance
was judged referring to the number of studies, not the number of patients.
Given p values are two-tailed.
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Table 14.1 Comparisons Included in the Meta-Analysis

Year of publication BL-Ham-D

Number of
comparisons N Min Max M M SD

Drug – Placebo
Imipramine 46 6176 79 96 87.7 25.0 4.9
Amitriptyline 16 2604 79 95 87.8 25.5 5.1
Fluoxetine 11 1247 85 95 89.4 24.7 3.8
Fluvoxamine 8 1043 83 96 90.9 25.8 2.0
Paroxetine 5 1052 89 93 91.0 28.4 1.5
Sertraline 4 954 90 96 93.8 22.0 6.8

Drug – Drug
Imipramine-SSRI 25 3380 83 96 90 26.15 3.2
Amitriptyline-SSRI 19 2337 85 96 91 26.09 2.9

Note. N = Number of patients; BL-Ham-D = Hamilton at baseline

14.5 DATA

Table 14.1 gives an overview of the comparisons on which the following anal-
ysis is based. Sixty-two of the comparisons refer to tricyclic drugs vs. placebo,
28 to SSRI vs. placebo, and 44 to tricyclic drugs vs. SSRI.

14.6 RESULTS

The Funnel plots in Figure 14.1 show that with increasing sample sizes effect
sizes approach the mean effect sizes. Among the placebo-controlled studies
(Figure 14.1, Panel A and B) there are more studies with higher than with lower
effect sizes. This was to be expected, as it can be presumed that small positive
studies are more likely to be published than small negative studies. This is
an indicator of publication bias, which is less clear-cut among the drug-drug-
comparisons (Figure 14.1, Panel C).

Data stemming from single center studies yielded higher effect sizes than data
from multicenter studies (see Table 14.2). This means that active drugs show
their superiority to placebo more clearly if the data are collected in only one
center. The same effect can be found when comparing SSRI vs. TCA: Multicen-
ter studies show slight differences between substance classes; in single center
studies, there is a tendency for the SSRI to yield better results.

If a placebo run-in or placebo washout is included in a study, patients receive
placebo during one or two weeks before randomization and are excluded if
they respond during this time period. This placebo run-in aims at increasing
effect sizes by reducing the number of responders of one group, the placebo
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Figure 14.1 Funnel plots (sunflower plot): Number of patients and effect sizes (ES),
line represents unweighted mean of effect size).

Table 14.2 Effect Sizes From Single- and Multicenter Studies

Single-center Studies Multicenter Studies
r r z p(z)

TCA-PL .25 (32) .18 (30) 2.91 .004
SSRI-PL .26 (11) .17 (17) 2.07 .040
TCA-SSRI −.08 (15) .01 (28) −2.51 .010

Note. For each r, the number of studies is given in brackets.

group (FDA, 1978; Feinberg, 1992). Only sparse data exist about the effects
of this procedure on study results, and these are ambiguous (Khan, Cohen,
Dager, Avery, & Dunner, 1989; Trivedi & Rush, 1994). The data presented here
revealed no difference between studies with and without a placebo run-in, nei-
ther for drug-placebo nor for drug-drug differences (see Table 14.3). Although
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Table 14.3 Effect Sizes of Studies With and Without Placebo Run-In

No placebo run-in Placebo run-in
r r z p(z)

VERUM-PL .18 (28) .20 (62) 1.2 .23
TCA-SSRI .01 ( 9) −.01 (35) −.50 .63

Note. For each r, the number of studies is given in brackets.

Table 14.4 Response Rates With and Without Placebo Run-In (Mean ±SD)

% Response Drug % Response Placebo

Drug – Placebo
No placebo run-in 52 ± 12 35 ± 10
Placebo run-in 48 ± 12 29 ± 11

% Response Imipramine % Response SSRI

Drug – Drug
No placebo run-in 64 ± 9 63 ± 10
Placebo run-in 45 ± 15 46 ± 14

the number of responders was reduced among the studies with a placebo run-
in, it was reduced in all treatment groups (see Table 14.4).

No correlation was found between effect size and study duration (see Figure
14.2, Panel A and B). The longer studies did not show higher effect sizes than
the shorter ones. It must be noted, however, that there are only a few really
short studies (< 4 weeks). Thus, we can neither conclude that longer studies
show higher effect sizes, nor that there is no association.

Duration of treatment

1412108642

E
S

.5

.4

.3

.2

.1

0.0

-.1

Duration of treatment

1412108642

E
S

.5

.4

.3

.2

.1

0.0

A: TCA-placebo effect size B: SSRI-placebo effect size

Figure 14.2 Study duration (weighted by sample size) and effect size (ES).
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Patients’ severity of depression at inclusion was not correlated with effect size
among the drug-placebo comparisons (r = −.03; n.s.; see Figure 14.3, Panel
A). This finding is in contradiction to the widespread assumption, based on
the concept of endogenous versus neurotic depression, that the superiority of
drugs over placebo is more pronounced if patients show higher levels of symp-
toms (Feinberg, 1992). It may be the result of a missing sensitivity of a group
mean score for baseline depression, used in meta-analysis; this would call for
raw data analysis. On the other hand, there seem to be only few empirical
proofs for a differential efficacy of antidepressants, except psychotic depres-
sion, as Montgomery and Lecrubier (1999) conclude in their review. If we con-
sider drug-drug comparisons within our data, there is a low but significant
correlation of .34. If a study included patients with a higher Hamilton baseline
score, it was more probable to show a (minor) superiority of the TCA, whereas
a lower baseline severity was rather associated with a better result of the SSRI
(see Figure 14.3, Panel B).
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Figure 14.3 Sunflower plot of Hamilton Depression Rating Scale at inclusion
(weighted by sample size) and effect size (ES).

These different results may be due to the presence or absence of a placebo
cell. In fact, among the drug-drug-comparisons, there is a positive correlation
of r = .36 between TCA-response and the Hamilton baseline score, whereas
the SSRI response was not correlated with the Hamilton score (r = .07). Ef-
fect sizes of two cell studies (drug-drug comparisons) showed a correlation of
.57 with the baseline Hamilton, compared to the zero correlation in drug-drug
comparisons stemming from placebo-controlled studies (r = .08). In these
studies, weak negative correlations with the Hamilton score can be found for
all response rates (TCA r = −.28; SSRI r = −.31; Pl r = −.29). Thus, if a pla-
cebo is included in a study, the response in the single treatment cells is more
likely to be negatively correlated with the severity of depression, if patients
show lower levels of symptomatology, response occurs more often. We pro-
pose that this is the consequence of differences in drop-out handling. If there
is no placebo cell in the protocol, it is likely that if symptomatology continues
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to be present, severe patients also stay longer on study medication because the
treating physician knows that it is highly probable that the patients are on an
active drug and not on a placebo. The shorter a patients adheres to the proto-
col, the shorter the time during which the drug has the opportunity to unfold
its action.

The response rate under placebo is also a possible design variable, even if,
logically seen, it belongs to the outcome variables of a study. Its correlation
with effect size was r = −.41. The lower the placebo response, the higher the
difference was between drug and placebo (see Figure 14.4).
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Figure 14.4 Sunflower plot: Placebo response (weighted by sample size) and effect
size (ES) of drug-placebo comparisons.

14.7 DISCUSSION

This chapter focused on methodological aspects of controlled clinical trials on
antidepressants. It presented the results of a publication-based meta-analysis
of studies on acute therapy of depression with TCA (imipramine, amitripty-
line) and/or SSRI (fluoxetine, fluvoxamine, paroxetine, sertraline) and/or pla-
cebo. Outcome was the effect size coefficient ϕ, which was based on intent-to-
treat response rate differences.

Funnel plots indicate a publication bias, which is weak and probably does
not affect the analysis of associations. We wish to consider our interpretations
as hypothetical, as they are not based on a prospective design which aims at
testing hypotheses and are subject to the problems of post hoc analysis by in-
tegration of different studies. Moreover, our interpretations base on data that
were gained with a specific meta-analytical procedure and should be verified
by other research strategies. Nevertheless, some statements can be made that
may serve to better understand empirical results.

• Studies on imipramine yield higher effect sizes if they include only two
treatment cells; this is in line with the results of Greenberg et al. (1992).
We are inclined to attribute this to the earlier year of publication of the
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two cell studies and their less sophisticated research methodology; alter-
natively one can think of the status of an active or a control substance –
or some other variables – being responsible for this difference in effect
sizes.

• Smaller studies, or single center studies, have a higher probability of
yielding or publishing higher effect sizes that decline if larger studies
are performed.

• A placebo run-in with exclusion of placebo responders does not seem to
have any effect on the outcome of a study and therefore becomes ethically
questionable unless another argument is advanced for placebo run-in.

• In acute therapy of depression, there is no reliable association between
the length of a study and its outcome.

• The correlation between severity of depression and response to treatment
is linked to the design of a study: A placebo cell seems to decrease re-
sponse in all treatment cells with increasing severity of illness. Presum-
ably, if a placebo cell exists, patients drop out earlier, especially if symp-
tomatology is more impairing.

• A negative correlation was found between placebo response and effect
size. It is obvious that the correlation is not caused by a ceiling effect, as
it is not only present in the margin values of the placebo response. For
its interpretation, statistical or content aspects can be referred to. Sta-
tistically seen, the correlation between placebo response and effect size
meets the expectation, as the difference between two sizes always corre-
lates with both sizes at about .70. This so-called a (b-a) effect (van der
Bijl, 1951) was discussed in psychophysiology in the context of the law
of initial value (Myrtek & Foerster, 1986). Some authors (e.g., Curnow,
1987; Thompson, Smith, & Sharp, 1997) proposed methods to correct sta-
tistically for this problem, which is linked to the regression to the mean.
One can, however, also find a non-statistical interpretation: There is one
group of patients which responds well to placebo and another group
who does not respond to placebo. The drug responders remain the same
in both samples; this leads to varying differences in response rates, de-
pending on the placebo response rate (Montgomery, 1999). Whatever
the reason for this correlation, it should call into question the concept of
additivity of the placebo- and drug-effect because this implies an inde-
pendence of the response difference from the initial value.

Moreover, some hypotheses can be generated which could be prospectively
investigated by empirical studies or raw data. It would be interesting, for ex-
ample, to design a trial in which one part of the study is conducted within
a placebo-controlled design while the other one consists only of a drug-drug
comparison, if possible with documentation of the patients’ and doctors’ esti-
mate of treatment allocation. Systematic differences of studies with and with-
out a placebo control, which may be the consequence of differences in inclu-
sion, medication and drop-out handling, could be investigated, as well as de-
terminants and consequences of blindness. The comparability of placebo- and
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drug-controlled study designs is relevant for ethical reasons, since a placebo
control is refused if a standard medication exists whose efficacy has been sci-
entifically proven. This is only useful if a body of knowledge exists on the
consequences of different study designs. The data presented here reveal the
importance of this question, at least for antidepressant medication: If the SSRI
had never been tested against placebo, and if statements on efficiency of the
TCA had only been based on studies that investigated primarily TCA, the ef-
ficacy of the SSRI would be judged as higher, since older two cell studies on
TCA yielded higher effect sizes.
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Summary

Secondary analyses were conducted using 27 primary studies to assess
the magnitude of relationships of intentions, attitudes, subjective norm,
perceived behavioral control and their antecedents in the theory of rea-
soned action (Fishbein & Ajzen, 1975) and theory of planned behavior
(Ajzen, 1985). As one of the purposes of these secondary analyses, the
structure of belief components was explored for multidimensionality and
the compatibility of the models’ components was reliably assessed. The
results were subsequently integrated under the random effects approach
of meta-analysis. The magnitude of effects found in the theory of reasoned
action fitted well within the context of hitherto published meta-analyses
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and showed strong overall relationships. Perceived behavioral control as
a component of the theory of planned behavior was not found to be an im-
portant predictor of intentions in the present sample of studies, for which
possible explanations are discussed. Moderator analyses of the compati-
bility of components resulted in consistent but somewhat low magnitude
of effects. The dimensionality of belief components was of more impor-
tance for the relationships. Multidimensional representations have been
shown to add approximately 10% of variance explained in attitude and
subjective norm from belief based measures in comparison to traditional
unidimensional measures. In contrast, the expectancy-value component
could not contribute significantly to variance explanation of contiguous
model components. The results are discussed in light of recent approaches
in attitude structure and attitude–behavior research.

15.1 INTRODUCTION

Judgments of the utility of attitudes as a psychological concept have often
been based on the relationship between attitudes and social behavior (Eagly
& Chaiken, 1993, 1998). Whereas early approaches to an evaluation of the
concept were quite optimistic (e.g., Allport, 1935), subsequent reviews ques-
tioned its utility as a predictor of overt human behavior and even suggested to
abandon it as a scientific concept if consistency between attitudes and behav-
ior could not be demonstrated (Wicker, 1969). This latter narrative review, in
which it was concluded that there existed at most a slight relationship between
attitude and behavior, has had a profound effect on the psychological research
of attitudes. In the first half of the 1970s, attitudinal research was characterized
by attempts to find explanations for the low correlations between attitudes and
behavior reported in the review by Wicker (1969). Apart from methodological
explanations, which we will address in the present study, new theoretical con-
siderations have contributed to the question of when and how attitudes relate
to overt behavior. One of the most important contributions of this type is the
theory of reasoned action, introduced by Fishbein and Ajzen (1975).

15.1.1 The Theory of Reasoned Action and the Theory of Planned
Behavior

The theory of reasoned action (TRA; Fishbein & Ajzen, 1975; Ajzen & Fishbein,
1980) connects attitude and its antecedents as well as its consequences in a sys-
tematic way and thus represents both a prediction and explanation model of
overt volitional human behavior. In this model, depicted in Figure 15.1, vari-
ability in behavior is directly explained through intention, whereas the latter is
predicted through attitude toward behavior and subjective norm. Simply put,
the TRA stipulates that a person’s behavior (B) is a direct (linear) function of
her intention to act (I). As a consequence, overt behavior is considered as voli-
tional in the TRA. Attitude toward behavior (AB) exerts its assumed directive
and dynamic influences mediated through intentions to act on behavior. Like-
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Figure 15.1 The theory of reasoned action and the theory of planned behavior.
Adapted from Ajzen and Fishbein (1980, p. 84).

wise, the impact of subjective norm (SN), which represents the influence of
important others on a person’s behavior is also mediated through intentions.
The relationship between the components on levels I to III can be formally
represented as (Fishbein & Ajzen, 1975, p. 301)

B ∼ I = (AB)w1 + (SN)w2,

where w1 and w2 represent the appropriate weights attached to AB and SN,
respectively. In practice, these relationships are ordinarily assessed by esti-
mating the parameters of two OLS-regression equations separately. First, nu-
merical indices of behavior are regressed on measurements of intentions, and
second, a separate multiple regression of intention on attitude and subjective
norm is performed to estimate w1 and w2 (for examples, see Ajzen & Fishbein,
1980; Fishbein, 1980). In the latter case, measures of overall predictive accuracy
(R2) are usually considered to judge the quality of the model.

On a fourth level, the TRA specifies the determinants of the level III com-
ponents. Attitude toward behavior is conceived as a function of behavioral
beliefs about consequences of the behavior in question and their evaluations,
while subjective norm is a function of normative beliefs about important ref-
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erents and the motivation to comply with these referents. By basing level III
components on beliefs, according evaluations, and compliance, respectively,
the TRA emerges as a model of reasoned action because behavior is ultimately
founded in beliefs as cognitive aspects associated with behavior, its conse-
quences, and important referents. There are several important points to note in
the context of attitude formation and the formation of subjective norms. First,
for a given attitude and person who holds this attitude, only salient behavioral
beliefs are considered as determinants of attitudes, that is, beliefs that are ac-
cessible when an attitude object is encountered (Ajzen & Sexton, 1999). Due to
limits of working memory capacity, a set of salient beliefs might be comprised
of approximately five to nine beliefs on an individual level (Ajzen & Fishbein,
1980, p. 63). Pilot studies in which persons from the target population have to
elicit their salient beliefs in free response format are common in applications
of the TRA. The beliefs elicited in these pilot studies are often structured ac-
cording to common sense criteria by the researcher and have ordinarily also
to be reduced to a set of modal salient beliefs (Ajzen & Fishbein, 1980) that is
intended to represent the set of beliefs salient in a given population. Secondly,
for the prediction of level III components behavioral beliefs and evaluations as
well as normative beliefs and compliance are thought to combine in a multi-
plicative form (Ajzen, 1996; Fishbein, 1963). This so-called expectancy-value
model can be expressed as

AB ∝
l

∑
i=1

biei,

where the belief bi represents the subjective probability that the attitude target
is associated with a certain attribute. When the purpose of applying the TRA
in a given situation is prediction of a specified behavior, the attitude target is
an action and the attribute is a consequence of performing this behavior. The
evaluation term ei, in turn, can be thought of as the person’s attitude toward
the specified behavioral consequence. Thus, it is expressed on an evaluative
continuum like good–bad. All products of beliefs and their evaluation are
summed in the expectancy-value model to form a single composite which is
used to predict the overall attitude in the TRA. This form of combining beliefs
and evaluations is also applied to normative beliefs (nbj) and compliance (coj)
as components of the TRA. A normative belief represents the subjective proba-
bility that a specific important referent thinks a person should perform a given
behavior in question. The summed product of normative beliefs and motiva-
tion to comply with the behavioral prescriptions of specific others is used as a
predictor of the according component on level III of the TRA:

SN ∝
m

∑
j=1

nbjcoj.

The TRA has been subject of debates and criticism over the past twenty
years from various perspectives (for overviews, see Eagly & Chaiken, 1993;
Jonas & Doll, 1996). Whereas one line of criticism addresses the conceptual-
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ization of components in the model, like intention as subjective probabilities
of future behavior (e.g., Bagozzi & Kimmel, 1995), the main focus of most sug-
gestions for improvements addressed the sufficiency of the model and thus
centered around extending the set of variables in the TRA. One of these modifi-
cations is the Theory of Planned Behavior (TPB) (Ajzen, 1985), which attempts
to extend the applicability of the TRA to behaviors in specific contexts, namely
those in which behavior is not under volitional control (for a review, see Ajzen,
1991). In Figure 15.1, both the TRA and the TPB are depicted. The difference
between these two theories lies in perceived behavioral control (PBC), con-
trol beliefs, and perceived power as additional components in comparison to
the TRA. Perceived behavioral control is thought to reflect the perception of a
person that a certain behavior is easy or difficult to perform. This perception
might be routed in valid appraisal of external factors such as situational con-
straints that further or hinder the performance of behavior and may also con-
centrate on factors internal to a person, like necessary abilities or skills required
for performance. Analogous to attitude and subjective norm, the antecedents
of PBC are located on level IV of the model. Control beliefs are conceptual-
ized as subjective probabilities about the presence of control factors that are of
potential importance to perform a certain action or the strength of their associ-
ation with a person. Again, these components are combined according to the
expectancy-value model for the prediction of the level III component.

The influence of PBC on behavior is specified in two variants of the TPB
(Ajzen & Madden, 1986). One path of influence is mediated through intentions
to act and the other is directly headed to behavior. The influence on intentions
reflects the tendency of persons to intend to engage in behaviors that are per-
ceived to be under control over and above the directive effects of attitude and
subjective norm. That is, persons intend to do things they perceive as easy to
perform or past experience and anticipated obstacles, thought to be reflected
in PBC, are in favor of performing the behavior (Ajzen, 1991). In another line
of reasoning the direct influence of PBC on behavior in addition to a person’s
intention is interpreted as reflecting actual control over a behavior in question.
The question of when and how these two paths of predicting behavior through
PBC are theoretically and empirically supported is still a subject of attitude re-
search (Ajzen, 1991; Eagly & Chaiken, 1993; Sutton, 1998).

15.1.2 Meta-Analyses of the TRA and the TPB

Both the TRA and TPB have received much attention and continue to stimulate
most attitude–behavior research (Petty, Wegener, & Fabrigar, 1997). Table 15.1
provides an overview of mean effect sizes for various relationships reported in
meta-analyses on these theories (see also Six & Eckes, 1996).

Although the comparison between these meta-analyses can only be qualita-
tive because of partly overlapping study samples, the overall support for the
relationships between model components reported in Table 15.1 is apparent
and impressive. In addition to these meta-analyses, there are also traditional
empirical reviews of the theories, some of which focus on specific research
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Table 15.1 Meta-Analyses on the Theory of Reasoned Action and Theory of
Planned Behavior With (Multiple) Correlations as Mean Effect Sizes

Relationship under investigation

Study I – B I – A I – A + SN A – B

Eckes and Six (1994) .41 (96) .42 (206) — .39 (396)
Farley, Lehman, and
Ryan (1981)

— — .71 (37) —

Godin and Kok
(1996)a

.46 (26) .46 ( 58) — —

Hausenblas, Carron,
and Mack (1997)b

.47 (32) .52 ( 23) — .39 ( 16)

Kim and Hunter
(1993)

— — — .47 (138)

Kraus (1995) — — — .38 ( 88)
Notani (1998) .41 (45) .45 ( 63) — .21 ( 19)
Randall and Wolff
(1994)

.45 (98) — — —

Ryan and Bonfield
(1975)

.44 (35) — .60 (35) —

Sheeran and Taylor
(1999)c

— .45 ( 32) — —

Sheppard, Hartwick,
and Warshaw (1988)

.53 (87) — .66 (87) —

van den Putte (1991)d .62 (58) .60 ( 88) .68 (70) —

Note. Number of studies in brackets. B = Behavior; I = Intention; A = Attitude; SN =
Subjective norm.
aOnly studies that focused on health-related behaviors were included. bOnly studies
that focused on exercise were included. cOnly studies that focused on intentions to
use condoms were included. dAs cited in Eagly and Chaiken (1993).

fields like exercise research (Blue, 1995) or health behaviors (Conner & Sparks,
1996), and there are meta-analyses of the attitude–behavior relationship in re-
lated fields like advertising research as well (e.g., Brown & Stayman, 1992). All
the reported and additional studies support the notion of very strong effects
in the prediction of behavior and intention. Furthermore, reviews and meta-
analyses on the behavior–PBC and intention–PBC relationships have also been
published. For example, Godin and Kok (1996) report an average overall cor-
relation between intention and PBC of .46 and a correlation with behavior of
.39 on the basis of 58 and 26 studies, respectively. Despite this high overall
correlation with behavior, only approximately 50% of the studies reviewed re-
ported a significant incremental proportion of variance explained in behavior
over and above the effect of intention. For the significant studies only, the
mean incremental variance explained by PBC was 11.5%. The following stud-
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ies also reported mean effect sizes on the relationships of PBC with intention
and behavior, the number of studies reviewed is given in brackets: Hausenblas
et al. (1997) behavior–PBC = .45 (8), intention–PBC = .43 (10); Notani (1998)
behavior–PBC = .24 (45), intention–PBC = .31 (63); Sheeran and Taylor (1999)
intention–PBC = .35 (24).

In sum, the TRA and TPB have received strong overall empirical support
for important relationships of model components. Although it has been re-
peatedly shown that mean effect sizes are strong for the various relationships
it must be added that most meta-analyses also reported heterogeneous effects.
Moderator analyses have therefore also been performed to test for the mod-
erating effect of miscellaneous variables. Some of these potential moderators
stemmed from psychological reasoning, like attitude accessibility, strength or
certainty (e.g., Kraus, 1995), but there have also been methodological consid-
erations to explain correlational differences between studies not only in the
attitude–behavior relationship but also in the relationships of the components
of the models in general. We will turn to two specific moderators that are ad-
dressed in the present study after extensions of the theories have been outlined
in the following section.

15.1.3 Extensions of the TRA and the TPB

The sufficiency of the TPB and the TRA has been repeatedly questioned and
additional important variables have been proposed, at least in specific contexts
(for a review, see Conner & Armitage, 1998). Moral norm and self-identity
seem to play a major role here, as evidenced by their inclusion in the attitude–
behavior composite model of Eagly and Chaiken (1993, 1998) or the theoretical
framework of Triandis (1980), for example.

Moral norm on the one hand is concerned with the perception of a person
that a certain behavior or its consequences are inherently wrong or right apart
from judging it with respect to personal utility (behavioral beliefs) or social
influences (normative beliefs). A person may thus feel a moral obligation to
perform a behavior according to internalized moral standards. Consequently,
this component has been added to the TRA by several researchers and was
found to add to the prediction of intention in addition to attitude and subjec-
tive norm in most applications (for a review, see Manstead, 2000). In contrast
to this relatively consistent research evidence, there is considerable heteroge-
neity as far as the location of moral norms in the TRA or TPB is concerned.
Whereas initially personal norms were conceptualized as a second dimension
of normative influences on behavior (Fishbein, 1967) on level IV of the TRA
and therefore not necessarily qualitatively different from social norms, they
are usually introduced in applications as a component on level III in addition
to attitude and subjective norm (e.g., Gorsuch & Ortberg, 1983). This “shift”
resulted from a re-conceptualization of personal norms that is more sharply
focused on the moral implications of a behavior in question. Accordingly,
these personal moral and ethical standards were more precisely termed moral
norms. Despite this focus on moral aspects, it is neither theoretically nor em-
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pirically clear whether this component should be regarded as an antecedent
variable of attitude or as an addition to it (cf. Sparks, Shepherd, & Frewer,
1995; Parker, Manstead, & Stradling, 1995).

Self-identity is another component that has been added to the TRA and TPB
to enhance their explanatory and predictive power of behavior. The following
two examples illustrate the meaning and varying emphasis placed in defini-
tions of this concept: According to Sparks (2000, p. 35), self-identity is defined
as a person’s self-concept, that is, relatively enduring characteristics that a per-
son ascribes to herself, whereas Conner and Armitage (1998, p. 1444) define
self-identity as the “salient part of an actor’s self which relates to particular
behavior”. Furthermore, Sparks (2000) pointed to the fact that expressions of
self-identity may also incorporate moral norms. The two components added
to the TRA and TPB are therefore not clearly distinct. Despite these concep-
tual difficulties self-identity has a relatively fixed hypothesized position in the
TRA and TPB. It is mostly assumed to be associated with attitude in the TRA
and TPB, and has also shown to influence intention in addition to attitude and
subjective norm (for reviews, see Conner & Armitage, 1998; Eagly & Chaiken,
1993; Sparks, 2000).

15.1.4 Multidimensionality of Beliefs

In the context of the expectancy-value model the summation of beliefs and ac-
cording evaluations, for example, includes all modal salient beliefs determined
in a pilot study and involves no weighting of these parts of the composite.
This amounts to a highly restrictive unidimensional model with equal compo-
nent loadings of all parts to be summed that has only occasionally been explic-
itly tested in applications of the TRA and TPB. The potential failure to map a
multidimensional belief structure in appropriate components may cause seri-
ous consequences for the relationship between level IV and level III compo-
nents, which have been judged as relatively low and “somewhat disappoint-
ing” (Ajzen, 1991, p. 192).

In fact, alternatives to an unidimensional representation have been repeat-
edly proposed, even in an early statement of the TRA (Fishbein, 1967). Another
early approach can be seen in the work of Scott (1969) who introduced mea-
sures of structural properties of cognitions, one of which was dimensionality,
thought to represent “the space utilized by the attributes with which a person
comprehends the domain” (Scott, 1969, p. 263).

Perceived behavioral control is one example of a potentially multidimen-
sional component. There is considerable theoretical debate about the sub-
division of PBC into self-efficacy and controllability. There is also empirical
evidence that these subcomponents can be successfully represented in a two-
dimensional model as well as that they differentially predict intention to act
and behavior (Armitage & Conner, 1999; Conner & Armitage, 1998; Sparks,
Guthrie, & Shepherd, 1997; Terry & O’Leary, 1995). Furthermore, norma-
tive beliefs and compliance may also be of a multidimensional structure. It
seems quite possible, for example, that normative beliefs associated with fam-
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ily members as opposed to normative beliefs associated with friends form dif-
ferent components and these two belief sets might contribute independently
and differentially to the prediction of other model components. Burnkrant and
Page (1988) have in fact shown that a two-factor structure with more closely
related referents like friends and spouses loading on one factor and parents as
well as employers on the other hand loading on another factor shows a sig-
nificant improvement in fit of the model and an improved prediction of con-
tiguous model components (see also Grube, Morgan, & McGree, 1986). Most
research on multidimensionality of beliefs has been conducted on the dimen-
sionality of behavioral beliefs as the basis of attitudes (Bagozzi, 1981a, 1981b;
Grube et al., 1986). From a theoretical viewpoint, Schlegel and DiTecco (1982)
argue that multidimensionality may be more prevalent in domains that can
easily be described by many characteristics and where persons under inves-
tigation have a differentiated knowledge structure. As a consequence, single
representations like the expectancy-value model are supposedly not capable
to map such a differentiated structure in a single score. Indeed, for a study
on marijuana use they provided evidence that the dimensionality increased
with more experience and presumably more knowledge about marijuana in
different user groups. In another large study on non-medical drug use they
replicated this finding and, more important, they showed that the multiple
correlations of unidimensional representations with behavioral intention and
behavior were lower as for the multidimensional case. This effect was even
more pronounced for users with more experience, that is, those with a more
complex representation of attitude (Schlegel & DiTecco, 1982).

In sum, there are theoretical reasons as well as empirical evidence that the
exploration and testing of multidimensionality of the components of the TRA
and TPB is a promising route to better understand and predict level III com-
ponents and ultimately behavior. Normative and behavioral beliefs can be
regarded to represent multiple (two) dimensions or domains of beliefs them-
selves that are separated for theoretical and practical reasons. As has been
shown, these dimensions may also be composed of a set of subdimensions.
Normative beliefs can be partitioned into groups of persons that differentially
predict the overall perception of normative influences on intentions. Behav-
ioral beliefs can also be subdivided into context specific belief sets or more
general groups of beliefs that map different facets of utilities. Whereas util-
ity frequently is associated with more instrumental or material outcomes of
behavior, from the multidimensional perspective it might encompass several
dimensions from solely material outcomes to outcomes of ideational value,
moral relevance or whatever dimension of worth is prevalent in a given con-
text. Especially in domains in which differentiated knowledge is prevalent for
a given sample, multiple differentiable dimensions are expected to emerge. It
is suggested that these different dimensions may all be represented and em-
ployed to predict behavior and its antecedents.

The potential benefits of a multidimensional approach are therefore mani-
fold. First, it is explicitly tested or explored whether one dimension is sufficient
to represent the belief structure in a given context and multiple dimensions
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are regarded as alternative representations if a unidimensional measurement
model fails to fit. Second, in the case of more than one dimension the results
can reveal what distinguishable dimensions of worth are relevant in a given
context, where the contrast between instrumental and moral beliefs is only one
possibility. Third, with multiple dimensions it is possible that persons actually
have an inconsistent belief basis that would go unrecognized in a composite
score. A multidimensional approach at least offers the chance to uncover such
inconsistencies. Fourth, if multiple dimensions are given, then the prediction
of attitude or intention may be enhanced by this approach or the failure to suc-
cessfully predict intention and behavior through level III components may be
explained by structural properties of the belief basis.

15.1.5 The Principle of Compatibility

Although one of the results in the influential review by Wicker (1969) was the
often cited low correlation between attitude and behavior, it should be noted
that he also presented some explanatory factors that were hypothesized to in-
fluence this relationship. With reference to the work of Fishbein, he introduced
the specificity of attitudes as one of these factors, which is one aspect of the
principle of compatibility1. He argued that for different levels of specificity of
attitudes and behavior, only low correlations are expected whereas with equal
specificity he anticipated high correlations. The prototypical case of a speci-
ficity mismatch is seen in a measure of global attitudes and a specific behavior.
For example, the low attitude–behavior relationships in the often cited study of
LaPiere (1934) was ascribed to such a mismatch of levels of specificity (Stroebe,
Eagly, & Ajzen, 1996).

Fishbein and Ajzen (1974, 1975) elaborated on this moderator and presented
a systematic approach to construct more general measures of behavior which
they termed multiple act criteria in contrast to the more specific single act cri-
teria of behaviors. Multiple acts are, in essence, aggregates of single acts that
consist of specific behaviors, performed in various contexts and points in time.
Furthermore, they did not only specify principles for the construction of mul-
tiple act criteria but also stated different compatibility characteristics with re-
spect to which components of their models could match or mismatch. More
specifically, Fishbein and Ajzen (1975) distinguished four dimensions: Target,
action, context and time (TACT), where components have to match as a pre-
requisite for strong relationships. The target in this classification system is the
object at which a behavior is directed, action is the behavior itself, context and
time are the environment in which the behavior takes place and the point in
time when the behavior is shown, respectively. Although most treatments of
the principle of compatibility focus on the attitude–behavior relationship, all
the components from level I to IV of the TRA and TPB can be characterized by

1Originally (Fishbein & Ajzen, 1975) termed “principle of correspondence”. In accordance
with Ajzen (1988) and Eagly and Chaiken (1993) the term “principle of compatibility” is used
here.
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the TACT-dimensions. Since level II to IV components are of utmost impor-
tance for the present study, we focus on these components in the following.

To illustrate the principle of compatibility more concisely, imagine an at-
titude toward eating low-fat food in the next two weeks measured with the
semantic differential technique. Here, the action is eating which is targeted to-
wards low-fat food. Whilst eating is a rather specific action, low-fat food is a
category of food that includes a great deal of products like skimmed milk, sal-
ads, fruits and the like. The situations and circumstances under which eating
takes place are not specified, so the context component is regarded as general
whereas the time component is restricted. Here, the attitude should be related
to eating taking place within the next two weeks. Now imagine a set of beliefs
that is intended to be compatible to this attitude. Ideally, this set should be
restricted to beliefs that address the personal consequences of eating low-fat
food in the next two weeks. The time period should therefore be specified in
exactly the same way as in the attitude measure, just as the action component.
For the more general attitude components of target and context, there are at
least three variants to specify these in the formulation of belief items. First,
it is possible not to formulate anything about these components, so that they
are as general as in the attitude measurement. Second, there is the possibility
to specify many specific exemplars in the formulation of belief items as long
as the set of items encompasses all conceivable contexts in which the behavior
can be performed or all targets a behavior is directed to. Finally, prototypical
contexts and targets may be chosen. Although the latter two options may in
principle be realized, it is obvious that in individual cases it is very difficult
to decide whether a given set of belief items is indeed prototypical or general
enough to be compatible with an unspecified TACT-aspect in another compo-
nent of the model. As a consequence, it is argued that the question of match
or mismatch of components is actually a matter of degree and not a matter of
kind. It should furthermore be noted that as a consequence, the assessment of
compatibility is not at all an easy or trivial task. For a valid assessment of the
compatibility of the TACT-dimensions it seems necessary to consider all items
used in a study and assess their level of specificity.

From the first extensive formulation of the TRA in 1975 on, Fishbein and
Ajzen advocated the principle of compatibility as one of the most important
moderators of the relationships between model components and especially the
attitude–behavior relationship. Not only does its fundamental idea have im-
plications for attitude research, but it is also relevant for research in the psy-
chology of personality (Ajzen, 1988; Sherman & Fazio, 1983). Moreover, the
principle can also be taken as a methodological tool for successful validation
and modeling strategies in general (Kirkpatrick, 1997; Nesselroade & McArdle,
1997; Wittmann, 1988).

Notwithstanding its general nature and many successful applications, the
principle of compatibility has occasionally been regarded as a merely method-
ological tool and it has been stated that “it is not very exciting from a psycho-
logical point of view” (Millar & Tesser, 1992, p. 278), and that “it was formu-
lated without much attention to the underlying psychological mechanisms”
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(Ajzen & Sexton, 1999, p. 130). There are, however, elaborated accounts of
the principle’s theoretical underpinnings. A first approach can be seen in the
work of Millar and Tesser (1986, 1992). They proposed the mismatch-model in
which it is stated that the prediction of behavior from attitudes will be poor
if the focus on affect versus cognition in attitude formation and during per-
formance of behavior is different. Accordingly, they proposed and empirically
demonstrated that high relationships between these components can be ob-
served under matching conditions. In a similar vein, Ajzen (1996) introduced
the notion of belief equivalence during the expression of attitude and behav-
ior, which was extended to the so-called principle of belief congruence (Ajzen
& Sexton, 1999). But perhaps the most elaborated approach was recently pre-
sented by attitude representation theory (Lord & Lepper, 1999), which shows
remarkable similarities to the principle of compatibility. In sum, all these the-
ories demonstrate the substantial psychological basis of the principle.

Empirical tests of the principle of compatibility have mainly focused on gen-
eral attitudes and their failure to predict single act criteria (for examples, see
Ajzen & Fishbein, 1977; Jaccard, King, & Pomazal, 1977). Evidence from two
meta-analytical studies (Kim & Hunter, 1993; Kraus, 1995) suggests that com-
patibility of attitude and behavior is an important moderator of the attitude-
behavior relationship. However, there are a few shortcomings with these meta-
analyses. For example, it is not clear how compatibility of measures was as-
sessed in the Kim and Hunter meta-analysis. Usually, only few examples from
the questionnaires or interviews used in the original studies are reported. The
categorization into low, moderate and high match groups as done in the Kim
and Hunter meta-analysis can only be based on the examples reported. In
the face of the difficulties in assessing compatibility of components outlined
above, this can be regarded as a very crude measure. Results reported in
Kraus’ meta-analysis were based only on a very small subset of studies (8 out
of 88), which directly investigated the effect of compatibility of attitudes and
behaviors. In sum, though consistent empirical support was presented for the
principle of compatibility, a stringent meta-analytical test of the hypothesized
moderating effect of compatibility, based on a reliable measure that maps the
various TACT-dimensions in one or several scores, is not yet available.

15.1.6 Aims of the Study

In the present study, we pursue several objectives. First, we will evaluate the
TRA and TPB through the use of meta-analysis after performing secondary
analyses of original data. The relationships between several model compo-
nents will be assessed and compared with respect to published meta-analyses
(see Section 15.1.2). The results will give some indication whether the ef-
fects of unpublished studies do actually differ in comparison to the results of
published studies as assumed in the file-drawer hypothesis (Rosenthal, 1979,
1991). Second, we will assess the potential multidimensionality of components
on level IV of the models and PBC. In addition, we will give some indica-
tion on what dimensions emerged in the assessment of multidimensionality
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and assess their predictive power for other components in comparison to uni-
dimensional representations. Third, compatibility of the components will be
employed as a predictor to explain the variability of effect size variances under
the random effects model of meta-analysis. In contrast to other meta-analytical
tests of this moderator, we will not only focus on the attitude–behavior corre-
spondence and compatibility, but test whether the potential moderating effect
also extends to the relationship of other components of the TRA and TPB, an
effect we expect from the generality of the principle.

15.2 METHOD

The present study represents a mixture of secondary analyses and a meta-
analysis. In a first step, secondary analyses were performed on all available
data sets in order to check the quality of the data. For example, we explored
the distributional properties of the variables, and computed the relevant statis-
tics for the subsequent meta-analytical step. Every step of the secondary anal-
yses, presented in more detail in Section 15.2.2, applies to every single study
whereas the following meta-analytical steps serve to integrate the results.

15.2.1 Selection of Studies

All analyzed data sets pertain to heretofore unpublished studies submitted as
diploma theses at a German University and had to meet the following criteria:

1 A complete report of the study, including all measurement instruments,
had to be available.

2 Raw data of all studies had to be available in order to perform all the
steps of the secondary analyses.

3 The TRA or the TPB had to serve as theoretical background for the stud-
ies.

The pool of studies was not systematically sampled from a population of un-
published studies. Generalizations to unpublished studies on the Fishbein and
Ajzen models are therefore not warranted, albeit the results will at least shed
some light on the effects to be expected of so-called file-drawer studies.

The final sample included 27 studies with a total number of 4499 respon-
dents. Selected study characteristics are reported in Table 15.2. The overall
mean age for respondents is 24.8 and the mean number of respondents per
study is 166.6. Fifteen of the studies investigated PBC as an additional com-
ponent and were therefore classified as implementing the TPB. In all studies
the semantic differential technique was used as measurement instrument to di-
rectly assess the respondents’ attitudes. In addition, item forms and wordings
for the other model components were used as recommended by Ajzen and
Fishbein (1980) for the TRA and by Ajzen (1991) as well as Ajzen and Madden
(1986) for the TPB. The adherence to the recommendation for the TPB led to a
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Table 15.2 Selected Study Characteristics

Study N Mean
age

Attitude topic Attitude
toward

Theory

1 157 30.2 Taking on a higher position
in a company

Act TPB

2 176 23.5 Moving to East Germany
after passing the exam

Act TRA

3 298 27.0 Participating on a training
course in a company

Act TPB

4 210 22.4 Having an abortion Act TPB
5 112 24.4 Pursuing a career after

having a baby
Act TPB

6 180 43.5 Becoming a teacher Act TPB
7 98 35.9 Eating health food Act TPB
8 232 27.1 Specific German company

from heavy industry
Object TRA

9 300 34.2 Credit cards Object TRA
10 157 25.6 Assessment Center Object TPB
11 110 25.6 Having vocational education

after the exam
Act TRA

12 88 24.1 Making a decision
concerning the statutory
basis of the German Reunion

Act TRA

13 212 24.5 Right of asylum Object TPB
14 144 14.6 Doing “something against”

foreigners
Act TPB

15 121 25.3 Jobs in East Germany Object TRA
16 343 15.7 Various disciplines taught in

school
Object TRA

17 111 26.3 Participating on a training
course in a company

Act TPB

18 191 25.0 The study at university with
respect to practical
applications

Object TPB

19 85 18.4 Going to a vocational school Act TRA
20 112 20.6 Working with the computer Act TRA
21 106 38.2 Paying with credit cards Act TPB
22 42 17.1 Work experiences Object TRA
23 269 19.3 Serving in the army Act TRA
24 114 21.5 Deciding to become a career

women vs. housewife
Act TRA

25 104 20.7 Participating on a
demonstration

Act TPB

26 167 18.5 Studying at university Act TPB
27 260 21.1 Studying at university Act TPB

Note. N = total sample size, TRA = Theory of Reasoned Action, TPB = Theory of
Planned Behavior.
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mixture of controllability and self-efficacy items in 9 of the 15 studies that em-
ployed the TPB (see Section 15.1.4). The remaining 6 studies employed only
fewer than 3 items to assess perceived behavioral control, all of which were
controllability items. In every study a specific set of items was constructed,
first pretested in a pilot study for applicability to a larger pool of subjects from
the same population. Modal salient beliefs were also determined in these pi-
lot studies to assure relevance of the belief items for the respective sample of
respondents. As only two studies reported results on the relationship of the
model components to overt behavior, this aspect of the models will be left out
in the following sections. This also applies to control beliefs and perceived
power, which were assessed in only two studies.

15.2.2 Secondary Analyses

The first step was to adjust the data from the studies under investigation to
the recommendations proposed by Ajzen and Fishbein (1980). This included
rescaling of items and computation of expectancy-value components, if neces-
sary. Since the issue of unipolar versus bipolar scaling is still under debate
(Eagly & Chaiken, 1993; Sparks, Hedderly, & Shepherd, 1991), items were
scored as proposed by Ajzen and Fishbein (1980) to provide a fair test of the
theories.

In order to keep the number of variables to analyze in subsequent steps at
a reasonable level and to assess potential multidimensionality of the compo-
nents, items were compressed via principle component analyses with one and
multiple factor solutions, if indicated. All components of the TRA and TPB
were subjected to this procedure, apart from components which were assessed
with fewer than four items. Component scores were thereby calculated for
all subjects for further computations. The one-factor solutions correspond to
unweighted sum variables of multiple item scales usually employed in analy-
ses of TRA and TPB applications, but are superior in the sense that they pre-
serve a maximum of variance of the items to be aggregated. In addition to the
one-factor principle component analyses, multiple factor solutions were ex-
plored and implemented in cases where conventional statistical criteria like
the eigenvalue-greater-than-one-rule and the scree-plot indicated that more
than one component could be extracted. Moreover, attention was also paid
to the psychological significance of the solutions. All multiple component so-
lutions were rotated after extraction with varimax rotation to achieve simple
structure of the loading matrices. One exception from the outlined procedure
was the case of attitude measurement with the semantic differential technique,
which was employed in all studies. Here, multiple components were always
extracted to obtain scores for only the evaluative dimension that represents
attitudes (Fishbein & Ajzen, 1975). In all studies factored separately, this eval-
uative dimension clearly emerged after rotation of the components.

As reliability estimates for the components we used a formula based on the
eigenvalues given by Cliff (1988) which he also criticized for its strong assump-
tions. Since no reliability estimates of the single items were available, we were
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not in a position to perform reliable component analyses for better estimates
of reliability (see Cliff, 1988; Cliff & Caruso, 1998). The mean reliabilities we
computed were acceptable and well above .75 for all components except PBC.
For the studies under review, PBC showed a mean reliability estimate of .63,
which, though not unacceptable, is well below the reliabilities for the other
components.

The results of multiple component analysis revealed several results worth
mentioning. First, intentions and subjective norm, as operationalized accord-
ing to the recommendations of Ajzen and Fishbein (1980), consistently showed
only one component in all studies. This was mainly due to a focus on specific
behaviors in the various studies in the case of intentions, and mostly few or
only one item to measure subjective norm. In contrast, 9 of 15 TPB-studies
employed a mixture of controllability and self-efficacy items which resulted
consonantly in two components for all these studies. This result stands in
agreement with similar attempts to separate these two components (Conner
& Armitage, 1998; see Section 15.1.4). Second, multiple component solutions
of behavioral beliefs and according evaluation of behavioral beliefs showed
remarkable similarities in structure which also mirrored the structure of multi-
ple component analyses of the according expectancy-value product terms that
were factored separately from the former. Despite the fact that some evaluation
of behavioral belief items loaded highly on one component and the according
behavioral belief items did not load as equally high on the respective compo-
nent in a separate analysis of behavioral beliefs and vice versa, this did not vi-
tiate the similarity of structure as far as the interpretation of the components is
concerned. The structure of beliefs that emerged was partly specific for the be-
havioral domains addressed in the studies, like several stress and strain effects
of participating in an assessment center (study 10) or various specific health
consequences of consuming health food (study 7), for example. On the other
hand, there were also noteworthy similarities of interpretation of factors across
studies. These similarities pertain to principle component analyses of behav-
ioral beliefs that lead to partitioning of beliefs in economic/material, moral,
and self-related beliefs in most of the studies. The economic components con-
sisted of mainly utilitarian beliefs in the sense of monetary consequences of
certain behaviors like earning or saving more money when moving and work-
ing to West or East Germany (e.g., studies 2 and 15), for example. Another
facet was found in the more ideational or moral aspects of the utility of be-
havioral consequences by the participants. Here, beliefs can be exemplified by
the violations of ethical rules through discrimination of ethnic minorities (e.g.,
studies 13, 14 or 25) or burdening of future generations through environmen-
tal pollution (e.g., study 8). The last facet of self-related beliefs is comprised
of beliefs that deal with self-realization or self-esteem, that is, beliefs about
behavioral consequences that touch upon a person’s needs, interests, or self-
esteem. This latter component did emerge in all studies with more than two
components and most concisely in studies on behaviors in a learning environ-
ment like universities or training departments of a company (e.g., studies 1,
3, 26, 27), but differs somewhat in meaning from the notion of self-identity
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outlined in Section 15.1.1. The components of this facet extracted from the
studies in the secondary analyses focused in meaning more on outcomes that
enhance or undermine self-esteem (e.g., the feeling of pride as a behavioral
consequence) and to a far lesser extend on issues of personal or social identity.
In sum, subjective probabilities and evaluations of behavioral consequences as
well as expectancy-value components showed a similar component structure
supplemented by domain specific components that differed between studies.
Remarkably, the independent components found across studies resemble com-
ponents that have been added to the TRA and TPB (see Section 15.1.1) to en-
hance explanation and prediction of behaviors in certain domains.

The next step of the secondary analyses was to compute the linear relation-
ships of the components using multiple regression, where R2 was recorded as
effect size. Since R2 is a biased estimate of the coefficient of determination in
the population and standard errors were needed for subsequent steps, a boot-
strap procedure was applied to compute a bias-corrected R2 and according
standard errors using 300 bootstrap resamples in each study (for details of this
procedure, see Efron & Tibshirani, 1993). Furthermore, in order to detect viola-
tions of the model assumptions hierarchical regressions were computed. Fol-
lowing the recommendations of Evans (1991), expectancy-value components
were added to behavioral beliefs and their evaluations. Incremental variance
explained by these components was recorded and tested for significance with
hierarchical F tests. To test the significance of explained variance through ad-
ditional components, resulting significance levels from the hierarchical F tests
were integrated as described by Rosenthal (1991).

15.2.3 Assessment of Compatibility

To assess the compatibility of the models’ components, three undergraduate
psychology students rated all items of contiguous components on the compat-
ibility dimensions on a five point scale in the last step of the secondary analy-
ses. Students were trained beforehand to become acquainted with the TACT-
dimensions. The training consisted in thorough reading and discussion of an
extensive manual on the theoretical background of the principle of compatibil-
ity. The manual summarized the relevant literature on this topic (e.g., Ajzen
& Fishbein, 1977, 1980; Fishbein & Ajzen, 1975) and explained the principle
with prototypical examples of items, which resembled but were not identical
to the items of the studies under investigation. Apart from the more theoreti-
cally oriented part of the training a manual of rules was also prepared which
explained how response option of the ratings should be used by the raters.
All rules were explicitly stated, illustrated with concrete examples, and ver-
bally explained. This manual of rules was subdivided into the following four
parts, which matched the tasks to be fulfilled to rate the compatibility of the
components:

1 Rules for ratings of the specificity of a single component on the TACT-
dimensions.

2 Rules for ratings of the compatibility of two model components.
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3 Rules for ratings of the joint specificity of two model components.

4 Rules for ratings of the compatibility of two combined model compo-
nents.

As can be seen by the structure of the four parts, raters had to rate the speci-
ficity of the items first. This step was introduced to force focus on the speci-
ficity of the model components on every TACT-dimension separately before
compatibility ratings were conducted. This step was of special importance for
components that were assessed with several items in all studies, like behav-
ioral beliefs for example. In these cases, the specificity rating of the target, for
example, applied to the whole group of behavioral belief items. The ratings of
the second step were only conducted after the first step was applied to both
components to be rated. Steps 3 and 4 were only applicable to level III and IV
components and served to structure ratings of the compatibility of two com-
ponents of level IV, behavioral beliefs and according evaluations or normative
beliefs and compliance, and one component on level III, namely attitude and
subjective norm, respectively.

In addition, several aspects of the rules of compatibility ratings are worth
mentioning. First, the ratings for the components which were assessed with
a set of items and were therefore subjected to principal component analysis
focused only on items loading higher than .30 on the respective component.
This rule was introduced to prevent ratings to be influenced by items that do
not substantially contribute to the components scores to be used in the regres-
sion analyses. Second, in cases where, for example, the context of action was
not specified when measuring attitude with the semantic differential technique
and many behavioral belief items were specific with respect to the context of
action, there was sometimes disagreement between raters. The cause for these
disagreements was the difficult decision task for raters to judge whether the
ensemble of specified contexts in behavioral belief items was broad enough to
be compatible to an unspecified attitude. No objectively determinable crite-
ria were available to resolve such disagreements, so a final discussion session
was held with all raters to focus on and discuss such disagreements. Finally,
it is important to note that the raters were, at the time of rating the question-
naires, not knowledgeable of any result of the studies, to prevent ratings to be
influenced by such knowledge.

The degree of agreement of the raters in the final ratings was assessed as
intraclass reliability coefficients with raters as fixed and studies as random fac-
tors (Shrout & Fleiss, 1979). The reliability estimates for overall average ratings
of compatibility for the three raters are presented in Table 15.3. With few ex-
ceptions, all intraclass coefficients for the specificity ratings not reported in
Table 15.3 were at least .65, with more than 60% of these coefficients above
.80. The exceptions were ratings for context and time specificity of evaluation
of behavioral beliefs and compliance, context specificity of behavioral beliefs,
subjective norm, and normative beliefs, as well as time specificity of perceived
behavioral control. For all these components zero reliability estimates resulted
from missing variance in the ratings, which actually indicates perfect agree-
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Table 15.3 Reliabilities of Overall Compatibility Ratings

Relationship Reliability estimate

Intention – Attitude .86
Intention – Subjective Norm .73
Intention – PBC .88
Attitude – BB .70
Attitude – EBB .90
Attitude – BB + EBB .79
Subjective Norm – NB .23
Subjective Norm – CO .93
Subjective Norm – NB + CO .67

Note. The number of studies is given in brackets. Reliabilities were computed as in-
traclass coefficients on the basis of the ratings from three raters. PBC = Perceived
behavioral control; BB = Behavioral beliefs; EBB = Evaluation of behavioral beliefs;
NB = Normative beliefs; CO = Compliance.

ment between the raters. As a consequence, this missing variance will also
lead to an exclusion of these ratings from the moderator analyses.

As can be seen in Table 15.3, reliabilities were acceptable with the excep-
tion of the compatibility ratings between subjective norm and normative be-
liefs. This result can be traced back to a highly restricted range of compati-
bility ratings for these components. Although intraclass coefficients were well
above .80 for the specificity ratings of subjective norm and normative beliefs,
the compatibility between these components was essentially rated as nearly
perfect for all studies. On the five-point scale from 1 (no compatibility) to 5
(perfect compatibility) more than 50% of the studies showed scores of 5 and
the remaining studies had mean scores equal to or above 4. As a result, the
compatibility of these components could not be employed as a moderator in
subsequent analyses.

15.2.4 Meta-Analytical Procedures

In all previous meta-analyses concerning the TRA and TPB relationships be-
tween the components of the models were assessed by the Pearson product-
moment coefficient r. Reported multiple correlations in the original studies to
be synthesized have usually been treated as if they were r. From a statistical
viewpoint, this is inappropriate since these statistics have different sampling
distributions and standard errors. In order to use a common effect size es-
timate, the coefficient of determination R2 was chosen in the present study.
Although R2 and similar measures of variance explained have been criticized
as effect size estimates because these measures do not indicate the sign of an
effect (Hedges & Olkin, 1985), this criticism does not apply in the context of the
TRA and TPB, as long as linear prediction is not accomplished through coun-
terintuitive effects. If, for example, a favorable attitude towards having an
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abortion were negatively related to the intention of actually having an abor-
tion, R2 would be misleading as an indicator of the effect. Special care was
given to detect such counterintuitive effects, but none were encountered in
any of the secondary analyses. Another problem with measures of variance
explained like R2 lies in the estimation of its standard error, which plays an
important role in meta-analysis as a component of the weights for the stud-
ies. In the present study we have used the bootstrap estimates of the standard
error for the R2s that were computed in the secondary analyses.

Another decision to be made in the present meta-analysis pertains to the
assumption of a fixed versus random effects model. The distinction between
these models is an important one for meta-analytical methods, as evidenced
in several chapters of this book. In the fixed effects approach it is hypothe-
sized that all studies under investigation estimate a common effect size but in
the random effects model true differences in effect sizes between studies are
assumed (Hedges, 1983; Hedges & Vevea, 1998). As a consequence, the ob-
served variance in estimates of effect size parameters is attributed to errors of
estimation in the fixed effects model, whereas in the random effects model the
observed variance of effect sizes is partitioned into variance due to true dif-
ferences in effect sizes on one hand and variance due to errors of estimation
on the other. Strong arguments have been put forward in the recent literature
on meta-analysis in favor of the random effects model (e.g., Erez et al., 1996;
Raudenbush, 1994). Since it is quite unreasonable in face of the vast literature
on the TRA and TPB to assume a common effect size for all studies, the ran-
dom effects model is used in the present study. All computations followed the
procedures as described by Shadish and Haddock (1994) for the integration of
effect size estimates.

For moderator analyses we performed weighted regression analyses with
effect sizes as dependent and compatibility ratings as independent variables.
The weights in these regressions included estimates of random effects vari-
ances which had to be estimated in a two-step procedure (method of moments)
as detailed in Raudenbush (1994).

15.3 RESULTS

15.3.1 Overall Relationships

In Figure 15.2, overall bivariate relationships for the components of the models
are depicted. Except where indicated, results are based on one-factor solutions
of principle component analyses. Please note that in the following the effect
size measure is the coefficient of determination and not the (multiple) correla-
tion coefficient. Effect sizes might thus look small even though they were quite
substantial apart from few exceptions.

In 15 of the studies it was hypothesized that the action under considera-
tion is influenced by factors not under volitional control. The overall effect of
only .04% of explained variance shows that perceived behavioral control was
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Figure 15.2 Mean effects (R2) of bivariate relationships (number of studies in brackets
and 95% confidence interval below arrows).

not of much importance to predict intention to act, although the 95% confi-
dence interval in Figure 15.2 indicates that this effect is significantly different
from zero. To test whether the effect is of importance in the context of atti-
tude and subjective norm, the F tests of the individual studies were integrated
and revealed no significant incremental variance explained through this com-
ponent (p > .05). The overall mean effect size for the prediction of intention
from attitude, subjective norm and perceived behavioral control in 11 studies
was .43 with a 95% confidence interval ranging from .35 to .52. The incremen-
tal variance explained through subjective norm in the context of attitude was
significant (p < .01), as might be expected by the predictive power of 16%
through subjective norm alone. The overall mean effect size for the prediction
of intention from attitude and subjective norm in 19 studies was .38 with a 95%
confidence interval ranging from .30 to .45. In sum, as far as the relationship
between level II and III components is concerned, strong overall effects on the
basis of one-factor solutions were found which are analogous to the bivariate
relationships on the basis of unweighted aggregates of items usually reported
in applications of the TRA and TPB.

The level III and IV components also showed strong bivariate linear rela-
tionships with the exception of subjective norm and compliance. The finding
of an absence of a strong effect between these latter components is not unique
to the present study but is also reported elsewhere (e.g., Ajzen, 1991, p. 196).
Before we provide more details on these relationships in the next subsection, it
is interesting to note that the expectancy-value components alone also showed
strong bivariate relationships with level III components. The aggregate R2 for
the relationship between the principle component scores of behavioral beliefs
and their evaluation expectancy-value products and attitude based on 22 stud-
ies was .31 with a 95% confidence interval ranging from .23 to .40. The mean R2



240 Meta-analysis of the TRA and TPB

between subjective norm and the level IV component expectancy-value prod-
ucts was .34 with according confidence interval limits of .27 and .41 on the
basis of 16 studies. We will now turn to the results from multiple regressions
to assess the incremental value in prediction these single components provide.

15.3.2 Belief Based Measures, Expectancy-Value Components and
Multidimensionality

Supplementary to the bivariate results reported, the results from multiple re-
gression of attitude and subjective norm on their antecedent components on
level IV of the models are reported in Table 15.4. The values of the homogene-
ity test based the Q-statistic are omitted from the table. They are significant for
all the relationships reported in the present study.

Table 15.4 Mean Effects (R2) and 95% Confidence Intervals for Overall Relation-
ships

Relationship Mean effect (N) 95% confidence
interval

Attitude – BB + EBB .40 (22) .31 - .49
Attitude – BB + EBB + EV .43 (22) .35 - .51
Attitude – BB + EBB (multi) .51 (22) .45 - .58
Attitude – BB + EBB + EV (multi) .53 (22) .46 - .59
Subjective norm – NB + CO .38 (16) .32 - .44
Subjective norm – NB + CO + EV .41 (16) .34 - .47
Subjective norm – NB + CO (multi) .47 (16) .40 - .51
Subjective norm – NB + CO (multi) .49 (16) .43 - .54

Note. The number of studies with valid data for the relationships is given in brackets.
BB = Behavioral beliefs; EBB = Evaluation of behavioral beliefs; NB = Normative be-
liefs; CO = Compliance; EV = Expectancy-value product; (multi) = multidimensional
representation.

To test the impact of combined behavioral beliefs and evaluation of beliefs
on attitude, results on the influence of the components and their expectancy-
value product are reported in Table 15.4. One way to combine these compo-
nents is a simple additive combination, which serves as a baseline to test the
additional expectancy-value component. As can be seen, the explanatory vari-
ance added through the latter is only three percent in the case of a unidimen-
sional and two percent in the case of a multidimensional representation of the
components and can be regarded as negligible. Again, results from hierarchi-
cal F tests for both representations were integrated and showed no significant
effect of the expectancy-value component (p > .05) in either case. Analogous
results emerged with normative beliefs and compliance as predictors of subjec-
tive norm. Here, the influence of compliance alone is not significantly different
from zero and the expectancy-value component does not add much variance
in the context of subjective norm either (p > .05). In contrast to the failure
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Table 15.5 Results of Random Effects Moderator Analyses for Compatibility as
Moderator

Relationship B β SE t(df ) p

Intention – Attitude .08 .30 .05 1.61 (25) .06
Intention – SN .02 .11 .05 .46 (17) .32
Intention – PBC .00 .03 .03 .12 (13) .45
Attitude – BB .04 .11 .08 .56 (25) .29
Attitude – EBB .02 .09 .04 .41 (20) .34
Attitude – BB + EBB .07 .18 .09 .41 (20) .21
SN – CO .00 .01 .02 .03 (16) .49

Note. SN = Subjective norm; PBC = Perceived behavioral control; BB = Behavioral
beliefs; EBB = Evaluation of behavioral beliefs; B = unstandardized regression coeffi-
cient; β = standardized regression coefficient.

of expectancy-value terms to add much variance in prediction of subsequent
components, the impact of a multidimensional representation of beliefs and
their evaluations is pervasive. For both the prediction of attitude as well as
subjective norm, the increase in mean effect sizes is approximately 10%. As
multidimensional representations contain overlapping information with uni-
dimensional ones, no test of significance is available.

15.3.3 The Moderating Effect of Compatibility on the Relationships of
Components

Table 15.5 reports the results of moderator analyses under the random effects
model with mean compatibility ratings from the three raters as independent
variables. The computations were performed according to the procedures de-
tailed in Raudenbush (1994).

Descriptively, all regression coefficients are positive, indicating a relation-
ship between compatibility and effect sizes estimates that would be expected
from the principle of compatibility with highly compatible components show-
ing higher effect size estimates, and vice versa. As the significance tests re-
ported in the last two columns of Table 15.5 reveal, none of the relationships
is significant according to conventional criteria. For significance tests under
the random effects approach it is important to bear in mind that they are more
conservative than alternative tests under the fixed effects approach which are
mostly applied (Hedges & Vevea, 1998). Furthermore, as the relatively large
non-significant coefficients for the relationships between intention and attitude
show, the number of studies in the present meta-analysis might not be suffi-
cient to achieve high levels of statistical power. In addition to the estimation
and tests of regression parameters, the residual variances after taking the pre-
dictors into account were tested for significance. These analyses revealed that
for all relationships reported in Table 15.5 significant variances remained to be
explained.
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Table 15.6 Results for Attitude Toward Object vs. Attitude Toward Behavior

Attitude toward behavior Attitude toward object

Relationship Mean
effect (N)

95%
confidence
interval

Mean
effect (N)

95%
confidence
interval

Intention – Attitude .38 (19) .32 - .44 .17 (8) .01 - .33
Attitude – BB .32 (19) .23 - .40 .24 (8) .07 - .42
Attitude – EBB .27 (17) .17 - .37 .27 (5) .03 - .50
Attitude – BB + EBB .41 (17) .32 - .49 .38 (5) .11 - .67

Note. The number of studies with valid data for the relationships is given in brackets.
BB = Behavioral beliefs; EBB = Evaluation of behavioral beliefs.

An alternative classification for high vs. low compatibility groups in the
context of attitude assessment was undertaken following the suggestions of
Eckes and Six (1994). They argued that following the principle of compatibility
attitude toward an object is always less compatible to other components than
attitude toward behavior, because the action element is missing and the other
dimensions of compatibility are usually left unspecified. The mean effect sizes
for a comparison of these groups are reported in Table 15.6.

The results replicate the findings of Eckes and Six (1994) that attitude toward
an object showed lower relationships with other components in the models
than attitude toward behavior. Despite this clear trend of decline of explained
variance for low compatibility groups, the confidence intervals for all effects
were again overlapping, so overall the differences between these two groups
were not significant. Additionally, it should be emphasized that the tests for
homogeneity in all groups were still significant, thereby calling for more or al-
ternative moderators to explain observed variances in effect sizes within these
groups. In sum, for both approaches the compatibility between model compo-
nents showed consistent but non-significant and partly small effects as predic-
tors of effect size variance.

15.4 DISCUSSION AND CONCLUSIONS

The present study investigated the relationships of the components of the TRA
and TPB in a series of hitherto unpublished studies. For these studies would
not have been published without the present study, this can be regarded as a
“grasp into the file-drawer” (Rosenthal, 1979). In contrast to the expectations
of critics of meta-analysis, strong effects were found in the file-drawer. The
results of the present study fit well within the context of other meta-analyses
(see Section 15.1.2), thereby re-emphasizing the importance of attitude as a
psychological construct for the explanation and prediction of behavior and the
utility of the TRA and TPB in general. For there are no remarkable differences
between the effects of published meta-analyses and the results reported here,
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this is interpreted as support for the hypothesis that the unpublished studies
under review do not markedly differ from published studies. It might nev-
ertheless be suspected that these studies, though not different in effects, are
characterized by other features that serve as alternative explanations of the ef-
fects reported. Here, it might be added and reiterated that first, the persons
who conducted the studies were not aware of the fact that a meta-analysis will
be performed on their data at the time of conducting their study. Second, they
chose their field of application at their own discretion and were only influ-
enced by the second author of the present article as to make them follow the
recommendations by Ajzen and Fishbein (1980). This was reviewed during
realization of the studies and in the secondary analyses. Third, as might be
suspected, this influence did not result in extremely homogeneous study ef-
fects. To the contrary, effect size variances were all significant, even under the
random effects model. Fourth, the raters of compatibility were not aware of
any result of the studies, so a potential influence by this knowledge influence
was precluded. In sum, we argue that it might be implausible to attribute our
findings to special characteristics of our study sample.

One of our findings was that PBC has not emerged as an important deter-
minant of intentions to act. This might be due to several possible causes. As
has been indicated, the reliability of this component was lower than the reli-
ability of all other components and this might have contributed to a reduced
relationship with intention. Next, PBC may be an important predictor in our
studies for behavior but not for intentions, although this is somewhat implau-
sible against the background of the results referred to in Section 15.1.2. In face
of these mixed results it is not warranted to renounce perceived behavioral
control as a predictor of intentions or behavior but it obviously did not always
have an influence on intentions when expected by the primary researchers.
Therefore, we agree with Petty et al. (1997) in that research that goes beyond
speculations of the influence of contextual factors is needed to clarify circum-
stances under which PBC is an essential predictor.

Another finding of the present study was that expectancy-value compo-
nents did not add significantly to the prediction of subsequent components,
an aspect not considered in previous meta-analyses. Incremental variance ex-
plained not only was insignificant, the magnitude of the effect was also quite
small. As a result, one is left with a good prediction model consisting of an
additive combination of level IV components which might not make much
sense in psychological terms (Eagly & Chaiken, 1993). The difficult situation
here is that psychologically meaningful scaling of belief items results in psy-
chometrically meaningless or arbitrary correlations with other components,
while proper methods from the viewpoint of measurement theory may lead
to psychologically meaningless results (Bagozzi, 1984). Although this difficult
subject has been addressed quite often (e.g., Orth, 1986; Sparks et al., 1991), it
is not recognized by all primary researchers (Evans, 1991).

In addition, the issue of multidimensionality of belief structures has been
of special concern in the present study. It was also Bagozzi who pointed out
that “If people at times form multidimensional attitudes or if one desires to
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learn which beliefs and evaluations are most important, then the Fishbein
model may not be useful and may even mislead the researcher” (Bagozzi, 1984,
p. 301). The results from the present study underscore the importance of this is-
sue. In all twenty-two studies, which provided data for behavioral beliefs and
their evaluations, it was impossible to determine at least two different mean-
ingful dimensions and these contributed substantially to the prediction of the
attitude component. This calls into question the assumption of unidimensional
belief structures, leading to both a better prediction and explanation model of
attitudes.

But what are the costs and benefits of representing the level IV components
as multidimensional in general? It is admitted that parsimony of the TRA
and TPB may be regarded as sacrificed for a questionable gain of enhanced
prediction. Even the danger of excessive “data fitting” may be seen in an ap-
proach that advocates the exploration of multidimensional structures. To be
clear, it is not advisable to subdivide level IV variables in as much compo-
nents as possible. We instead propose to explicitly test measurement models
for all components of the model where possible. Only in cases where a multi-
dimensional structure clearly emerges and is theoretically sensible there is the
potential to enhance prediction and, at least as equally important, understand-
ing of the formation of components on different levels of the model. These
benefits are achieved through the specification of distinguishable dimensions
in the domains of behavioral consequences, normative influences, and control.
Moreover, these dimensions are tested for their differential impact on other
components of the model by estimation of the dimensional weights so that
the formation of attitude in a particular application, for example, can be more
clearly traced back to specific antecedents. How these weights are to be in-
terpreted is not definitely clear yet. One possible interpretation is that they
represent importance weights of the dimensions for the formation of attitudes
(for a review on this issue, see van der Pligt, de Vries, Manstead, & van Harrev-
eld, 2000). That is, these weights can be interpreted as an “empirical filter” for
characteristics represented in the items of level IV components that are not pre-
dictive (or important) of attitudes. Another possible interpretation is that the
weights function to pronounce more accessible dimensions in contrast to less
accessible dimensions. In either way, the empirical results reported by van der
Pligt et al. (2000) that items selected for importance correlate more highly with
attitude and behavior/intention than nonselected items is in accordance with
our results and lends support to the notion of these weights as importance fac-
tors. Indeed, in most but not all cases, weights for the multiple dimensions on
level IV were not all significant but variance explained in attitudes increased
in all cases, even as measured by adjusted R2. Unfortunately, we could not in-
tegrate these results in our meta-analyses for technical reasons, so we did only
report them here descriptively.

A final benefit of a multidimensional representation is that it offers the pos-
sibility to assess whether an inconsistent belief basis may exist or even prevail
in a certain context. Such an inconsistent belief basis can result in attitudinal
ambivalence at least for some persons, a phenomenon of attitude structure that
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is known in attitude research for quite a long time (Scott, 1966, 1969) and has
attracted remarkable research activities in recent years (e.g., Cacioppo, Gard-
ner, & Berntson, 1997; Jonas, Diehl, & Brömer, 1997). Since attitudinal am-
bivalence has also been shown to moderate the attitude–behavior relationship
(Jonas et al., 1997), the exploration of multidimensional belief structures seems
to be a useful tool to assess whether attitudinal ambivalence is of relevance in a
given study. In our view, inconsistencies of beliefs are not limited to behavioral
beliefs but may also occur with normative beliefs.

The second major issue of the present study was testing the principle of
compatibility as a moderator in applications of the TRA and TPB where we
extended the application of this principle to all model relationships. Most of
the previous meta-analyses in Table 15.1 attempted to account for observed
variability in effect sizes but there has not yet emerged a small set of moder-
ators potent enough to give an explanation of this variability. Nearly all of
the attempts to account for variability – like the present study – focused on
seemingly methodological explanations of which the principle of compatibil-
ity seemed to be the most interesting one, because it was supposed to give an
answer to the challenge of attitude as a psychological construct put forward
by Wicker (1969). The present study showed that indeed part of the variability
of effect sizes in the TRA and TPB could be explained by differences between
studies concerning compatibility of components, but overall, the explanatory
effect of compatibility was somewhat low and disappointing. This result may
indicate that the principle does not necessarily work with the force ascribed to
it or that it does not do so for all relationships of the TRA and TPB. Whereas
initially the principle of compatibility was confined to a methodological char-
acteristic, it has recently been tied to more psychologically meaningful inter-
pretations (Ajzen & Sexton, 1999). The authors argue that if beliefs accessed
in the attitudinal and behavioral context are the same, high correlations can be
expected. This match in beliefs might be facilitated through a match of com-
ponents on the TACT-dimensions, although they note that biases in belief elic-
itation in the different contexts can also lead to low correlations despite highly
compatible components. Tracing the roots of the principle of compatibility
down to belief congruence and linking it to theoretical approaches like the at-
titude representation theory (Lord & Lepper, 1999) seems to be a promising
approach for further research because it illuminates how the principle actually
works in psychological terms and when it may fail to work.
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Summary
The software META provides statistical methods for the performance of
meta-analyses in medicine, psychology, and quality assurance in the phar-
maceutical industry. META makes a variety of effect measures available,
like the relative risk, the standardized difference, and quality indices. For
these effect measures, classical pooled estimators as well as “modern”
random effect models can be calculated, for example, the approach of
DerSimonian and Laird (1986) or the mixture distribution approach (Böh-
ning, 2000a; Böhning et al., 1998). The latter approach allows the semi-
parametric estimation of the heterogeneity structure and classification of
individual studies or batches. In addition to statistical methods there are
graphical facilities, such as funnel plots for the identification of a publica-
tion bias or plots of confidence intervals for an illustration of individual
studies and the pooled effect measure. META is a public domain program.
It comes with a graphical interface and is available for Windows 9x/NT
and Unix (Linux).
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16.1 INTRODUCTION

In the past few years, meta-analysis has become increasingly popular in many
areas of science such as medicine, psychology, and other social sciences. In
these areas of application meta-analyses have been performed in order to ob-
tain a pooled estimate of various single studies. Obtaining a single summary
measure implicitly assumes homogeneity of these studies, that is, the results of
individual studies differ only by chance. In this case a combined estimate of
the individual studies provides a powerful and important result. However,
this pooled estimate may be seriously misleading if study conditions are het-
erogenous.

Thus, an approach which considers meta-analysis as a study over studies
has increasingly been advocated. This approach seeks to investigate heteroge-
neity between studies. An important feature of this type of meta-analysis lies
in the fact that it tries to identify factors which cause heterogeneity.

This approach may easily be extended to the area of quality control, where
batches of the produced goods replace the role of studies in medicine or the so-
cial sciences. Clearly, in this setting an investigation of heterogeneity is equally
attractive, since identification and modeling of heterogeneity helps to improve
the production process. An introduction how to use the methodology of meta-
analysis in quality control is given by Böhning and Dammann in Chapter 10 of
this volume.

16.2 THE PROGRAM META

The software META has been developed to provide a tool which allows to per-
form meta-analyses within the areas of application described above. The focus
of META is on the analysis of heterogeneity, which may be considered here the
unifying concept for several fields of application.

For different areas of application, different measures of effects are important
and necessary. Thus, META enables the meta-analyst to choose out of a variety
of measures of effects, such as the relative risk in medicine, the standardized
difference in psychology and proportions in quality control, just to mention a
few.

META provides various statistical methods to perform meta-analyses such
as simple pooled estimates, random effects models, and graphical procedures
such has confidence interval plots, funnel plots, and so forth. We will illustrate
the possible use of META using a data set from psychiatric epidemiology.

16.3 A WORKED EXAMPLE

The following meta-analysis investigates the prevalence of agoraphobia based
on seven studies (Eaton, 1995) in several countries all over the world. Ago-
raphobia may be defined as space anxiety, as a fear of being in public places.
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This psychiatric disorder may even lead to total avoidance of public places and
thus may cause severe disability.

An initial step in any meta-analysis might be to plot the effect measure to-
gether with a 95% confidence interval. This may be done using META and
its graphics facilities. Figure 16.1 shows a screen dump of META and its data
window. The data window shows the prevalent cases of agoraphobia together
with the population at risk of the respective study.

Figure 16.1 Data window and confidence interval plot.

The simplest model possible assumes parametric density f (x, θ, σ2) for some
random quantity X where θ is a parameter of interest and σ2 is a nuisance pa-
rameter which might or might not be present in the model. In the example at
hand, f (x, θ) = (n

x)θx(1− θ)n−x. In this case all studies are assumed to measure
the same overall effect θ, and they only differ in variability. Thus, the summary
measure needs to assign weights according to the inverse of the variance of the
individual study in order to obtain the summary measure.

Looking at the confidence interval plot, there seems to be a large degree of
variability to be present. However, frequently one is interested in obtaining a
summary measure for all studies. Using META we obtain the following results:

POOLED ESTIMATOR FOR PROPORTIONS

RESULTS
Pooled estimate: 0.048892
Common variance: 0.00000145

95 percent confidence interval (0.04654, 0.05125)

Chi-Square test for homogeneity of proportions:
115.23539 df = 6 p-value: 0.00000
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Clearly, looking at the value of the χ2 test of homogeneity, we reject the
null-hypothesis and conclude that there is substantial heterogeneity in terms
of the prevalence of agoraphobia in the countries studied. As a result, the
computation of an overall rate is not very meaningful, since we would ignore
the underlying heterogeneity.

In order to deal with heterogeneity, a two-level model is implemented in
META. As before, f (x, θ, σ2) denotes a parametric density for some random
quantity X. But now it is assumed that θ is not constant but is varying itself
according to some further distribution P for which the moments EP(θ) = µ and
VarP(θ) = τ2 are assumed to exist. Consequently, we are lead to a marginal or
unconditional distribution f (x, P) =

∫
f (x, θ)P(dθ).

Frequently, τ2 is called the heterogeneity variance. META offers modeling ac-
cording to two different distributions in order to deal with heterogeneity: one
is the moment approach which is based on equating the expected value of
the χ2-statistic to the observed one and then solving for τ2. Actually, this
is the approach by DerSimonian and Laird (1986). The other approach does
not specify P any further and leads to the marginal density, a mixture model.
Here, f (x, P) = ∑k

j=1 pj f (xi, θj, σ2
i ). According to this model, we assume the

existence of k subpopulations with parameters θj receiving weight pj for the
jth subpopulation. A detailed description of the use of this approach in meta
analysis may be found in Böhning et al. (1998), or in Böhning (2000a).

We proceed in our analysis with the estimation of the DerSimonian-Laird
estimator:

RESULTS
Pooled DerSimonian-Laird estimate: 0.0455

Heterogeneity variance: 0.0003

Variance of pooled estimator: 0.0000465

0.04545 95 percent CI: (0.0321, 0.0588)

Please note that we find a substantial value for the heterogeneity variance
τ2 in this data set. As expected, incorporating heterogeneity leads to a larger
variance for the DerSimonian-Laird estimator. As a result, we obtain a much
wider confidence interval compared to the pooled estimator where we assume
a constant value for θ.

Frequently, there is a debate whether one should use a summary measure
in the presence of heterogeneity. One might argue that this may be done, but
one has to be careful how to interpret the results. Under the presence of hete-
rogeneity a summary measure will reflect the overall mean in the population
well, knowing that this effect might be different in subparts of the population.

If the presence of heterogeneity has been identified, one might wish to mo-
del the structure of this heterogeneity and, for example, find the levels of effect
in subparts of the population. This can be accomplished using the finite mix-
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ture model approach outlined above. A convenient computational strategy
uses a fixed grid of potential support points (subpopulation means θj ) which
may or may not receive weights pj.

Figure 16.2 shows the dialog box which allows the user to define a grid of
potential support points.

Figure 16.2 Dialog box for the definition of a grid of potential support points in the
mixture model.

Depending on the current measure of effect an appropriate mixing kernel
may be chosen by the user. In this case – since we are dealing with rates – the
binomial distribution is the natural choice.

Initial number of components: 5
Parameter: 0.0211, Weight: 0.1441
Parameter: 0.0317, Weight: 0.2840
Parameter: 0.0530, Weight: 0.3073
Parameter: 0.0584, Weight: 0.1533
Parameter: 0.0690, Weight: 0.1113

Log-likelihood at iterate: -34.8009

Based on this grid META identifies five potential subpopulations. Now
these grid points with positive support may be used to find a refined solution
using the EM-algorithm (Dempster et al., 1977). Here, we keep the number of
components fixed and update mixing weights and subpopulation means. Fre-
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quently, some population means coincide and thus the number of components
decreases. For our data at hand, after applying the EM-algorithm, we find four
remaining components (results not shown here).

Now a backward elimination approach may be used in order to reduce the
number of mixing components. This would imply that we test k = 4 vs. k =3
using a Likelihood Ratio test approach (see Figure 16.3).

Figure 16.3 Dialog box for fixed effect mixture model.

NPMLE for Fixed support size

Number of components after combining equal parameter estimates: 3

Parameter: 0.0212, Weight: 0.1440
Parameter: 0.0316, Weight: 0.2844
Parameter: 0.0559, Weight: 0.5716

Log-likelihood at iterate: -34.3889

Clearly, the log-likelihood is only slightly smaller for this three component
mixture model and we would conclude that a three component solution is ap-
propriate. Once a mixture model has been chosen, one might be interested in
classifying the individual study. Due to their discrete structure, mixture mod-
els provide a natural way of classifying the individual study. This is achieved
by applying Bayes theorem and using the estimated mixing distribution as a
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prior distribution. Thus, we are able to compute the posterior probability for
each study to belong to a certain component:

Pr(Zij = 1|xi, P̂) =
p̂j f (xi, θ̂j)

k
∑

l=1
p̂l f (xi, θ̂l)

.

The ith study is then assigned to that subpopulation j for which it has the
highest posterior probability of belonging. META offers the option to classify
the studies and to store the results of this classification in the data spreadsheet
(see Figure 16.3).

META also computes the posterior expectation for the measure of effect for
the individual study based on the assumed distribution. Likewise, the poste-
rior expectations may also be stored within the data frame as may be seen in
Figure 16.4.

Figure 16.4 Spreadsheet with original data and empirical Bayes estimates.

16.4 AVAILABILITY

META is designed to be platform independent and uses the wxWindows 2.0
class library (Smart, 2000). META may be obtained for Microsoft Windows
9x/NT and for Unix(Linux) operating systems. META is available from the
authors on request.
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