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8
Results

The following sections provide an overview of the results for the Monte Carlo
study of meta-analytic approaches. First, a brief introduction to the presenta-
tion style will be given. This seems necessary because of the complex structure
and multitude of results. The intention is to make the presented results more
easily comprehensible and to point out how a maximum of information can be
gathered from the graphics found in the subsequent sections. The presentation
of results diverges from the structure of Chapter 5 in that the focus is kept on
the questions to be answered by the statistical analyses. First, Section 8.2 is
devoted to questions pertaining to the estimation of the effect size in the uni-
verse of studies, for example, issues regarding the bias and relative efficiency
of the proposed estimators. Next, the results on the accuracy of homogeneity
tests will be reported in Section 8.5. Finally, estimators of the heterogeneity
variance — which are important in random effects approaches — are exam-
ined in Section 8.6. The sequence of sections thus resembles the conduct of a
meta-analysis, while not exactly mirroring it. The situations S1 to S3 will be
separated in all sections to assess the statistics’ performance under different
conditions.

8.1 PRELIMINARIES

One of the characteristic features of the present study is the wealth of situa-
tions, design variables, and number of different approaches to be compared.
Most of the results are subject to levels of the dimensions k, n, µρ, or differences
of ρ1 and ρ2 in S2. Additionally, results are compared for levels of variances
(σ2

ρ ) in S3. The number of dimensions obviously precludes any simple picto-
rial or tabular presentation. As a consequence, the report of the results needs
to be brought into an easily comprehensible form.
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The results presented in the text are always selected to represent and il-
lustrate the primary aspects of the respective results. Mostly, results will be
collapsed over at least one design variable. More specifically, collapsed means
that the mean over all levels of such a variable will be computed. The resulting
mean values will then be presented for the levels of all other variables in the
design. For example, in the presentation of results for the biases of estimators
over several levels of n, the mean values computed across levels of k will be
presented. The absolute values of biases are then easily interpretable, if biases
do not (greatly) vary over levels of k. A more complicated picture emerges in
cases where results differ across all levels of all design variables. This will be
highlighted in the presentation and should be borne in mind when inspect-
ing collapsed results. Nevertheless, even in these more complicated cases, a
comparison of the approaches is still possible.

In general, much more emphasis will be placed on graphical rather than
tabular presentation of the results to facilitate illustration of trends and rela-
tionships which often go unrecognized in tables. The figures will prevalently
be three-dimensional graphs since they often give a better impression of inter-
actions of the design variables and are also very compact ways of representing
a wealth of results and general trends. All three-dimensional graphs will dis-
play smoothed data or surfaces using negative exponential smoothing. This
is a local smoothing technique using polynomial regression with weights.1 In
short, the weights are chosen in this technique so that the influence of points
decreases exponentially with the horizontal distance from certain points of the
surface.

The following graphs illustrate the effect of smoothing and how graphs pro-
duced by this technique can be interpreted. The upper left and right panel in
Figure 8.1 depict a three-dimensional scatterplot of the bias of a statistic for
varying µρ and n. Both upper panels show the same results, each from a dif-
ferent angle of view. The lower panels depict the same graphs with smoothed
surfaces added resulting from negative exponential smoothing. As can eas-
ily be seen, the lower set of graphs gives a much clearer and more easy to
grasp picture of the relationships between the variables depicted. These types
of graphs also supersede series of two-dimensional line graphs as ordinarily
presented in the literature, where it is left to the observer to synthesize the
graphs cognitively. When inspecting the graphs it is important to recognize —
as can be verified in Figure 8.1 — that the intersections of the meshes on the
surfaces correspond to the data points plotted. The mesh intersections are not
to be interpreted as projections of the plots’ grid intersections onto the surface.
Data point dots will therefore be omitted in the graphs of the results sections.
Since the data points are not equally spaced with respect to a linear scale on
the design variables n and k, the mesh of the surface will also be more tightly
interconnected in some areas when the results are plotted by n and k. Addi-
tionally, when different shadings occur on the surfaces they can be interpreted

1For the graphical presentation in this chapter, SigmaPlot for Windows Version 8.02 and its
smoothing facilities were used to prepare the figures.



ESTIMATION OF THE MEAN EFFECT SIZE 117

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

50

100

150

200

250

0.0

0.2

0.4

0.6

0.8

µρ

B
ia

s
o

f
µ̂

ρ

n
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

50 100 150 200 250
0.0

0.3

0.6
0.9

n

B
ia

s
o

f
µ̂

ρ

µρ

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

50

100

150

200

250

0.0

0.2

0.4

0.6

0.8

µρ

B
ia

s
o

f
µ̂

ρ

n -0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

50 100 150 200 250
0.0

0.3

0.6
0.9

n

B
ia

s
o

f
µ̂

ρ

µρ

Figure 8.1 Illustration of smoothing in graphical presentations.

as contours with respect to the vertical axis. In the example graphs this is the
axis labeled “Bias of µ̂ρ”. This enables the reader to see the height of values on
the surfaces even in the middle of a three-dimensional graph. At least rough
estimates of the actual values plotted can thereby be gathered from the graphs.

Unfortunately, the virtues of a concise graphical presentation of the results
are accompanied by a loss in numerical precision in the report. More precise
results not readily read from the figures are provided by the author to the in-
terested reader upon request.2

8.2 ESTIMATION OF THE MEAN EFFECT SIZE IN THE
UNIVERSE OF STUDIES

At the core of most meta-analyses is the estimation of a mean effect size. Two
connotations are usually associated with this phrase. First, a summary of the
available effect size data is intended to be given by the meta-analyst that is a

2Email: rs@psy.uni-muenster.de
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good representation of the data at hand. The weighted mean of the observed
effect sizes usually gives such a good summary in a least-squares sense. Sec-
ond, the phrase also alludes to estimating a parameter of the distribution of
effect sizes in the universe of studies. The parameter supposed to be of most
concern to meta-analysts is µρ, the expected value of the universe distribution
in the space of r. It is this latter sense that will be of concern in the follow-
ing subsections. The main question to be answered is how well the different
r-based estimators of the various approaches are in estimating µρ. Recall from
Section 5.5 that z-based approaches do not estimate µρ but µρz. This issue will
be elaborated when it is of most concern, namely when presenting the results
for heterogeneous situations.

All approaches outlined in Chapter 5 provide procedures that yield esti-
mates either for µρ or µρz. Results on the bias of these estimators and their
accuracy are given first, followed by results for the proposed significance tests
of the approaches. The two subsections will thus provide an evaluation of the
estimators with respect to estimation and inference.

8.2.1 Bias

The bias of an estimator is one important aspect of its statistical quality (see
Stuart et al., 1999). The biases were computed for the following presentation
so that positive biases indicate estimators for which the mean exceeds the pa-
rameter to be estimated. As in most previous studies on the bias of some of the
estimators under investigation, the biases will first be examined in a homoge-
neous situation.

8.2.1.1 Homogeneous Situation S1 In S1 we have the simple situation of
only one effect size in the universe of studies that is estimated by all k stud-
ies. Hence, µρ and µρz are equal and estimators of approaches using r versus
its Fisher-z transform need not be differentiated here. The bias of approaches
that apply the Fisher-z transformation was computed for the mean effect size
transformed into r-space, whereas for approaches that do not apply this trans-
formation the estimators were used directly. For convenience, the value in the
universe to be estimated is denoted by µρ in all situations. This notation is
used also in describing the results in S1 for reasons of consistency. Of course,
µρ is a constant ρ in S1, and the reader should not be confused by this notation.

The following graphs show the biases of all approaches by the design vari-
ables k and n. As mentioned in the introduction of this chapter, statistics have
to be combined across levels of other design dimensions (i.e., µρ in the present
case) to facilitate the presentation of results. To create the graphs depicted in
Figure 8.2, the mean bias of the estimators over the omitted dimension µρ was
computed and the data points in the figure represent these mean biases. As
will become evident from the subsequent presentation, biases vary substan-
tially over levels of µρ, so that it should be borne in mind for interpretation
of the depicted values that the graphs represent aggregates over the omitted
dimension.
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Figure 8.2 Bias of µρ estimators in S1 by k and n.

Here and in the following graphs, the three panels show the results of all ap-
proaches. The arrangement of approaches is not oriented on theoretical con-
cerns but for clearer representation of the results. The reader may wonder
why the results for DSL and RR are omitted. This is due to the fact that the
results for both approaches are identical to the results for HOr as far as bias
and mean squared errors are concerned. For a recapitulation of the reasons
for these identities the reader is referred to Sections 5.2 and 5.4.1. The results
for RR are generally omitted from the presentation in the text — except for the
subsection on significance testing — because the results for RR and HOr are
indistinguishable for theoretical reasons.

The bias of all estimators strongly depends on the sample size whereas bi-
ases show practically no variability with respect to k. The strongest change
in biases occurs from very small n = 8 to approximately n = 64. For values
larger than 64 the biases for all approaches vanish, as one would expect from
consistency of the estimators. Estimators of approaches that use the Fisher-z
transformation without corrections (HOr) generally show a positive bias and
estimators simply based on r (HS) always show a negative bias. This is to be
expected from the theoretical analyses reported in Section 3.1.

Two estimators can be identified in Figure 8.2 that show outstanding per-
formance in biases. The correction of r by Olkin and Pratt (OP) as well as the
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Figure 8.3 Bias of µρ estimators in S1 by µρ and k.

correction of z proposed by Hotelling (HOT) show nearly flat planes at a value
of zero bias, though OP seems to be slightly better for very small n and k.

In contrast to these extraordinarily good estimators, OP-RE and especially
OP-FE stand out with a very poor performance. Whereas both upper panels
in Figure 8.2 have a similar scaling on the vertical axis, the scaling of the lower
panel had to be strongly extended to show the surfaces for these latter esti-
mators. The surfaces for OP-FE and OP-RE depicted in the figure clearly show
the inadequate performance of these estimators of µρ when n is small. The pro-
posed reason for these poor results of the estimators is the weighting scheme
they apply. As already mentioned, accidently high values of r receive a very
high weight in comparison to lower values and thereby they exert a strong
influence on the overall estimate, leading to the high positive bias. OP-RE
performs better in S1 than OP-FE because it incorporates estimates of hetero-
geneity variance in its weights that are equal for all aggregated effect sizes.
Since these estimates are most frequently non-zero even though the universe
variance is zero in S1, the deleterious effect of the weights for the biases of OP-
FE is somewhat levelled out in OP-RE. The performance of these approaches
was expected to be impaired when n is small, however, the magnitude of bias
seems surprising. The poor performance of both estimators can also be seen in
the graphs shown in Figures 8.3 and 8.4.
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Figure 8.4 Bias of µρ estimators in S1 by µρ and n.

Figure 8.3 shows the biases of the estimators for varying µρ and number of
studies. Biases are shown not to strongly vary across values of k, only for small
values of k below approximately 16 studies do biases show smaller values in
comparison to higher values of k. This somewhat surprising finding was also
reported in a comparison of r and the Fisher-z transformation by Corey et al.
(1998) and is not expected from theoretical examinations given in Section 3.1.

The arrangement of estimators in all panels of Figure 8.3 is the same as be-
fore and shows the same direction of bias for all estimators. Again, OP and
HOT appear as flat planes in the graphs with OP showing slightly better per-
formance for very small values of k. The curvature of the graphs across values
of µρ is representative of the general behavior of the estimators. The largest
values of bias occur in the region about µρ ≈ .60. Scaling of the vertical axis
has again to be extended for OP-FE and OP-RE to show the very high values
of bias for these estimators.

This has also to be done for the graphs depicted in Figure 8.4, where biases
are shown across values of µρ and n. Because the biases do not show sub-
stantial variability across values of k and Figure 8.4 shows aggregates over this
design dimension, it can be regarded as the best representation of the results
on biases in S1.
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Table 8.1 Descriptive Statistics for the Bias of µρ Estimators in S1

Statistic

Approach Max. Mean Median Min. SD

HOr .0324 .0053 .0018 −.0008 .0075
HOT .0008 −.0011 −.0002 −.0174 .0023
HOd .0009 −.0036 −.0011 −.0240 .0056
HS .0008 −.0058 −.0025 −.0301 .0077
OP .0026 .0000 .0000 −.0033 .0004
OP-FE .3432 .0514 .0184 −.0005 .0740
OP-RE .1180 .0280 .0146 −.0010 .0303
Note. The total number of values described by these statistics is 420.

The direction of the estimators’ biases and their absolute values closely
match the results depicted in Figure 8.2. It becomes evident in Figure 8.4 that
in contrast to the estimators based on r or its Fisher-z transform, HOd shows
its maximum bias not in the region about .50 but at higher values around .80.
However, this slight departure from the behavior of the other estimators does
not seem to be of great importance for an overall evaluation of the estimator.
Nevertheless, it is remarkable that the application of the transformation from r
to d and the meta-analytical aggregation of the resulting effect sizes retains the
negative bias of r that becomes a positive bias through the application of the
Fisher-z transformation.

OP and HOT again appear as the best estimators in terms of bias and can be
designated as the best estimators over the design dimensions n, k, and µρ after
inspection of the graphs presented up to this point. The proposed refinements
of the estimators in common use show a very satisfying behavior at all levels
of the design variables.

The graphs presented here also point to two types of convergence. First,
biases converge to zero with larger n, as would be expected. The second type
is convergence for larger values of k. Biases do not converge to a value of zero
for larger k but instead converge to the bias expected from statistical theory.
This is important insofar as it makes clear that adding more studies to a meta-
analysis does not lead to vanishing biases in the pooled estimator.

The absolute values of the reported biases may seem very small in magni-
tude. In fact, most descriptive statistics presented in Table 8.1 show relatively
small values of bias for all estimators, except OP-FE and OP-RE. The absolute
mean values seem to be of trivial magnitude and not of relevance for interpret-
ing meta-analytical results at all.

If the sole purpose of a meta-analysis would be the estimation of µρ in a ho-
mogeneous situation this may indeed be regarded as a valid summary state-
ment for the results presented here. Correspondingly, it has been stated that
the cases are very rare in which a correction of bias is worthwhile (Hunter &
Schmidt, 1990, p. 71). Although the results also indicate that bias can be of
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substantial magnitude when n is very small, such values of n are rarely en-
countered in practice.

Nevertheless, when evaluating the results one should also take into consid-
eration the importance of the estimates for other analytical steps in a meta-
analysis. They play a prominent role, for example, in the computation of the
Q-statistic. Although seemingly of inconsequential magnitude, a small bias
transfers to and may add up in other statistical analyses based on these esti-
mators. Apart from the small biases of most approaches, the observed biases
for OP-FE and OP-RE are of such magnitude that it does not seem sensible to
use them as estimators when n is less than approximately 60.

8.2.1.2 Heterogeneous Situation S2 The next situation for which perfor-
mance of the estimators will be evaluated is S2. A two-point distribution of
effect sizes is given in the universe of studies in S2. In analogy to the previous
section, mean biases will be computed for several combinations of the design
variables.

For better comprehension of the results presented, a reconsideration of the
estimated universe parameters seems necessary. In Section 5.5 it was shown
that the estimated parameters are different in S2 for estimators based on r,
Fisher-z transformed r, and d (as resulting from a conversion of r). Recall,
however, that in the case of HOd the weights have an effect making it more
sensible to use µρ as a universe parameter for comparison. Hence, in the fol-
lowing presentation of results the bias of HOd was not computed with respect
to µρd as the general logic outlined for Fisher-z based approaches would sug-
gest but with respect to µρ. This seemingly inconsistent procedure was applied
due to the fact that the values to be presented for HOd are actually much closer
to µρ than µρd.

For the approaches using the Fisher-z transformed correlation coefficient,
the universe parameters µρz are higher as compared to µρ. This is illustrated
in Figure 5.1 on page 78. To give a more precise impression of this difference
consider Table 8.2.

The first two columns in this table provide combinations of the two different
parameters in the universe of studies. In the third column the corresponding
µρ is given, in the forth column µρz, and the difference between these two pa-
rameters can be seen in the fifth column. These differences are actually part of
the values depicted in Figure 5.1. It is important to realize that the values in
the fifth column are theoretically derived and not estimated. As an interpreta-
tion of these differences in the context of estimation, one can think of them as
providing the biases for Fisher-z based approaches if they were unbiased with
respect to µρz but evaluated with respect to µρ. Hence, it would come as no
surprise to observe a “bias” of −.10 for the HOr mean effect size estimator in
the case as specified in the penultimate row of Table 8.2, for example. Note that
this “bias” would be observed (only) if the HOr estimator was indeed unbiased
(with respect to the parameter µρz it in fact estimates)!
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Table 8.2 Comparison of Values of µρ and µρz in S2

ρ1 ρ2 µρ µρz µρ − µρz Est. Bias µρ − (µρz + Est. Bias)

.00 .10 .05 .0501 −.0001 .0016 −.0017

.00 .20 .10 .1010 −.0010 .0034 −.0044

.00 .30 .15 .1535 −.0035 .0051 −.0086

.00 .40 .20 .2087 −.0087 .0063 −.0150

.00 .50 .25 .2679 −.0179 .0080 −.0259

.00 .60 .30 .3333 −.0333 .0093 −.0426

.00 .70 .35 .4084 −.0584 .0105 −.0688

.00 .80 .40 .5000 −.1000 .0093 −.1093

.00 .90 .45 .6268 −.1768 .0080 −.1848
Note. The estimated bias is for the HOr approach (Est. Bias) and was taken from the
results for k = 16 and n = 16.

As a consequence, the biases for Fisher-z based approaches reported in this
section are evaluated with respect to µρz. To facilitate comparisons of these
biases with others reported for r- and d-based estimators, they are given in r-
space, that is, the inverse Fisher-z transformation is applied. As an illustration,
column six in Table 8.2 provides estimated biases for HOr from the Monte
Carlo study results for the case of k = 16 and n = 16. As can be seen, the
values are small and round off to approximately −.01 in most cases. Thus,
it can be concluded that HOr has a small bias with respect to µρz in S2. If
interest lies in biases with respect to µρ, they can easily be estimated as well
by computing values as given in column seven. By inspecting these values it
becomes clear that — at least in this case — the biases of HOr with respect to
µρ are predominantly composed of the theoretically derived values in column
five and the estimated biases in column six only account for a small part.

Amongst the available estimators only those based on r provide estimates
of µρ in S2. This is quite an important theoretical result for the estimation of
a mean effect size with correlational data in a heterogeneous situation of the
given type. Biases for these approaches are not transformed and will be given
as they result in the Monte Carlo study.

In sum, when inspecting the following results, the reader should bear in
mind that Fisher-z based approaches are evaluated with respect to a different
universe parameter as the other approaches. In addition, since µρ was used
as the standard of comparison for HOd, but µρ can not be considered the esti-
mated parameter when weights are disregarded, its role is somewhat special.
To highlight these facts, the following presentation of results is subdivided in
accordance with these distinctions.

r-Based Estimators in S2. There are four r-based estimators under investi-
gation: OP, OP-FE, OP-RE, and HS. Figure 8.5 gives an overview of the results
for these estimators for varying k and n (upper panels).
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Figure 8.5 Bias of r-based µρ estimators in S2 by k and n (upper panels) as well as
by ∆ρ and k (lower panels).

Both upper panels in the figure show similar behavior of the estimators as
compared to the results in the previous situation. The only difference is an
even worse performance for the OP-FE estimator approximating a value of .10
in bias with growing n. As before, OP is also in S2 clearly the best estimator
available in this category of estimators, showing almost no bias at all. HS also
shows good performance, at least for sample sizes of 32 or larger.

The lower panels in Figure 8.5 depict the biases of the estimators across
values of k and differences between ρ1 and ρ2, which will henceforth be de-
noted by ∆ρ, that is, ∆ρ = ρ1 − ρ2. The forms of the surfaces differ somewhat
more from those in S1. The direction of biases is still the same, with the OP-
estimator being best across all values of the design. HS is depicted in the same
graph and shows small negative biases which are almost invariant across val-
ues of ∆ρ. Biases of HS can again be considered as negligible at least when
sample sizes are 32 or larger.

The biases of OP-RE are approximately the same as those reported in S1.
OP-FE shows steadily increasing biases with higher values of ∆ρ that rapidly
reach levels that can be considered to be unacceptable. As is evident from these
results, the approximation of an OP-FE bias of .10 in the upper right panel is
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Figure 8.6 Bias of r-based µρ estimators in S2 by ∆ρ and n.

due to very large differences in bias across values for the difference between
universe parameters. OP-FE is the only estimator in this class that is strongly
affected by ∆ρ. In addition to the strong effect of ∆ρ, small n even amplify the
bias depicted in Figure 8.5. This can be seen by inspecting the results shown in
Figure 8.6.

The values for biases of r-based estimators across values of n and differences
between ρs are depicted in Figure 8.6. The general trends and evaluation of the
estimators do not change in comparison to S1, as can be seen by inspection of
this figure. OP is consistently showing a flat surface of zero bias across all
values of n and ∆ρ, hence it is clearly also the best point estimator of µρ in S2.
HS only shows a small bias for very small n and does not perform as well as
OP overall. In marked contrast, OP-RE and especially OP-FE show relatively
bad performance, as can be seen in the right panel of Figure 8.6.

The reported biases of OP-FE across the design variables are huge in mag-
nitude. It is remarkable that even with very high n biases do not diminish but
actually rise. Such an observation is counterintuitive for at least two reasons.
First, the results in the previous figures also show that the k point estimates of
OP — on which OP-FE is based — are very accurate and show almost no bias
at all in any of the situations and combinations of design variables. Hence,
problems with biases of the OP-FE estimator cannot be caused by the point
estimates. Second, consistency of estimators suggests that biases do not rise
for increasing n but decline (and vanish for very large n). The converse is ob-
served for OP-FE. All this clearly points to an effect of the weighting scheme
because point estimates are very accurate on the basis of the UMVU estimator.
Since the highest values for the bias of OP-FE are almost as high as the mean
effect size in the universe (see the combination of lowest n and highest ∆ρ in
the right panel of Figure 8.6), this shows that the class having higher ρ of the
two-point distribution exclusively dominates the estimates. Hence, it must be
the case that the correlations arising from the class with a higher ρ receive an
excessive weight in comparison to the ones of the lower ρ class. Recall, first,
that the weights are the reciprocals of the variances; second, that the variances
of the estimator are different across values of ρ (see Figure 3.4); and third, that
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Figure 8.7 Bias of d-based µρ estimators in S2.

the estimates are plugged into Equation 3.7 to arrive at the estimates for the
variances. Putting these facts together explains the high biases of OP-FE. As
an example, consider the case of ρ1 = 0, n = 256 and ρ2 = .90, n = 256. For
simplicity, assume that all r arising from ρ1 are exactly zero and all r from ρ2
are .90. As an aside, this is not far from what is actually observed with n = 256.
In the given case, the weight for the first class is w1 = 252.00, and w2 = 7104.54
for the second. Applying these weights in the given situation and aggregating
a total of k = 256 studies leads to an estimate of µ̂ρ = .87. Subtracting µρ = .45
leads to a bias of .42, a value corresponding to the highest biases of OP-FE in
the Monte Carlo study as can be observed in Figure 8.6, for example. Hence,
large difference in weights lead to the huge biases observed for OP-FE in S2.

Overall, the general trends in biases across levels of the design variables are
similar to those resulting in S1. Biases are fairly stable across values of k, OP
clearly shows the best performance, and the weighting scheme emerges as a
profound problem for OP-FE making the use of this estimator very unreason-
able.

d-Based Estimator in S2. The results for the d-based estimator are depicted
in Figure 8.7. As can be seen, biases show a somewhat strange behavior that
differs from those of r-based estimators.
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Figure 8.8 Bias of Fisher-z-based µρz estimators in S2.

Although there are regions of the design variables where the d-based esti-
mator shows no bias, it is quite sensitive with respect to differences between
universe parameters in comparison to other estimators. The highest absolute
values occur for combinations of small k and n. Recall again that the bias is
computed with respect to µρ and that varying weights of d also exert an in-
fluence on the behavior of the estimator. As a result, HOd shows a different
behavior in bias in comparison to the situation S1. Over- or underestimation
of µρ is harder to predict than for other estimators.

Fisher-z Based Estimators in S2. The estimators of this category are HOr
and HOT. To reiterate, as the universe parameter for these estimators µρz was
used which differs from µρ the larger the difference between ρ1 and ρ2 (see
Section 5.5). The upper left panel of Figure 8.8 shows biases for this category
of estimators similar to those in S1.

Although HOT shows some deficiencies in bias with combinations of very
small k and n it can still be considered as a better estimator than HOr. The
estimates are therefore also improved in S2 by the application of Hotelling’s
correction. The upper right panel of Figure 8.8 shows the biases by k and dif-
ferences between ρs. In contrast to the r-based estimators there is a tendency
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Table 8.3 Descriptive Statistics for the Bias of µρ and µρz Estimators in S2

Statistic

Approach Max. Mean Median Min. SD

HOr .0323 .0061 .0026 −.0012 .0078
HOT .0011 −.0019 −.0006 −.0253 .0032
HOd .0189 .0003 .0003 −.0343 .0078
HS .0004 −.0058 −.0026 −.0289 .0070
OP .0041 .0000 .0000 −.0051 .0005
OP-FE .5175 .1622 .1324 .0011 .1256
OP-RE .1166 .0297 .0188 .0006 .0283
Note. The total number of values described by these statistics is 1890.

of larger negative biases to occur for small values of k. The biases of estimators
by n and differences between ρs are shown in the lower panel of the figure.
As can be seen in the upper right and lower panel, biases of HOr do not dif-
fer very much across levels of ∆ρ and the same is true for k. The number of
persons shows a strong influence on biases only for very small n. In sum, the
Fisher-z-based estimators do not show larger biases of concern in comparison
to the results reported in S1, but estimators are only precise with respect to
µρz. Finally, a highly condensed overview of the descriptive statistics for the
estimators in S2 is presented in Table 8.3. The values in this table underscore
the conclusions for S2 already drawn.

In sum, values for biases are relatively small for all estimators, except for
OP-FE, and may generally not be of concern at all, as was the case in S1. Al-
though OP-RE does not show mean biases in Table 8.3 as high as those for
OP-RE, the estimates are highly variable in comparison to those of other esti-
mators. This undesirable property points to the existence of cases in which the
biases for this estimator are high. Hence, it does not appear attractive as an
estimator even though it is designed for heterogeneous situations.

It must again be emphasized that biases have always to be judged against
the background of different universe parameters. From a substantive point of
view, r-based estimators address the parameter of interest best. The d-based
estimator also performs relatively well in estimating µρ but its bias is less pre-
dictable in comparison to r-based estimators. The results from meta-analyses
for mean effect sizes in heterogeneous situations of type S2 can therefore be
interpreted as estimating quite accurately the expected value of the mixing
distribution. However, for Fisher-z based estimators it has to be taken into ac-
count that it is µρz that is estimated, a parameter usually not of interest to the
researcher. Hence, concerns are in order regarding the usage of Fisher-z based
in heterogeneous situations like S2. The interpretation of the mean effect size
as a “mean ρ” is not warranted in a strict sense under these circumstances.
Whereas the assumption of homogeneity can be regarded as a prerequisite for
an interpretation of the mean effect size of z-based approaches in S2, the re-
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sults from the other approaches can safely be interpreted as estimates of the
expected value of the distribution of ρs. Nevertheless, whether such an esti-
mate is of real interest must be decided by the researcher based upon substan-
tive concerns, because a vastly different set of ρ1 and ρ2 may have produced
the observed mean effect size.

8.2.1.3 Heterogeneous Situation S3 The last situation S3 for which biases
of the estimators will be examined is characterized by a continuous distribu-
tion of effect sizes in the universe of studies. Analogous to the introductory
remarks made in the previous Subsection 8.2.1.2, the estimated parameters µρ

and µρz used as standards of comparison for the various estimators are con-
sidered first. For the case of correlation coefficients not subjected to the Fisher-
z transformation, the expected value of the beta distribution is taken as the
parameter of interest. For the Fisher-z transformed coefficients, the expected
value in z-space (i.e., µζ) given by

µζ =
∫ 1

−1
tanh−1(r) f (r)dr

constitutes the standard of evaluation. Here, f (r) is the beta probability den-
sity function as described in Section 4.5. The values of µζ are subsequently
transformed into the space of r by the inverse Fisher-z transformation µρz =
tanh µζ . The resulting values computed for the expected values and variances
of the beta distribution are reported in Tables A.1 and A.2 in the appendix. For
the same reasons as in S2, the expected value µρ was used for the d-based es-
timator and results are presented separately for the three groups of estimators
in the following paragraphs.

r-Based Estimators in S3. Biases of the estimators of this category over
different combinations of the design variables can be inspected at a glance in
Figure 8.9.

Evidently, the biases of the r-based estimators do not differ much from the
previous two situations in overall quality. The OP estimator is again char-
acterized by showing practically no biases notwithstanding which parameter
constellation is prescribed by the design variables. The behavior of the estima-
tors with respect to n and k is quite the same as before with biases showing
practically no variation across values of k and larger biases for smaller n. It can
also be seen that except for OP, the biases tend to be slightly smaller for HS as
σ2

ρ becomes larger. The scaling of the vertical axis, however, shows that over-
all biases for HS are very small and only grow to a noticeable magnitude for
extremely small sample sizes not likely to be encountered in practice. OP-FE
again shows unacceptable behavior making it unsuitable as an estimator for
situations of type S3 as well. Hence, it does not seem reasonable to include
OP-FE in all of the following performance evaluations of the various estima-
tors.
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Figure 8.9 Bias of r-based µρ estimators in S3.
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Figure 8.10 Bias of d-based µρ estimators in S3.

Note that the present situation is perfectly suitable for random effects ap-
proaches like OP-RE, but the performance in estimating µρ is actually best for
a fixed effects approach, namely OP. This is proposed to be due to the defi-
ciencies of the weights used for OP-RE as already mentioned. Although the
very good performance of OP is remarkable, disadvantages of FE approaches
are suspected to lie more in testing, for example, rather than estimation of the
universe parameter. The reader is also reminded that DSL, a random effects
approach, leads in the present situation to the same results as HOr.

d-Based Estimator in S3. The next estimator for which results on biases are
presented is the d-based estimator HOd. Again, an ensemble of graphs is given
in Figure 8.10 to present results at a glance.

Evidently, biases of this estimator become larger only for very small n. This
can be seen in the upper left panel in Figure 8.10. There is a slight tendency
for higher values of HOd to occur for larger values of σ2

ρ but again, the pattern
of relationships of biases across design variables is not as clear as for other
approaches. Large values of µρ are accompanied by stronger negative biases
(see lower panel). Although all the biases depicted in the three panels are
very small in absolute terms, the observed effects are supposed to be due to
the weights employed in computing the mean effect sizes using this estimator.
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Figure 8.11 Bias of Fisher-z-based µρz estimators in S3.

Because larger values of d are downweighted by using the weights, as already
discussed in detail, and such values occur more often with larger variances
of the mixing distribution, the negative bias for small σ2

ρ visible in the upper
right panel of Figure 8.10 seems to be compensated. For large values of µρ, a
stronger negative bias results but all in all the values of bias are very small and
not of practical concern except for cases of very small sample sizes n.

Fisher-z-based estimators in S3. The biases of the Fisher-z-based estimators
are presented in Figure 8.11. The relevant estimators in this class are HOr and
HOT.

As in the situations before, HOT performs better than the non-corrected
Fisher-z-based estimator HOr. Very small n influences biases of these estima-
tors in a negative way and can lead to a noticeable bias of the HOr estimator.
Nevertheless, biases are not large in general and only become discernible for
extreme levels of the design variables, especially n (see upper left panel in Fig-
ure 8.11. The variance of effect sizes σ2

ρ does not have a profound effect on the
estimates of µρz. Especially in the lower panel of Figure 8.11 some values for
the estimators are hard to inspect precisely. Finally, descriptive statistics for
the biases in S3 are again presented in Table 8.4 for an overview of the results
in S3.
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Table 8.4 Descriptive Statistics for the Bias of Estimators µρ in S3

Statistic

Approach Max. Mean Median Min. SD

HOr .0325 .0039 .0013 −.0286 .0080
HOT .0038 −.0025 −.0008 −.0447 .0045
HOd .0090 −.0014 .0000 −.0337 .0060
HS .0037 −.0053 −.0022 −.0306 .0071
OP .0037 .0000 .0000 −.0052 .0007
OP-FE .4545 .1071 .0775 −.0068 .0992
OP-RE .1161 .0248 .0126 −.0073 .0276
Note. Valid values for all entries are 1848.

Evidently, a similar picture as compared to S2 emerges. It can be seen that
biases for OP-RE and OP-FE are far more variable in comparison to the other
estimators and can produce biases in maximum that are certainly not accept-
able. All other estimators fare quite well with respect to the parameters they
estimate. OP is clearly the best estimator also in the given situation. It is not
only closest on target overall, but also shows the smallest variability in biases.
For a comparison of the Fisher-z-based and the other estimators it is quite in-
structive to also consult Tables A.1 and A.2 in the appendix to gain an impres-
sion of how different µρ and µρz can become.

8.2.2 Relative Efficiency

Besides the bias of an estimator as an expression of how close it is to the esti-
mated parameter, the variance is also an aspect of its closeness to the parame-
ter. However, it is not the variance of an estimator per se that is of concern here
but the variance about the parameter of interest. That is, the squared distances
from the universe parameter to be estimated are taken and not the ones with
respect to the expected value of a potentially biased estimator. The well-known
decomposition (see Stuart et al., 1999, p. 24)

MSE(T) = E(T − θ)2 = Var(T) + (E(T)− θ)2 (8.1)

shows that for unbiased estimators T the mean squared error (MSE) equals the
variance of the estimator. In the Monte Carlo study, the values computed are
actually

MSE =
1

Iter

Iter

∑
l=1

(r̂l − µρ)2,

where Iter signifies the number of iterations (10,000) and r̂l denotes an estima-
tor based on r. That is, the squared distances from the expected value of the
distribution of universe effect sizes are summed over all iterations. In the fol-
lowing comparisons, the MSE-ratios of different estimators will be presented.
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In S1, µρ is used as the universe parameter in the computation of the MSEs,
whereas in S2 and S3 the question of choosing an appropriate universe pa-
rameter for comparing the approaches arises again. For the approaches that
use the Fisher-z transformation in estimating the mean effect size, there are
two possibilities. First, the MSEs can be computed in z-space. That is,

MSEz =
1

Iter

Iter

∑
l=1

(ẑl − µζ)2,

where ẑl is the estimator and µζ the expected value of the mixing distribution
in z-space. The additional problem arises that the MSEs for all situations of
z-based estimators are not directly comparable to MSEs for r-based estimators.
To make the MSEs of the various estimators in S2 comparable, the term

h(ρ) =
√

1 + ρ1 + ρ2 + ρ1ρ2 −
√

1− ρ1 − ρ2 + ρ1ρ2√
1 + ρ1 + ρ2 + ρ1ρ2 +

√
1− ρ1 − ρ2 + ρ1ρ2

− ρ1 + ρ2

2
,

which is the difference between µρ and µρz, is used for correction. The correc-
tion factor gives the difference between µρ and µρz theoretically to be expected
for the various parameter values in S2. Subtracting h(ρ) from the Fisher-z
transformed values (tanh ẑl) offers the opportunity to compare the MSEs of
the Fisher-z based and r-based estimators on a common scale via

MSE =
1

Iter

Iter

∑
l=1

(
(tanh ẑl − h(ρ))− µρ

)2.

What should become evident here is that in essence the estimator is actually
changed by h(ρ) to estimate a different value, namely µρ. For this corrected es-
timator, the mean squared distances about µρ are computed as for the r-based
estimators. Of course, the above equation can be simplified by eliminating the
redundant term µρ, resulting in

MSE =
1

Iter

Iter

∑
l=1

(
tanh ẑl − µζ

)2,

which may be conceived as the natural conception for computing the MSEs
for Fisher-z-based estimators in r-space. The derivation given above has just
demonstrated that using this conception of the MSE can be justified on theo-
retical grounds.

Following this general logic, it would be natural to use the expected values
of the beta distribution in the computation of the MSEs in S3 correspondingly.
Unfortunately, numerical integration necessary to compute these values was
considered to be computationally too expensive and a correction factor like
h(ρ) is not readily available for the continuous case. Hence, the comparison of
all approaches is not possible in S3.
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Table 8.5 Relative Efficiencies of µ̂ρ in S1

Approach HOr HOT HOd HS OP OP-RE

HOr 1
HOT 1.1118 1
HOd 1.1008 .9901 1
HS 1.0931 .9832 .9930 1
OP 1.0683 .9609 .9705 .9773 1
OP-FE .4741 .4264 .4307 .4337 .4438 1
Note. Table entries are the fraction of the approach found in the column header in
the numerator and the row-labeled approach in the denominator. For all approaches
mean values were computed over all values of ρ, k, and n.

As in the previous sections, results are presented for S1 and S2 consecu-
tively, beginning with S1. First, it can be noted that all MSEs of the estimators
become smaller for larger k, n, and µρ, respectively. Since these general trends
apply to all approaches the presentation will be confined to overall results,
that is, means of MSEs over all values of k, n, and µρ. Table 8.5 provides a
condensed overview of the relative efficiencies of the estimators in S1.

Note that in S1 the MSEs are comparable for all estimators without any cor-
rections because µρ = µζ . The entries in the table can be read as follows. The
estimators found in the column are the entry in the numerator and the esti-
mator in the row is the denominator of a fraction of MSEs. Values larger than
one therefore represent smaller MSEs for the estimator in the denominator and
vice versa. The values in Table 8.5 suggest that HOT is the most efficient esti-
mator in terms of MSE. This is somewhat surprising given that OP has shown
remarkably small biases overall, as shown in the previous sections. The reason
for this finding lies in the fact that variances of the estimators contribute an im-
portant part to the corresponding MSEs and also to variation of MSEs across
values of the design dimensions. Because the variability across levels of the
design variables is very similar for all approaches, no graphical representation
is given here.

To facilitate interpretation of the results in Table 8.5, the following remarks
seem warranted. As can be seen in Equation 8.1, the MSEs amount to the vari-
ances of unbiased estimators and these variances may well be larger for unbi-
ased in comparison to biased estimators. The important distinction between
MSEs for these two types of estimators lies in the second term of Equation 8.1
being zero for unbiased and nonzero for biased estimators. Now consider the
case of µρ = 0 where the HS (and also OP) estimator actually estimates µρ

(see page 121, for example). Here, the variance of the HS estimator is smaller
than the variance of the OP estimator and the MSE ratio restricted to this case
leads to a value of .9059 in favor of HS. On the other hand, if the comparison is
restricted to ρ = .50 where the HS estimator performs worst in terms of bias,
the same comparison leads to a value for the ratio of 1.0295, now favoring OP
in terms of MSE. Of course, this phenomenon pertains to all comparisons in
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Table 8.6 Relative Efficiencies of µ̂ρ and µ̂ρz in S2

Approach HOr HOT HOd HS OP OP-RE

HOr 1
HOT 1.0968 1
HOd 1.0425 .9505 1
HS 1.0582 .9648 1.0150 1
OP 1.0290 .9381 .9870 .9724 1
OP-FE .4829 .4403 .4632 .4564 .4693 1
Note. Table entries are the fraction of the approach found in the column header in
the numerator and the row-labeled approach in the denominator. For all approaches
mean values were computed over all values of ρ, k, and n.

Table 8.5 and also what follows. The values reported in the tables for a com-
parison of estimators regarding their MSEs are therefore to be interpreted with
respect to the performance of estimators across the levels of the design vari-
ables. Hence, across all values of µρ from zero to .90, HOT is the most efficient
estimator. This does not imply that HOT is the most efficient estimator for all
possible values of µρ.

Table 8.6 presents the results for S2 that closely mirror the results in S1.
The only notable difference is that HOd is slightly less efficient than HS in this
situation.

As remarked at the beginning of this subsection, the comparison of estima-
tors with respect to MSE in S3 is not possible due to values in different spaces
that could not be transformed or corrected. In sum, the surprising result for
the MSEs is that OP — which performed uniformly best in all situations with
respect to bias — does not also show up as the best estimator in terms of MSE.
As a result, it is not more precise in general as compared to HS when all sit-
uations under investigation are taken into account (see in this context Hedges
& Olkin, 1985, p. 226). Instead, HOT performed best, an estimator that also
showed good performance with respect to biases. Taking these two criteria to-
gether, it can be recommended for S1 to use OP when a relatively small n is
given and when µρ is not suspected to be very low. HOT can be considered
as an alternative for larger n when µρ is suspected to be small because of its
higher efficiency. For S2 and S3 OP should be considered as first choice for it
estimates the parameter usually of interest µρ rather precisely in terms of bias,
in contrast to HOT which estimates µρz.

8.3 SIGNIFICANCE TESTS FOR THE MEAN EFFECT SIZE:
TYPE I ERRORS AND POWER

Apart from an accurate parameter estimation, significance tests are a common
feature of meta-analysis. The significance testing practice in psychology has
often been criticized as mentioned in the introductory chapters. Nonetheless,
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all approaches offer procedures to test the estimates of the effect sizes, although
some authors explicitly deemphasize using such tests (e.g., Hunter & Schmidt,
1990). In this section, the proposed procedures are evaluated with respect to
their performance in testing the generally adopted null hypothesis µρ = 0.
This will be done by examining the rejection rates of the null hypothesis under
various conditions and comparing these rejection rates to the α-level a test is
supposed not to exceed when the null hypothesis is true. The second case of
interest is the performance of the tests when the null hypothesis is false. Both
cases will be separated in the following presentation.

Since this subsection on testing is the only one in which differences between
HOr and RR can occur, the latter will be included in the following tables for
this subsection only. Because of the very poor performance of OP-FE reported
in the previous sections of results, it will be omitted from the following pre-
sentation.

Rejection Rates in S1 The results for S1 are considered first. In addition to
the estimators under investigation in the previous sections, four variants for
testing the mean effect size in the framework of the HS approach are included.
The several variants correspond to four possibilities to compute the standard
error of the mean effect size. The reader is referred to Section 5.3 for a reca-
pitulation of the several forms of standard errors proposed in this approach.
Furthermore, the DSL approach is also added to examine its performance in
the homogeneous case. As a criterion for the evaluation of the approaches,
whether they show higher rates than nominal α will be assessed. Values lower
than α are interpreted as indicating good performance since the null hypothe-
sis is true.

Table 8.7 shows the rejection rates of the tests aggregated over all combi-
nations of k and n. Readers interested in the results for specific combinations
of the design variables may consult Table C.1 in the appendix where detailed
results for α = .05 are provided.

The first line for each approach in Table 8.7 provides the results for tests at
α = .05 and the second line those for α = .01. As can be seen, the approaches
that perform best are DSL and HOT. Despite both approaches having slightly
higher standard deviations in comparison to HOr, which more closely attains
nominal α, they also show mean rejection rates below α in this situation. At
least for DSL — a random effects approach — it is suspected that this more
conservative behavior comes at the cost of a loss in power. The downward
correction of the mean Fisher-z based effect size by HOT effectively leads to
smaller rejection rates in comparison to HOr. Note that the same standard
errors were applied for HOr and HOT. Hence, apparently small differences in
bias between these approaches indeed transfer to differences in test results.

For the present purpose of testing the null hypothesis, there are small pro-
cedural differences between HOr and RR, which were omitted until now. The
only difference between RR and HOr lies in the weights employed where RR
uses degrees of freedom instead of standard error based weights. This ob-
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Table 8.7 Rejection Rates for Testing the Mean Effect Size in S1, µρ = 0

Statistic

Approach Max. Mean Median Min. SD

HOr .0547 .0501 .0504 .0437 .0022
.0119 .0100 .0099 .0077 .0009

HOT .0535 .0458 .0472 .0313 .0054
.0110 .0086 .0090 .0044 .0017

HOd .0702 .0554 .0530 .0476 .0059
.0190 .0119 .0111 .0078 .0025

RR .0688 .0543 .0523 .0475 .0052
.0170 .0114 .0110 .0078 .0020

HS1 .0695 .0519 .0511 .0460 .0041
.0250 .0111 .0104 .0077 .0027

HS2 .0866 .0591 .0547 .0480 .0104
.0316 .0141 .0120 .0078 .0054

HS3 .1291 .0705 .0577 .0475 .0257
.0741 .0247 .0140 .0096 .0205

HS4 .1256 .0645 .0539 .0330 .0261
.0701 .0219 .0123 .0050 .0196

OP .0853 .0560 .0531 .0475 .0079
.0341 .0129 .0115 .0078 .0046

OP-RE .2224 .0849 .0582 .0433 .0491
.1392 .0320 .0139 .0066 .0347

DSL .0503 .0430 .0434 .0356 .0036
.0101 .0079 .0080 .0057 .0011

Note. The total number of values described by these statistics is 42. Proportion for
tests at α = .05 are given in the first row of each approach and for tests at α = .01 in
the second row.

viously leads to slightly higher rejection rates in comparison to the nominal
α-level.

Amongst the HS variants two groups can be identified: HS1 and HS2 versus
HS3 and HS4. This corresponds to standard errors proposed for homogeneous
(HS1 and HS2) and heterogeneous (HS3 and HS4) situations. Since HS3 is
assumed to be adequate both for homogeneous and heterogeneous situations
(Osburn & Callender, 1992), special attention may be paid to the results of this
particular variant. The results in Table 8.7 show that, for the group of HS-
variants proposed for homogeneous situations such as the present one, HS1 is
closest on the α-levels whereas HS2 overshoots. Usage of the tests from the sec-
ond group leads to rejection rates being too high overall. This predominantly
occurs in cases where a low number of studies are aggregated.

OP performs as well (or bad) as RR and HOd whereas the random effects
approaches behave quite differently. DSL performs as expected from theory,



140 Results

Table 8.8 Rejection Rates for Testing the Mean Effect Size in S1, µρ 6= 0, α = .05

µρ

Approach .10 .20 .30 .40 .50 .60 .70 .80 .90

HOr .7856 .9228 .9690 .9875 .9958 .9990 .9999 1 1
HOT .7761 .9162 .9650 .9852 .9946 .9986 .9998 1 1
HOd .7965 .9300 .9732 .9897 .9966 .9992 .9999 1 1
RR .7945 .9287 .9724 .9894 .9965 .9992 .9999 1 1
HS1 .7907 .9275 .9724 .9895 .9966 .9992 .9999 1 1
HS2 .8035 .9348 .9762 .9913 .9974 .9995 1 1 1
HS3 .8094 .9357 .9753 .9901 .9965 .9989 .9998 1 1
HS4 .7978 .9291 .9718 .9884 .9958 .9987 .9997 .9999 1
OP .7985 .9325 .9751 .9908 .9972 .9994 .9999 1 1
OP-RE .8162 .9385 .9765 .9904 .9965 .9989 .9997 .9999 1
DSL .7680 .9122 .9625 .9836 .9937 .9980 .9996 .9999 1
Note. The total number of values described by these statistics is 42 for each µρ.

showing rejection rates below the nominal α due to overestimates of random
effects variance in this situation (see also Section 8.5). OP-RE in contrast, shows
very high rejection rates, a fact that would not be expected for random effects
approaches. The reason for this finding is the bad performance of OP-RE in
cases of n < 64. A combination of small n and high k exacerbate this malper-
formance. Again, bad results from estimation of the mean effect size transfer
to bad results in significance testing.

The case of µρ 6= 0 can be considered to enable an examination of the test
results with regard to their power.3 That is, rejection rates for the null hypoth-
esis are presented when it is actually false. Hence, they should be interpreted
as rate estimates of correctly rejecting the null hypothesis. Table 8.8 provides
an overview of the results for increasing µρ and α = .05.

As can be seen in the table, all the tests seem to rapidly attain satisfactory4

levels of .80 when aggregated across k and n. Of course, approaches showing
higher rejection rates when the null hypothesis is true generally perform better
in this context. Results for the rejection rates when α = .01 are not presented.
They show a similar performance for the approaches as compared to those in
the presented case.

As would be expected from theory, rejection rates are larger for higher lev-
els of n and k. Satisfactory power levels are rapidly reached even for modest
values of k = 32, for example. The general trends are illustrated in Figure 8.12.

3This term is used somewhat loosely in the present context because no alternative hypotheses
are explicitly considered. The values to be presented for the rejection rates may nevertheless
be regarded as some approximation to the power function of the tests (cf. Barnett, 1981).
4According to Cohen (1988, 1992).
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Figure 8.12 Rejection rates for testing the mean effect size in S1, µρ 6= 0, α = .05,
HOr approach.

Here, the results for only one approach (HOr) are depicted since the trends
are the same for all approaches and the surfaces would not be discriminable.
In general, differences between approaches are not very large in testing the
null hypothesis in S1. HOr exhibits a performance closest to nominal α-levels
when the null hypothesis is true and all approaches reach satisfactory levels
for power rather quickly.

Nonetheless, the three panels in Figure 8.12 also point to cases for which
power might not be satisfactorily high. An additional table is provided in the
appendix (Table C.2) which is especially informative to qualify the results in
Table 8.8 with respect to k and n. It shows rejection rates for selected levels of
design variables supposed to be of highest interest with respect to regions in
the figure where power is not very high. The results basically underscore the
general impression gained from the figure. Power can be low for small effect
sizes in the universe (ρ = .10), especially when n and k are very low. Even
when n is at a level presumably considered as moderate or sufficient by many
researchers (n = 126) and which can be observed quite often in correlational
studies in the behavioral sciences, detection of a small universe effect size can
be conducted without reaching satisfactorily high levels of power. For exam-
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Table 8.9 Rejection Rates for Testing the Mean Effect Size in S2 for Selected
µρ 6= 0, α = .05

µρ

Approach .05 .10 .15 .20 .30 .40 .50 .60

HOr .5815 .7889 .8787 .9270 .9730 .9915 .9978 .9995
HOT .5703 .7792 .8707 .9205 .9691 .9896 .9971 .9993
HOd .5936 .7976 .8856 .9313 .9739 .9900 .9961 .9990
RR .5910 .7957 .8840 .9301 .9736 .9908 .9973 .9994
HS1 .5847 .7917 .8818 .9290 .9735 .9910 .9974 .9994
HS2 .6025 .8066 .8930 .9381 .9790 .9939 .9986 .9997
HS3 .5875 .7669 .8679 .9083 .9563 .9768 .9914 .9978
HS4 .5725 .7544 .8582 .9004 .9512 .9738 .9899 .9974
OP .5944 .7995 .8879 .9335 .9758 .9918 .9976 .9995
OP-RE .6145 .7891 .8792 .9165 .9542 .9609 .9817 .9963
DSL .5444 .7309 .8366 .8822 .9385 .9653 .9872 .9966
Note. The total number of values described by these statistics varies between 42 and
168 for each µρ due to some differences occurring more often than others for the com-
bination of design variable levels. For the omitted values of µρ ≥ .70 all values are
practically equal to 1.

ple, power is lower than .80 for all approaches in cases where k = 4, n = 128,
and ρ = .10. Overall, the approaches do not vary greatly in behavior with
respect to power in S1. Although some approaches (e.g., DSL) show lower
rejections rates than others (e.g., OP), differences are small in comparison.

Rejection Rates in S2 Next, we turn to the test results in S2. The null
hypothesis µρ is always false in S2 because at least one ρ 6= 0. Accordingly, the
results of the Monte Carlo study only reflect the power of the tests. In Table 8.9
the mean rejection rates are presented for varying values of µρ.

Once more, rejection rates show only small differences between approaches.
The overall trends as presented in Table 8.9 are similar in comparison to the re-
sults in S1. As far as general trends across the design variables are concerned,
only a selection of figures is presented here to illustrate the largest differences
between the approaches.

The series of graphs in Figure 8.13 depict the dependencies of rejection rates
on the design variables n, k, and µρ for the approaches HOr and DSL. All other
approaches show a performance “in between” the ones presented. As can be
seen by comparison of the left and right panels, the random effects approach
leads to more conservative test results especially for small k and intermediate
µρ. This is due to incorporation of heterogeneity variances in the standard er-
rors of the tests making them more conservative than fixed effects approaches.
This difference occurs for DSL and also OP-RE not shown in the figure. In
comparison to the homogeneous situation S1 the tests are not as powerful
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Figure 8.13 Rejection rates for testing for the mean effect size in S2, µρ 6= 0, α = .05,
HOr and DSL approach.

for small effects (e.g., ρ = .10). The lower panels in Figure 8.13 in particular
point to the result of inadequate power for the approaches for the boundary
regions of the design. The interested reader might wish to consult Tables C.3
and C.4 where detailed results for these boundary regions are presented. In
short, even when the study sample size seems reasonable for the aggregated
studies in a meta-analysis (n = 128) and a number of studies — rather typ-
ical for some meta-analyses and considered by some as “large” — of k = 32
is available, small effects of µρ = .05 are not detectable with a power of .80
by any of the approaches. However, the power raises very quickly for all ap-
proaches for higher effects in the universe of studies. In sum, performance of
the approaches in testing the generally adopted null hypothesis µρ = 0 in S2
is very similar. In cases where power problems seem to prevail, none of the
approaches seem to offer a considerable advantage over the others.

Rejection Rates in S3 The last part of results for significance tests is pre-
sented for S3, where two cases are distinguished. As in S1, results for µρ = 0
will first be given followed by the results for µρ 6= 0. Table 8.10 provides a con-
densed overview of the results for the case when the null hypothesis is true.
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Table 8.10 Rejection Rates for Testing the Mean Effect Size in S3, µρ = 0

Statistic

Approach Max. Mean Median Min. SD

HOr .3599 .1410 .1026 .0472 .0880
.3046 .0775 .0364 .0089 .0795

HOT .3596 .1360 .0994 .0338 .0912
.3044 .0749 .0349 .0054 .0806

HOd .3539 .1427 .1043 .0576 .0828
.2946 .0769 .0369 .0127 .0754

RR .3519 .1408 .1013 .0562 .0828
.2928 .0753 .0359 .0119 .0751

HS1 .3518 .1381 .1003 .0485 .0845
.2926 .0747 .0358 .0095 .0754

HS2 .3603 .1510 .1145 .0595 .0821
.3043 .0837 .0449 .0144 .0766

HS3 .1347 .0698 .0583 .0465 .0250
.0760 .0246 .0144 .0079 .0201

HS4 .1289 .0639 .0541 .0318 .0255
.0743 .0220 .0131 .0040 .0195

OP .3519 .1425 .1041 .0566 .0818
.2928 .0773 .0391 .0129 .0743

OP-RE .2139 .0906 .0814 .0499 .0335
.1336 .0351 .0260 .0094 .0236

DSL .1005 .0551 .0527 .0349 .0111
.0494 .0143 .0114 .0055 .0079

Note. The total number of values described by these statistics is 210. Proportion for
tests at α = .05 are given in the first row of each approach and for tests at α = .01 in
the second row.

As can be seen from the results in Table 8.10, the performance of the ap-
proaches can roughly be categorized in two groups. On the one hand, fixed
effects approaches like HOr, HOd, HS1, and OP, for example, show relatively
large inflated mean Type I error rates. These approaches show adequate rejec-
tion rates only in minimum and also have relatively high standard deviations.
On the other hand, random effects approaches like OP-RE and especially DSL
perform adequately overall in this situation. The HS variants HS3 and HS4
perform like the random effects approaches though not as well as DSL, for ex-
ample. Hence, the violation of basic assumptions of the fixed effects approach
in S3 leads to differences in rejection rates. This was not as clear in S2, though
this is a heterogeneous situation too.

Apart from the overall performance, it should be mentioned that the results
markedly differ across levels of the design variables. The results for varying
levels of these variables are therefore presented next. In Figure 8.14, a selection
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Figure 8.14 Rejection rates for testing the mean effects size in S3 by n and k, µρ = 0,
α = .05.

of approaches is depicted that represents prototypical trends of the results for
rejection rates in S3 when the null hypothesis is true.

The upper left panel shows that the DSL approach leads to rejection rates
corresponding to the nominal α for most of the values of k and n, the only
exception is a slight elevation of rejection rates for k less than 16. Nonethe-
less, the rejection rates for DSL are not very high in any region of the n and k
combinations under investigation. The lower left panel shows that HS3 (and
HS4 which performs equally well) yields inflated rejection rates for small k
invariably across values of n. Notwithstanding these elevated Type I errors,
the overall performance of this approach seems acceptable here. OP-RE in the
lower right panel shows too high rejection rates for a small number of studies
and also for values of small k. Although this approach suffers from inade-
quate performance in estimating the mean effect size, the rejection rates in this
situation do not seem unacceptable for moderate values of n and k.

In marked contrast to these results, all other other approaches (HOr, HOT,
HOd, RR, HS1, HS2, and OP), for which HOr is depicted in the upper right
panel as a representative, show a totally different trend across values of n. The
rejection rates steadily increase with higher values of n but show no variation
across values of k. In effect, the performance of these tests in S3 becomes worse
the higher the n of the studies. This demonstrates that the standard errors of
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Figure 8.15 Rejection rates for testing the mean effects size in S3 by n and σ2
ρ , µρ = 0,

α = .05.

these approaches are too small in this heterogeneous situation, not reflecting
variation with respect to σ2

ρ .
In addition to the rejection rates getting higher with n, Figure 8.15 shows

that rejection rates are also higher for larger values of σ2
ρ — at least for HOr and

the other fixed effects approaches. The variation of the rejection rates across
values of n and σ2

ρ is depicted in Figure 8.15.
For comparison, the rejection rates for the DSL approach are shown in the

left panel and the results for the fixed effects approaches as represented by
HOr in the right panel. Evidently, the rejection rates of the HOr approach
quickly become far too large even for moderate values of n and σ2

ρ . Because this
approach did not show remarkable bias across levels of the design variables,
this can be interpreted as an effect of the standard error estimates. In marked
contrast, DSL shows a very good performance across values of σ2

ρ . There are
no elevations of the rejection rate surface in the left panel of Figure 8.15. Taking
further into account that DSL also showed rejection rates close to nominal α,
apart from in cases of very low n, it is certainly the best approach of those
under consideration for testing the mean effect size in S3-type situations.

Next, the results for the case µρ 6= 0 will be presented to assess the power of
the approaches in S3. The main findings are illustrated in an array of graphs
in Figure 8.16.

In this figure, only two approaches are depicted that illustrate the different
results for fixed versus random effects approaches. The shaded surface in the
three panels portrays the slightly more powerful rejection rates for the fixed
effects approaches (e.g., HOr). However, the differences to the random effects
approach (e.g., DSL) — shown as a white surface lying underneath but close to
the one of the FE approaches — are quite small across all design dimensions.
Altogether, the figures show only minor differences in power between the ap-
proaches. With regard to the levels of the design variables, it is noteworthy that
different variances in the universe of studies σ2

ρ do not have a strong effect on
testing the mean effect size. Although there is indeed a drop in rejection rates
in the upper right panel of Figure 8.16, the effect is not strong for both types of
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Figure 8.16 Rejection rates for testing the mean effect size in S3, µρ 6= 0, α = .05.

approaches. In contrast, low levels of k, n and small effects are predictors for
low levels of power in S3 as well.

With reference to the absolute values shown in the figures, it must again
be emphasized that the results shown are always aggregates across the other
design dimensions. For example, the DSL approach does not always attain a
rejection rate of at least .65 as the array of graphics may suggest at first glance.
In a worst-case-scenario of n = 8, k = 4, µρ = .10, and σ2

ρ = .0625 the estimator
only shows a minimum rejection rate for the levels of the design variables of
.1353, thereby highlighting the point that the figures are intended for compar-
ison of approaches only, as outlined in the introduction of this chapter.

In sum, the results of the tests for the approaches are best when their basic
model assumptions with respect to the fixed versus random effects model of
meta-analysis are met (see also Hedges & Vevea, 1998). Differences in S1 and
S2 do not seem to be very large between the approaches, but in S3 — when
µρ is zero — there are tremendous differences in rejection rates. Hence, in a
state of ignorance about the true situation, the potential loss in power caused
by applying a random effects approach seems to be justifiable. In light of the
errors potentially committed by applying fixed effects models in S3 it seems
advisable to accept slightly lower power levels.
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8.4 CONFIDENCE INTERVALS

Confidence intervals for the approaches will be evaluated with respect to the
rate to which they cover the universe parameter the estimators are supposed to
estimate. These rates will be labeled as coverage rates in the following. They are
often considered as a rather important aspect of the quality of meta-analytical
approaches. This is evidenced, for example, by the fact that Brockwell and
Gordon (2001) based their empirical comparison of approaches (fixed-effects
method for log odds ratios, DSL, and a conditionally random effects proce-
dure) almost exclusively on the results for coverage rates and interval widths.
Since high coverage rates may be achieved by unduly large confidence interval
widths, the mean interval widths will also be presented along with the cover-
age rates to establish a better foundation for evaluation. The coverage rates
were computed as proportions over 10,000 iterations. The confidence limits
are also aggregates over iterations so that they need not be exactly symmetri-
cal about the mean effect sizes. Information given for the widths of intervals
was computed from these confidence limits. In all cases, only 95%-confidence
limits were investigated.

Coverage Rates and Interval Widths in S1 Overall statistics for the cov-
erage rates and 95%-confidence interval widths in S1 are presented in Table
8.11. They will again be complemented by some graphical representations of
the approaches’ performance across levels of design variables, after a short
discussion of the overall findings.

Of all the approaches, HOT reaches the highest coverage rates for a 95%-
confidence interval. All other approaches show coverage rates lower than the
standard of .95. In comparison to the overall interval widths of the other ap-
proaches, however, HOT also shows larger values. Hence, the high coverage
rates may be obtained by virtue of larger interval widths. A second approach
with rather good performance is OP. In this case however, relatively good cov-
erage rates are not coupled with high interval widths.

The overall coverage rates for HS3, HS4, and OP-RE, for example, shown
in Table 8.11 are too low to be acceptable. Interval widths are not simultane-
ously very small and minimum coverages show that these approaches show
unacceptable performance at least in same regions of the design.

There are several determinants of the coverage rates of the approaches, so
that differences between approaches are not easily interpretable. One possible
reason for coverage rates being lower than expected is the bias of the estima-
tors. For example, HOr and HOT are subject to exactly the same procedures
for construction of the intervals, the only difference between these estimators
is the correction of the estimator proposed by Hotelling (1953). This makes it
possible to trace the reason for the lower coverage rates of HOr back to the
bias in the estimator because the corrected version HOT shows appropriate
rates. An analogous comparison is also possible for HS1 and OP. The standard
errors are computed for OP the same way as for HS1 (compare Equations 5.7
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Table 8.11 Coverage Rates and Confidence Interval Widths in S1

Statistic

Approach Max. Mean Median Min. SD

HOr .9552 .9225 .9467 .1714 .0820
.8244 .1208 .0702 .0029 .1383

HOT .9715 .9548 .9530 .9449 .0059
.8244 .1228 .0726 .0029 .1404

HOd .9534 .8911 .9276 .0187 .1118
.6830 .1070 .0617 .0023 .1182

HS1 .9545 .9202 .9446 .1877 .0801
.7136 .1142 .0700 .0029 .1242

HS2 .9549 .9174 .9407 .2892 .0732
.6436 .1105 .0707 .0029 .1159

HS3 .9521 .8941 .9214 .3035 .0713
.6005 .1056 .0689 .0029 .1086

HS4 .9706 .8946 .9227 .1961 .0799
.6657 .1090 .0677 .0029 .1166

OP .9539 .9360 .9438 .8363 .0198
.7095 .1125 .0667 .0029 .1223

OP-RE .9584 .6525 .7786 .0001 .3113
.8574 .1270 .0766 .0030 .1440

DSL .9674 .9317 .9550 .1742 .0823
.9098 .1301 .0729 .0030 .1523

Note. The total number of values described by these statistics is 420. Statistics for
coverage rates are given in the first row of each approach and statistics for the widths
of the confidence intervals in the second row.

and 5.11) but estimators differ. Hence, the benefit of an estimator’s small bias
is recognizable in the given context too.

In addition to the potential bias of an estimator, differences in standard er-
ror computations also contribute to the differences in rates and widths of the
intervals. However, standard errors are not readily comparable between all
estimators, except for the case of HS1 to HS4. Here, the mean effect size is
exactly the same for all variants but standard errors differ. Amongst the HS
variants, HS1 and HS2 show better performance than HS3 and HS4 in S1.
Recall again that HS3 was proposed to show good performance both in ho-
mogeneous and heterogeneous situations. The comparison between HOT and
DSL shows that smaller interval widths do not necessarily lead to lower cover-
age rates, though this is a strong tendency in the results. The reason for better
performance of HOT on both accounts is its smaller bias. This fact again un-
derscores the importance of small bias in estimators, even when differences in
accuracy between estimators appeared to be relatively small. The considera-
tion of the minima of coverage rates also strongly emphasizes the importance
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Figure 8.17 Coverage rates and confidence interval widths in S1 by k and n.

of small biases. Remarkably, the estimators having shown the smallest bias
exhibit, even in minimum across all situations considered in the design, very
good (HOT) or fairly good (OP) coverage rates.

To illustrate the constellations of levels of design variables leading to poor
performance of some approaches, a series of graphs is presented in Figure 8.17.
They depict the dependencies of coverages and interval widths on n and k.

The first set of graphs in Figure 8.17 (upper left and both lower panels)
shows the coverage rates for a selection of approaches and a separate graph for
the interval widths (upper right panel). As in the figures presented in previous
sections, approaches are omitted that show very similar surfaces in compari-
son to the ones depicted and might not be discriminated even when included
in the graphs. The selection of approaches is chosen to illustrate the main
trends: HOr also represents HS1 to HS4, RR, and DSL. HOT, HOd, OP, and
OP-RE are depicted separately. Although HS3 and HS4 show smaller coverage
rates as shown in Table 8.11, they can also be subsumed under HOr because of
their similarity in trends. For the confidence interval widths only one graph is
shown because all approaches nearly have the same surfaces. Interestingly, in-
terval widths do not depend differently on levels of n and k for all approaches.
Interval widths grow large for all approaches only in cases of both small sam-
ple sizes and a small number of studies. The shrinkage in widths seems to be
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Figure 8.18 Coverage rates and confidence interval widths in S1 by k and µρ.

approximately the same when holding n constant and focusing on a growing
number of studies and vice versa.

As is evident from Figure 8.17, small n in combination with large k leads to
diminishing coverage rates for all approaches except OP and HOT. This again
suggest that biases are the cause for poor performance because standard errors
are smallest for large k — as is also evidenced by the smaller interval widths
— and biases are largest with small n (see Section 8.2.1.1). Cautions are raised
by this finding against the use confidence intervals of most procedures to con-
struct confidence intervals in S1 when n is small and k is large. Nevertheless,
the excellent coverage rates for HOT and OP as evidenced by their flat sur-
face in Figure 8.17 makes them first choice in S1 not only for the purpose of
estimating the mean effect size but also for the construction of confidence in-
tervals.

For further insight into the dependencies of coverage rates and interval
widths on levels of design variables, Figure 8.18 provides the results for lev-
els of k and µρ. It can again be expected that the results of the coverage rates
mirror performance of the estimators’ bias.

As before, interval widths as shown in the upper right panel in Figure 8.18
do not markedly differ between approaches. Hence, one graph seems to suf-
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fice to portray all relevant information for a comparison of approaches. The
gradient of the confidence interval width surface is again in agreement with
expectations from statistical theory. Intervals are smaller for large k and —
for the case of correlation coefficients as effect sizes — widths become smaller
with larger µρ. It might be surprising that this should also be the case for
Fisher-z based approaches because it was highlighted in several sections that
the standard errors of the mean effect size estimators for these approaches do
not depend on the parameter itself (see, e.g., Equation 5.2 on page 58). This
is true, however, in z-space and the results depicted in the figures are all in
r-space. A certain interval width of .09 in z-space — which approximately re-
sults for the case n = 32 and k = 16 — corresponds to an interval width of
approximately .04 at a mean effect size level of .90 and to a width of .12 at the
level of .60. Hence, the change of spaces from z to r in the present case makes
the shape of the surface appear reasonable also for Fisher-z based approaches.

The upper left and lower panels in Figure 8.18 depict the coverage rates for
the approaches. As can be seen for most approaches, lower coverage rates re-
sult for combinations of vary large µρ and high k. For OP-RE this phenomenon
is certainly due to its large bias but for HOr and HOd biases were shown to
be quite small. Especially for HOd rather low coverage rates are shown in the
critical design region.

The performance of OP and HOT again stands in marked contrast to those
of other approaches. The coverage rates of both approaches is again depicted
as a surface at the level of approximately .95. Almost the same picture emerges
in the final set of graphs in Figure 8.19. As in the previous figures, the coverage
rates and interval widths are shown for combinations of n and µρ in three
panels and the upper right one shows the interval widths.

The interval widths basically show the same trends for all approaches and a
surface is shown in Figure 8.19 which very much resembles that in the previous
figure, only shown from a different angle of view. The widths of confidence
intervals are largest for all approaches in combinations of small n and small
µρ, as would be expected. The coverage rates decline for combinations of very
large µρ and rather small n. This shows again the deleterious effect of small
interval widths and large biases.

Coverage Rates and Interval Widths in S2 Next, the heterogeneous situa-
tion with two different values in the universe of studies is treated. First of all,
it should again be noted that the coverages are evaluated with respect to the
parameters the estimators are supposed to estimate, just as in Section 8.2.1.2.
This is important for a comparative evaluation of approaches in this context.
That is, the universe values to be covered by the confidence limits are different
for the Fisher-z based and r-based approaches with differences in universe pa-
rameters (µρ vs. µρz) being larger, the higher the difference is between the two
universe values of ρ (i.e., ∆ρ). Furthermore, as in Section 8.2.1.2, the coverage
rates for HOd in S2 were evaluated with respect to µρ and not to µρd. For an
explanation as to why this is the case, see Section 5.5.
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Figure 8.19 Coverage rates and confidence interval widths in S1 by n and µρ.

The overall results on coverage rates and confidence interval widths for
95%-Intervals are first presented. Table 8.12 shows descriptive statistics for
a comparative evaluation of the approaches.

The values presented in Table 8.12 suggest that the interval widths are con-
siderably larger for all approaches, not only random effects approaches. Nev-
ertheless, for the latter the intervals are approximately twice as wide as for the
fixed effects approaches. In the extreme, this leads to intervals larger than one
and to coverage rates of up to one in maximum (e.g., DSL).

The results shown in Table 8.12 again demonstrate that OP and particularly
HOT approximately attain the desired coverage rates without having exces-
sively large interval widths. Additionally, even the minimum values for the
coverage rates indicate a very good performance of the approaches in all cases
under investigation. In contrast, the minimum values for all other approaches
suggest that there are situations in which they perform very poorly. Other
fixed effects approaches like HS1 and HS2, however, also attain good mean
overall coverage rates without excessively large interval widths, but the min-
ima for these approaches indicate bad performance at least in some cases un-
der consideration. The highest mean coverages are shown for DSL, but this
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Table 8.12 Coverage Rates and Confidence Interval Widths in S2

Statistic

Approach Max. Mean Median Min. SD

HOr .9559 .9266 .9464 .2237 .0639
.8223 .1219 .0760 .0041 .1321

HOT .9714 .9544 .9529 .9247 .0057
.8226 .1244 .0776 .0041 .1353

HOd .9751 .8883 .9311 .0000 .1385
.6508 .1160 .0764 .0035 .1170

HS1 .9751 .9345 .9470 .2595 .0514
.7130 .1213 .0790 .0043 .1229

HS2 .9555 .9238 .9410 .3468 .0510
.6415 .1144 .0758 .0044 .1120

HS3 1 .9718 .9958 .4515 .0486
.9494 .2060 .1500 .0131 .1690

HS4 1 .9738 .9961 .3653 .0479
.9993 .2104 .1514 .0130 .1745

OP .9743 .9407 .9457 .8303 .0200
.7088 .1198 .0785 .0043 .1209

OP-RE 1 .8627 .9714 .0012 .2249
1.2930 .2538 .1780 .0149 .2219

DSL 1 .9784 .9971 .2611 .0516
1.1109 .2280 .1556 .0127 .2034

Note. The total number of values described by these statistics is 1890. Statistics for 95%
confidence intervals are given in the first row of each approach and statistics for the
width of the confidence intervals in the second row.

is easily explained by the fact that the interval widths are unduly large and
should therefore not lead to an overly positive evaluation.

The set of graphs provided in Figure 8.20 illustrates the trends of the cov-
erages and interval widths in S2. Again, only a small selection of approaches
is depicted to show overall trends in cases where some classes of approaches
do not differ markedly in performance. As representatives, DSL and HOr are
given. DSL stands for the random effects approaches as well as HS3 and HS4,
whereas HOr roughly represents all other approaches except for OP and HOT.
The latter two both show flat surfaces at a height of approximately .95 across
all levels of design variables for the coverage rates and interval width surfaces
similar to those of HOr shown in Figure 8.20. Hence, these two approaches
perform uniformly best in all cases but, again, it should be noted that HOT
does so with respect to µρz and OP with respect to µρ. Taking this into account,
OP seems to be the approach of choice in the present context.

The upper panels in Figure 8.20 show coverage rates and interval widths by
n and k. As expected, DSL shows larger widths of intervals than HOr and also
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Figure 8.20 Coverage rates and confidence interval widths in S2.

higher coverage rates. The coverage rates for DSL actually approach a value
of one even for small values of n and k. Thus, they are higher than can be
expected for the construction of 95% confidence intervals. This also stands in
contrast to the coverages of HOr attaining a value of .95 in limit. However, the
effect of bias emerges again in extreme combinations of high k and small n for
both approaches. As can be seen in the mid- and lower panels, DSL does re-
act to different values of ∆ρ in contrast to HOr which performs almost equally
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Table 8.13 Coverage Rates and Confidence Interval Widths in S3

Statistic

Approach Max. Mean Median Min. SD

HOd .9418 .7014 .7628 .0320 .2039
.6942 .1179 .0773 .0024 .1223

HS1 .9507 .7215 .7842 .1897 .1944
.7140 .1235 .0805 .0029 .1272

HS2 .9361 .7106 .7731 .1992 .1876
.6429 .1174 .0783 .0032 .1166

HS3 .9532 .9044 .9262 .4588 .0542
.6863 .1700 .1299 .0127 .1280

HS4 .9707 .9082 .9322 .4002 .0566
.7573 .1747 .1327 .0126 .1355

OP .9425 .7246 .7915 .1913 .1922
.7100 .1221 .0800 .0029 .1254

OP-RE .9970 .8059 .8696 .0024 .1953
.9283 .2041 .1522 .0150 .1637

Note. The total number of values described by these statistics is 1848. Statistics for
coverage rates are given in the first row of each approach and statistics for the widths
of the confidence intervals in the second row.

across all levels of ∆ρ. As a fixed effects approach, HOr therefore does not
reflect the additional variability introduced by larger universe parameter dif-
ferences. However, the results also suggest that DSL does overreact on these
differences in the sense of overestimating the heterogeneity variance. An ex-
amination of this impression will not be presented here but postponed to an
in-depth assessment of the estimators of heterogeneity variance in Section 8.6.

Coverage Rates and Interval Widths in S3 For a full evaluation of all ap-
proaches in S3 it would have been necessary to implement expected values of
the beta distribution in z-space (i.e., µζ) as a standard for comparison for the
approaches that use the Fisher-z transformation. As already noted, this was
considered not to be feasible. Accordingly, the following presentation has to
be restricted to approaches for which µρ can be used as a standard for com-
parison. As before, a table of overall results is presented for a comparison of
the performance of the approaches. Table 8.13 gives descriptive results for the
available approaches in this situation.

First, it is noted that none of the approaches yields the desired coverage
rate of .95 in mean or median. Somewhat surprisingly, HS3 and HS4 stand
out here with best performance amongst the approaches under consideration.
Although these approaches also show higher interval widths in relation to the
fixed effects approaches, they attain better coverage rates than OP-RE with
smaller mean confidence intervals. In contrast to the previous situations, OP
does not show acceptable performance. Mean and median coverage rates are
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Figure 8.21 Coverage rates and confidence interval widths in S3.

too small and the minimum coverage rate also shows that there are cases of
very bad performance for this approach. This is astonishing given the estima-
tor’s brilliant performance with respect to mean effect size estimation. Hence,
the additional variability in the universe of effect sizes is not adequately re-
flected in the computation of the standard errors in this FE approach, leading
to unacceptable performance in the construction of confidence intervals.
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The information presented in Table 8.13 shows that there are conditions for
all approaches in which they perform rather poorly. The series of graphs in
Figure 8.21 shows the results for some combinations of the design variables.

It can be gathered from the graphs in Figure 8.21 that HS3 generally retains
its coverage rates across the levels of the design variables whereas the results
for HS1 vary strongly. Here, HS3 also represents the results for HS4, and HS1
is depicted to stand for all other approaches available. The reason for this find-
ing lies in the adjustment of interval widths in HS3 for high values of σ2

ρ . As
can be seen in the lower right panel, for example, interval widths are becom-
ing larger the higher the heterogeneity variance (σ2

ρ ) is. This adequately reflects
additional uncertainty in estimating the limits of an interval which covers the
parameter of interest with a probability of .95. In contrast, HS1 (and all other
FE approaches) evidences much more stable confidence interval widths for all
values of σ2

ρ . The minimum values for coverage rates of about .40 are only at-
tained by HS3 and HS4 in very extreme cases of n = 8, k = 256 and large µρ in
combination with large σ2

ρ . The coverage rates rapidly increase with growing
n in this case and already show a value of .75 for n = 16 in the same case.

In summing up the results on coverage rates and interval widths, it can be
stated that in situations S1, S2, and S3 both HOT and OP showed very good
performance in absolute terms and in comparison to other approaches. Since
HOT is a Fisher-z based approach, OP should be preferred at least in situa-
tions of type S2. The picture of results is different in S3. Although HOT is not
available for a comparative evaluation, as an FE approach it is not suspected
to show good performance, especially not when furthermore taking the use of
the Fisher-z transformation in this approach into account. OP showed disap-
pointing performance in S3. The only well performing approaches emerged to
be HS3 and HS4. Although they did not reach coverage rates as prescribed by
the 1− α level of the confidence intervals, they appeared to be best amongst
the approaches under consideration. Hence, for different situations varying
recommendations can be given for the purpose of constructing confidence in-
tervals.

8.5 HOMOGENEITY TESTS

Tests of the homogeneity of effect sizes play a central role in meta-analysis and
are conducted for various purposes (see Chapter 4). The present section is de-
voted to an evaluation of these tests in the three situations of the Monte Carlo
study. Note that not all approaches and refinements provide distinct tests so
that only tests based on the Q-statistic as described in Chapter 5 are available.
The subsections are divided into standard methods, that is, the Q-test for the
various approaches on the one hand, and the HS methods on the other. Since
Hunter and Schmidt (1990; Hunter et al., 1982) also provide a standard Q-test
in addition to the tests unique to their approach, HS appears in both sections.
The special tests that Hunter and Schmidt provide are only widespread in I/O
psychology and have a completely different statistical rationale than the Q-
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Table 8.14 Rejection Rates for the Q-Test in S1

Statistic

Approach Max. Mean Median Min. SD

HOr .0623 .0492 .0499 .0095 .0058
.0175 .0105 .0104 .0011 .0019

HOd 1 .3572 .2191 .0512 .3162
1 .2357 .0808 .0098 .3080

HS .9412 .0878 .0535 .0190 .1105
.8853 .0337 .0115 .0011 .0873

OP-FE 1 .2018 .0859 .0005 .2524
1 .1319 .0266 .0001 .2430

Note. The total number of values described by these statistics is 420. Proportion for
tests at α = .05 are given in the first row of each approach and for tests at α = .01 in
the second row.

test. For this reason and for greater focus on the peculiarities of results for
these distinct procedures they will be separated from the Q-tests.

8.5.1 Homogeneity Tests Based on the Q-Statistic

For the results on the homogeneity tests, situations S1 versus S2 and S3 pro-
vide the two most relevant classes of situations. S1 is the homogeneous case
and S2 as well as S3 both represent different heterogeneous cases. The follow-
ing subsections are structured in correspondence with this distinction, where
S1 is used to investigate Type I error rates and the heterogeneous situations
are relevant to examine the power of the tests based on the Q-statistic.

8.5.1.1 Homogeneous Situation S1: Type I Errors The first examination
of results is concerned with overall performance of the proposed tests. The
results for tests both on a significance level α = .05 as well as α = .01 are
presented in Table 8.14.

As is shown in Table 8.14, only HOr and with strong reservations also HS
approximately reach the desired significance levels. All other approaches show
unacceptably large Type I error rates. Although HS performs better than HOd
and OP-FE, the minima, maxima, and standard deviations indicate very large
variability of test results in comparison to the Fisher-z-based approach HOr.
To investigate this variability, the rejection rates are depicted in the following
series of graphs by combinations of design variables. Figure 8.22 permits an
inspection of the different surfaces across all the dimensions of the design.

Approaches are again clustered for better visibility of the surfaces. OP-FE
is omitted for its general poor performance. The upper left panel illustrates
that excessive rejection rates occur for combinations of large k and small n for
HOd. HS also shows its largest values in this case. In marked contrast to these
findings, the upper right panel with a rescaled vertical axis indicates that HOr
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Figure 8.22 Rejection rates for the Q-test in S1, α = .05.

performs very well in S1. Although HOr deviates from the nominal α in the
same cases where HOd and HS perform worst, it actually shows low rejection
rates indicating good performance when the null hypothesis is true as is the
case in S1.

The mid-panels in Figure 8.22 show a similar picture. Excessive rejection
rates for HOd occur for large k and µρ. HS also performs poorly in such cases,
but HOr performs adequately in most situations. The same relative perfor-
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mance is observed in the lower panels for the three approaches depicted. A
worst-case scenario is given in the lower left panel for a combination of low
sample sizes coupled with a high value for the universe parameter. Hence, it
becomes clear that HOd performs most poorly overall for high values of µρ

when results are aggregated across values of k, small n seems to even exacer-
bate this problem.

The question arises how the distinct results of the approaches can be ex-
plained. In a Monte Carlo study based comparison of the HS and HOr ap-
proach, Alexander et al. (1989) showed similar differences between these ap-
proaches. They actually used a slightly different HS-estimator for µρ in com-
puting the Q-statistic that is equivalent to the one used in the present context
with constant n for all studies. As an aside, in contrast to the present study they
used different n for each study simulated. The fact that the results presented
here agree with those reported by Alexander et al. lends support to the claim
that a constant n for all studies does not lead to limitations in interpretation
in the given context. The same is true in comparison to Field’s study (2001),
which also used varying n within studies and reported similar results. With
reference to Snedecor and Cochran (1967), Alexander et al. (1989) attributed
the observed differences to the nonnormal distribution of the correlation coef-
ficients. Applying this explanation to the present results can explain the high
rates of HS for large values of µρ, but does not readily explain the values re-
ported for HOd being even more deviant from the nominal α-level. As pointed
out in Sections 3.3 and 5.5, it is the transformation of r to d that may be the
cause for intensification of the variability of the d values about the estimated
mean effect size. Additionally, the weights used to compute Q also vary with
d. They are smaller for higher d and thereby also introduce a further compo-
nent that amplifies variability in values to be summed to the Q-statistic. All
in all, the transformation of r to d results in homogeneity tests not suitable for
application.

8.5.1.2 Heterogeneous Situations S2 and S3: Power The first heteroge-
neous situation in which rejection rates of the homogeneity tests will be exam-
ined is S2. Results for the rejection rates by values of k and selected ∆ρ are
presented in Table 8.15.

The results in Table 8.15 show relatively low rejection rates when ∆ρ is small
for all approaches. As expected, rejection rates rise for higher values of k and
∆ρ. From the findings in the previous subsection, it is expected that HOd will
also show higher rejection rates in S2. This is indeed the case but the high Type
I error rates in S1 should be kept in mind when evaluating the performance of
HOd. A notable result shown in Table 8.15 is the relatively low power to detect
small differences between ρ1 and ρ2. Even in a meta-analysis of 256 studies,
the power to detect such effects is not impressively high. Moderate differences
between universe effect sizes of .30 are also only detected with an appreciable
number of studies (more than 16) for approaches with acceptable Type I error
rates in the homogeneous situation. In a situation with a very small number of
studies — potentially occurring in a meta-analysis when subgroups of studies



162 Results

Table 8.15 Rejection Rates for the Q-Test by k and ∆ρ in S2

k ∆ρ HOr HOd HS OP-FE

.1 .2112 .2972 .2089 .2242

.3 .5964 .6738 .5897 .6068
4 .5 .7858 .8539 .7766 .7911

.7 .8994 .9485 .8890 .8910

.9 .9736 .9930 .9628 .9442

.1 .2560 .3781 .2606 .3021

.3 .6667 .7655 .6655 .7141
8 .5 .8451 .9193 .8402 .8779

.7 .9445 .9832 .9389 .9517

.9 .9949 .9999 .9920 .9841

.1 .3190 .4878 .3337 .4133

.3 .7372 .8566 .7427 .8279
16 .5 .8999 .9695 .8993 .9505

.7 .9775 .9978 .9766 .9897

.9 .9999 1 .9997 .9992

.1 .3922 .6167 .4199 .5473

.3 .8025 .9335 .8136 .9230
32 .5 .9436 .9940 .9459 .9897

.7 .9950 1 .9953 .9996

.9 1 1 1 1

.1 .4685 .7491 .5134 .6882

.3 .8591 .9824 .8742 .9788
64 .5 .9743 .9998 .9775 .9996

.7 .9998 1 .9999 1

.9 1 1 1 1

.1 .5426 .8639 .6055 .8239

.3 .9055 .9984 .9227 .9973
128 .5 .9935 1 .9952 1

.7 1 1 1 1

.9 1 1 1 1

.1 .6096 .9425 .6910 .9293

.3 .9424 1 .9587 1
256 .5 .9995 1 .9998 1

.7 1 1 1 1

.9 1 1 1 1

Note. Proportion for tests at α = .05.

are examined — the power is only acceptable for large differences between the
universe parameters. This is the case for all of the approaches in Table 8.15.
Nevertheless, the results shown in this table indicate a very similar overall
performance of the approaches in S2.
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Figure 8.23 Rejection rates for the Q-test in S2, α = .05.

These results have to be qualified, however, by including the additional de-
sign variable n. The lower panels in Figure 8.23 show rejection rates across
different values of n. The upper panels depict the results of Table 8.15 but val-
ues omitted from the table are added to the graphs. The lower panels indicate
that rejection rates also depend on n. In general, the shapes of the surfaces are
again quite similar, not favoring any of the approaches in particular. The re-
sults in S2 show that medium effects sensu Cohen (1988, 1992) of .30 are only
detected with acceptable power when n and k are at least 32. Whereas this
may be considered a customary condition for n in most fields of correlational
research, this is not the case for k. Small effects (.10) are hardly detected by the
Q-test unless n and/or k are quite large.

In sum, for some constellations of the design variables’ levels the probability
to detect differences between universe parameters can be quite low. Although
including many studies in a meta-analysis raises power, even a large num-
ber does not guarantee sufficient power. The present case can be interpreted
as a situation arising from an unobserved dichotomous explanatory variable.
Since it is not always the case that such variables can be observed, indications
of their existence are of great interest to the meta-analyst. Because the use of
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explanatory models is sometimes conditioned upon the results of homogene-
ity tests, the results point to cases in which such conditional procedures are
problematic. Of course, the present examination is restricted to a two-point
distribution in the universe of studies, and different results may emerge for
more unobserved classes. The more general case of the homogeneity test per-
formance with a continuous mixing distribution is therefore also of interest.

The rejection rates for the approaches in S3 are shown in Table 8.16 for vary-
ing values of k and σ2

ρ , and also in an array of graphs in Figure 8.24.
As was the case in S2, rejection rates generally rise for higher values of k

and σ2
ρ . In contrast to S2, a continuous distribution is given in the universe

of studies and homogeneity tests are supposed to indicate variances of this
distribution different from zero. As the results in Table 8.16 show, this universe
variance in effect sizes is detected by the approaches only with acceptable rates
when k is at least 16 and variances are large. Small variances are likely to go
unrecognized even in meta-analyses with large k. Though HOd shows the
highest power among the approaches under investigation, this comes at the
cost of excessive rejection rates in S1. Figure 8.24 provides an overview of
changes in rejection rates for varying values of σ2

ρ , n, and k.

The upper panels in 8.24 show that for k and σ2
ρ the rejection rates are only

satisfactory when both values are relatively high. The mid-panels also indicate
decreasing rejection rates for very small n and the lower panels show that these
trends do not strongly depend on values of µρ. Hence, almost irrespective of
the size of µρ in the universe of studies, an appreciable number of studies is
needed to detect even moderate heterogeneity at a power level convention-
ally considered as acceptable. In sum, all tests show somewhat unsatisfactory
rejection rates in S3 and cannot safely be taken as indicants of heterogeneity
under all configurations of the design variables.

Again, this result is quite important if the Q-test is considered as a decision-
making device for the choice between fixed and random effects models as in
the so-called conditional random effects model. The results of the Q-test may
lead researchers to an unwarranted application of the random effects model
in S1 especially when using HOd. As a consequence, a loss of power for sig-
nificance testing would result. Alternatively, the application of the Q-test may
lead to the application of fixed effects models in heterogeneous situations like
S2 and S3. In the latter case, tests and confidence intervals would result in
unduly small widths for intervals and overpowered tests for most approaches.

8.5.2 The Hunter-Schmidt Approach to the Test of Homogeneity: The
75%- and 90%-rule

In Section 5.3, the 75%-rule by Hunter and Schmidt (1990) was introduced. In
short form, it states that if 75% of the observed variance of effect sizes can be
explained by artifacts — especially sampling error of the estimator — then the
rest of the variance in observed effect sizes can be attributed to unobserved
artifacts and homogeneity is therefore given. As the indicant of homogeneity
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Table 8.16 Rejection Rates for the Q-Test by k and σ2
ρ in S3

k σ2
ρ HOr HOd HS OP-FE

.0025 .1873 .2720 .1844 .1988
.01 .3220 .3988 .3162 .3416

4 .0225 .4712 .5452 .4614 .4888
.04 .5528 .6214 .5421 .5818

.0625 .6473 .7120 .6331 .6720

.0025 .2515 .3709 .2547 .2960
.01 .4409 .5462 .4378 .5031

8 .0225 .6087 .7008 .5999 .6690
.04 .6949 .7794 .6828 .7684

.0625 .7824 .8552 .7661 .8458

.0025 .3221 .4846 .3348 .4153
.01 .5483 .6839 .5513 .6652

16 .0225 .7111 .8210 .7064 .8189
.04 .7916 .8884 .7812 .9016

.0625 .8675 .9406 .8534 .9510

.0025 .4002 .6132 .4253 .5535
.01 .6361 .8063 .6478 .8091

32 .0225 .7885 .9143 .7887 .9292
.04 .8628 .9603 .8556 .9755

.0625 .9264 .9859 .9160 .9933

.0025 .4806 .7441 .5198 .6969
.01 .7119 .9084 .7327 .9200

64 .0225 .8501 .9745 .8550 .9848
.04 .9164 .9936 .9123 .9977

.0625 .9650 .9989 .9584 .9998

.0025 .5548 .8574 .6095 .8297
.01 .7782 .9736 .8051 .9810

128 .0225 .8997 .9973 .9067 .9988
.04 .9555 .9998 .9536 1

.0625 .9892 1 .9857 1

.0025 .6228 .9389 .6927 .9341
.01 .8327 .9970 .8639 .9980

256 .0225 .9382 1 .9457 1
.04 .9831 1 .9817 1

.0625 .9989 1 .9983 1

Note. Proportion for tests at α = .05.

in this procedure, the ratio of the estimated sampling error over the observed
variance of effect sizes is considered. The ratios are compared to a value of
.75 for the 75%-rule and to .90 for the 90%-rule, respectively. The 90%-rule is
usually considered to be more suitable for Monte Carlo studies like the present
one, where no artifacts are part of the design (see Cornwell & Ladd, 1993; Sack-
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Figure 8.24 Rejection rates for the Q-test in S3, α = .05.

ett et al., 1986), and for this reason is also included in the results. If the ratios
are larger than or equal to the mentioned values, homogeneity is assumed to
prevail. In analogy to the hypothesis tests for homogeneity already presented,
the rates of rejecting the hypothesis of homogeneity by using these rules are
assessed. Since no artifacts are present in the Monte Carlo study, the situations
correspond to cases in which all possible artifacts have been corrected for.
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Table 8.17 Rejection Rates for 75%- and 90%-Rule in S1

Statistic

Max. Mean Median Min. SD

HS-75% .7339 .1035 .1101 0 0.0916
HS-90% .9637 .2687 .2622 .0660 0.1194
HS-ratio 6.0165 1.5040 1.0859 .6759 0.9538
Note. The total number of values described by these statistics is 420. HS-75% = Pro-
portion of meta-analyses indicating heterogeneity according to 75%-rule, HS-90% =
Proportion of meta-analyses indicating heterogeneity according to 90%-rule, HS-ratio
= Ratio of estimated variance due to sampling error (σ̂2

e ) over observed variance of
effect sizes (σ̂2

r ).

The rejection rates in S1 for applying both rules along with descriptive
statistics for the values of the ratio are provided in Table 8.17.

Since the 75%- and 90%-rule are not tests in a formal statistical sense it is not
clear what the standards of comparison are. Adopting the procedures applied
in previous Monte Carlo studies on the subject (e.g., Cornwell & Ladd, 1993;
Sackett et al., 1986; Sagie & Koslowsky, 1993), the tests are expected to falsely
indicate heterogeneity only in 5% of the cases in analogy to standard statistical
tests. By applying this criterion to the results in S1 in Table 8.17 it is recognized
that neither of the rules attains a value of 5% and both rules indicate hetero-
geneity in a homogeneous situation far too often. Although the mean value
of the HS-ratio is clearly larger than one, this does not necessarily mean that
only a small portion of the ratios reaches values smaller than the criteria. As is
evident from the standard deviation, there is also high variability among the
ratios leading to the relatively high rejection rates. Results not shown here in-
dicate that the minima reported in Table 8.17 only occur in cases of maximum
k and n (both 256). Because the value in the denominator of the ratio is simply
the observed variance of the effect sizes and this variance actually is sampling
error in S1, the results point to underestimates of the sampling error variance
by the term in the numerator.

Additional information on the changes in the rejection rates across values of
n and µρ in S1 can be seen in Figure 8.25. Both rules are depicted in this graph
and represented by different surfaces.

The tendency for very large rejection rates to occur for large effects and
small n is clearly visible. Moreover, both surfaces maintain a height that in-
dicates rejection rates generally too high for both rules, though the 75%-rule
performs better in S1, — a fact that is trivial — it does not perform satisfac-
torily. This is rather surprising at first glance since an assumption that about
75% of observed variance can simply be ignored and attributed to some unob-
served causes of data turbulences seems quite liberal and favoring homogene-
ity. Ironically then, the seemingly liberal rules lead to a false rejection of the
hypothesis of homogeneity far too often.
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Figure 8.25 Rejection rates for the 75%- and 90%-rule in S1 by n and µρ.

Table 8.18 Rejection Rates for 75%- and 90%-Rule in S2

Statistic

Max. Mean Median Min. SD

HS-75% 1 .7814 .9995 0 .3219
HS-90% 1 .8635 1 .0838 .2284
HS-ratio 6.9055 .5447 .3944 .0122 .5962
Note. The total number of values described by these statistics is 1890. HS-75% = Pro-
portion of meta-analyses indicating heterogeneity according to 75%-rule, HS-90% =
Proportion of meta-analyses indicating heterogeneity according to 90%-rule, HS-ratio
= Ratio of estimated variance due to sampling error (σ̂2

e ) to observed variance of effect
sizes (σ̂2

r ).

None of the rules therefore seems to represent a viable alternative to the Q-
test in S1. A trivial consequence of the high rejection rates in S1 is a better
performance in heterogeneous situations. Hence, it should again be kept in
mind that these “tests” do not perform well in S1 when inspecting the results
for other cases.

The results for the next two situations, S2 and S3 are shown in Tables
8.18 and 8.19, respectively. The results for S2 shown in Table 8.18 indicate
a smaller mean ratio and high rates of rejecting the assumption of homogene-
ity, as would be expected in a heterogeneous situation and by the high baseline
of rejection rates in S1.

If the conventional level of 80% rejection rates is considered satisfactory for
such a “test” and applied to evaluate the results, both rules approximately
reach this criterion overall. The results for S3 in Table 8.19 lead to the same
conclusion based on the mean values of rejection rates.

However, minimum values and standard deviations also indicate that there
are considerable differences across levels of the design variables. In contrast
to S1, the ratios increase for larger values of n, k, and µρ, reaching their maxi-
mum when all design variables take on their highest values. Examples for the
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Table 8.19 Rejection Rates for 75%- and 90%-Rule in S3

Statistic

Max. Mean Median Min. SD

HS-75% 1 .7076 .9035 0 .3391
HS-90% 1 .8130 .9719 .0795 .2479
HS-ratio 5.0551 .6991 .5736 .0163 .6650
Note. The total number of values described by these statistics is 1848. HS-75% = Pro-
portion of meta-analyses indicating heterogeneity according to 75%-rule, HS-90% =
Proportion of meta-analyses indicating heterogeneity according to 90%-rule, HS-ratio
= Ratio of estimated variance due to sampling error (σ̂2

e ) to observed variance of effect
sizes (σ̂2

r ).
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Figure 8.26 Rejection rates for the 75%- and 90%-rule in S2 and S3.

change in rejection rates for both rules as they occur across levels of the design
variables are presented in Figure 8.26.

The general trends look similar to those reported for significance tests in
previous sections with smaller rejection rates for lower n, ∆ρ, and σ2

ρ , respec-
tively. The graphs in Figure 8.26 support the notion of some deficiencies for
both rules when the levels of design variables are not at least of medium value.

In sum, the 75%- and 90%-rule of Hunter and Schmidt do not perform much
better in all three situations in comparison to homogeneity tests presented in
preceding subsections. Results not provided here show that, in general, power
to detect heterogeneity can become quite low for combinations of low n, ∆ρ,
and σ2

ρ , respectively. Due to the very high rejection rates in S1 and low power
in many conditions in heterogeneous situations, the rules should be used with
caution. Especially when n and the assumed heterogeneity variance are rather
small, decisions about the application of random effects approaches or ex-
planatory models and conclusions concerning the generalizability of an effect
should not be solely based on the results of the 75%- or 90%-rule.
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8.6 ESTIMATION OF HETEROGENEITY VARIANCE

The estimation of the variance of effect sizes in the universe of studies is an im-
portant part of random effects models and also of the HS-type meta-analysis.
It is a parameter of interest in itself, like the expected value in the universe
of studies. It may, however, also be used in further computations in meta-
analysis. For example, heterogeneity variance is used to construct so-called
credibility intervals as proposed by Hunter and Schmidt (1990). Credibility in-
tervals are constructed analogously to confidence intervals but use the stan-
dard deviation of the heterogeneity variance instead of the standard error of
the estimator to arrive at estimates for the interval limits. Credibility intervals
are not part of the Monte Carlo study and are therefore not considered here.

The most prominent estimators of heterogeneity variance in applications of
meta-analysis in psychology, DSL and HS, will be evaluated in this section.
In addition, the estimator OP-RE presented in Subsection 5.4.2 will also be
evaluated to assess its performance in relation to the standard approaches.

As was the case in the context of estimating µρ, the estimated parameter in
the various situations will first be considered. In S1, there simply is no vari-
ance to be estimated, that is, it is zero. The behavior of the estimators will
be examined in two versions. First, the results for the truncated variance esti-
mator will be reported, and second, the results for the non-truncated version
thereafter. Recall from Section 5.4.1 that the truncated variance estimator in
the DSL approach is σ̂2

ζ+ = max{0, σ̂2
ζ }. That is, negative variance estimates

which may arise in practice are set to zero for the truncated estimator. The
non-truncated version does not set negative estimates to zero. Of course, an
analogue procedure is applied in r-space when HS and OP-RE are considered:
σ̂2

ρ+ = max{0, σ̂2
ρ}.

Since the DSL estimator of heterogeneity variance is based on Fisher-z trans-
formed correlation coefficients, the corresponding parameter is also in z-space.
This is mainly of importance for situations S2 and S3, where the universe vari-
ances have to be computed in order to assess biases. In S2, the variance of the
universe effect sizes is computed as follows:

σ2
ζ =

(
ζ1 − µζ

)2 +
(
ζ2 − µζ

)2

2
.

For S3, no simple form to compute the variance in z-space resulting from a
beta distributed variable P is available. Thus, variances have to be determined
via

σ2
ζ =

∫ 1

−1

(
tanh−1 r

)2
f (r)dr− µ2

ζ ,

where f (r) denotes the beta probability density function. µζ and σ2
ζ are in z-

space. Note that µζ is given by µζ =
∫ 1
−1 tanh−1(r) f (r)dr. The various values

as used in the Monte Carlo study can be found in Tables A.1 and A.2 in the
appendix.
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Table 8.20 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S1

Statistic

Max. Mean Median Min. SD

HS-nt .0110 .0014 .0001 −.0001 .0027
HS .0433 .0042 .0013 0 .0068
OP-RE-nt .1289 .0099 .0001 −.0144 .0249
OP-RE .1289 .0130 .0015 0 .0264
DSL-nt .0009 −.0013 −.0001 −.0164 .0031
DSL .0622 .0070 .0024 .0001 .0116
Note. The total number of values described by these statistics is 420. -nt designates
non-truncated estimators.

8.6.1 Homogeneous Situation S1

In the homogeneous situation, the estimators presented in Chapter 5 generally
overestimate the heterogeneity variance. This is due to the truncation of the re-
sulting estimates at a value of zero when values less than zero are encountered.
To assess whether the non-truncated versions actually estimate the universe
parameter precisely and how far off the truncated versions are from zero, both
versions are provided in the following presentation. The truncated versions
therefore correspond to the estimators used in practice and the non-truncated
versions are only given for comparison. The non-truncated estimators are la-
beled by the additional suffix -nt.

In Table 8.20 results for the biases of the estimators in S1 are presented.
The values are computed in analogy to the biases of the estimators of µρ (see
Section 8.2.1).

Unfortunately, the biases of variances in Table 8.20 and also those presented
in the following are not directly comparable because the values for HS and OP-
RE are given in r-space and those of DSL in the space of z. Nevertheless, in the
given situation one would expect the biases of DSL to be uniformly larger to a
certain degree than the variances of HS and OP-RE due to the characteristics
of the different spaces. Recall from Section 3.1 that the Fisher-z transformation
stretches the values of r particularly in the boundary regions (see also Figure
3.1) and therefore leads to larger variances in z-space as compared to r-space.
Trivially, the truncated values are always at least as large as their non-truncated
counterparts.

As evidenced by the minimum values in Table 8.20, some remarkable nega-
tive estimates indeed emerge in some cases. Interestingly, the maxima of both
versions for the estimators do not always agree. This is due to rare cases in
which very large variances occur for the estimates and a large portion of vari-
ance estimates is less than zero. The values reported in Table 8.20 indicate
some deficiencies associated with OP-RE in relation to DSL and HS. The OP-
RE estimator shows maximum values far too large to be acceptable. The mean
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Figure 8.27 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S1 by k and n.

and median values shown, however, indicate rather good performance of the
approaches overall.

To elucidate under which constellations of the design variables the estima-
tors perform better or worse, a series of graphs is presented in Figure 8.27.
Again, an array of graphs shows the estimators’ performance across combina-
tions of the design variable levels of k and n.

The estimators’ biases shown in Figure 8.27 are only given for the truncated
versions to focus on findings relevant for the application of the methods in
practice. In general, all panels indicate good performance of the estimators for
large values of the design variables. However, DSL obviously overestimates
σ2

ζ when n and k are very small and also retains a positive bias for all values
of k when n is very small. This is due to the truncation of the variances. The
same shape of surface emerges for HS in the upper right panel but the biases
for combinations of a small number of studies and very small sample sizes ap-
pear smaller than those of DSL. Since these two estimators operate in different
spaces (r vs. z), it is not perfectly clear which estimator actually shows larger
bias in comparison. The lower panel gives the results for OP-RE and indicates
a very poor performance of the estimator for small values of n across all values
of k. Only when n grows larger and reaches a value of approximately 64 does
the estimator show acceptable performance.
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Figure 8.28 Bias of σ̂2
ρ ((HS & OP-RE) and σ̂2

ζ (DSL) in S1 by k and µρ.

It is, of course, also of interest whether biases of the estimators vary across
values of the universe effect size. Figure 8.28 provides graphs for the design
dimensions k and µρ.

For DSL and HS, both upper panels in Figure 8.28 show an improved per-
formance for larger values of k. DSL shows a relatively stable performance
across all values of µρ, but it is acknowledge that the slope of the surface indi-
cates slightly better performance for larger values of µρ. The results depicted
in the figure suggest that at least a modest number of studies (approximately
32) have to be available when using this approach for a sufficiently precise es-
timation of the heterogeneity variance (i.e., very close to zero). HS, in contrast,
performs best when µρ is large. This tendency is most obvious for a small
number of studies. Unfortunately, for values of ρ suspected to occur often in
practice (around .40) the bias still seems non-negligible. Although the absolute
values seem small on the vertical axis, it should be remembered that a value of
.01 corresponds to a standard deviation of .10. Hence, there seems to be non-
trivial bias for the HS estimator for small values of k and moderate to low µρ

in the universe of studies. As is the case for DSL, when the number of studies
is 32 or larger, the bias seems negligible for HS.

Unlike these first two approaches, OP-RE strongly varies in biases across
levels of µρ, notwithstanding how many studies are aggregated, with a max-
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Figure 8.29 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S1 by n and µρ.

imum bias at a value of approximately µρ = .40. It is again suspected that
this phenomenon is caused by the weighting scheme of OP-RE. The region of
maximum bias falls near the point of µρ = .347 where the biggest change in the
variance of G occurs (see Section 3.1). A big change in variance transfers to big
differences in weights since the variance estimates are used in the weighting
scheme of the OP-RE approach. If this were true, then the bias should dimin-
ish for larger sample sizes. This is indeed the case as the lower panel in Figure
8.29 shows. This figure completes the results for the biases of σ̂2

ρ and σ̂2
ζ in S1.

Again, it can clearly be seen that for very low values of n none of the esti-
mators shows acceptable performance but performance quickly gets better and
reaches acceptable levels for sample sizes supposed to be encountered most of-
ten in practice (32 or larger). Poor performance for the approaches only occurs
for very small n. Though DSL in the upper left panel does not seem to reach
small biases for growing n as fast as HS, the reader is again cautioned against
such a comparative interpretation because of the different spaces in which DSL
and the other approaches operate. Overall, at least the estimators HS and DSL
seem to show acceptable performance in S1 when n and k are not very small.
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Table 8.21 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S2

Statistic

Max. Mean Median Min. SD

HS-nt .0665 .0034 .0009 −.0253 .0087
HS .0665 .0044 .0014 −.0253 .0096
OP-RE-nt .2739 .0440 .0184 −.0130 .0560
OP-RE .2739 .0452 .0189 −.0018 .0559
DSL-nt .2559 .0121 .0030 −.0115 .0254
DSL .2566 .0150 .0051 −.0099 .0262
Note. The total number of values described by these statistics is 1890. -nt designates
non-truncated estimators.

8.6.2 Heterogeneous Situations S2 and S3

The heterogeneity variance estimators become especially important in cases
where σ2

ρ 6= 0. In such cases, it can be evaluated whether the truncated versions
of the estimators still provide overestimates, as is the case for some combina-
tions of levels of design variables in S1. Additionally, the two situations S2
and S3 enable an evaluation of the estimators for a discrete distribution in the
universe of studies and for a continuous distribution. For the latter, it should
be kept in mind that the beta distribution strongly deviates from normality the
larger µρ is. This is considered to be more adequate for r-space in compari-
son to a truncated or otherwise distorted normal distribution, for example, as
was used in other Monte Carlo studies (e.g., Overton, 1998; and probably also
Field, 2001).

Table 8.21 provides overall results of the three estimators in both versions
available. As can be seen, differences between the truncated and non-truncated
versions of the estimators do not differ substantially. The focus will therefore
be exclusively laid on the truncated estimators.

All three approaches differ in biases. HS is close to the variances to be es-
timated amongst the approaches under consideration. Mean and median val-
ues indicate a good overall performance but minima and maxima also show
that there are conditions under which the estimator over- or underestimates
the universe variance of effect sizes. OP-RE, in contrast, generally overesti-
mates variances, in some cases to a very large degree. DSL shows a slight
tendency for overestimation as indicated by the values in the table but clearly
not as strong as OP-RE. The measures of central tendency for DSL close to
zero suggest a performance similar to HS. Yet, the maximum values for DSL
also suggest that the tendency for overestimation can be strong in some cases.
Unfortunately, this is no unequivocal indicator for strong overestimation be-
cause it is the bias computed in z-space. To elucidate conditions under which
the estimators do not perform very well, a series of graphs is provided once
more.
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Figure 8.30 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S2 by n and k.

The conditions for largest biases of DSL and HS, indicated by the upper
panels in Figure 8.30, are again cases of low n and especially k. The combina-
tion of both low n and k represents the worst case in terms of bias. Unlike the
results presented for S1, the biases for these approaches are generally high for
k less than 16, irrespective of n. Absolute values for biases are also different for
each of these estimators in comparison to the results in S1.

A very different shape of surface emerges again for the bias of OP-RE. Re-
sults for this estimator indicate a poor performance for low n whereas biases
decline for larger n, irrespective of k. The surfaces of DSL and OP-RE do not
approximate a value of zero bias for larger k and n, respectively. Note that
this is actually the case for HS, which can be regarded as performing best in
this respect. The biases of DSL and OP-RE instead converge to some nonzero
positive value. This is due to the fact that for both estimators biases also very
strongly vary for different values of ∆ρ. This is illustrated in Figure 8.31 where
the estimators operating in r-space are shown in one panel. The upper panels
provide biases for ∆ρ by n and the lower two for ∆ρ by k.

Both panels illustrate the rising bias both for DSL and OP-RE for larger val-
ues of ∆ρ. The results explain why the values to which these approaches con-
verge (as shown in Figure 8.30) are larger than zero. The larger the difference
between universe values in S2, the larger are the biases of DSL and OP-RE.
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Figure 8.31 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S2 by n and ∆ρ as well as k
and ∆ρ.

In the case of OP-RE this is suspected to be caused by the weighting scheme,
whereas in the case of DSL — though biases are not directly comparable in
absolute terms — this is proposed to be a result of transformation into z-space.
In contrast to the performance of these two approaches, HS shows a very good
performance in S2 and seems to be the approach of choice amongst the ones
available in this situation. Cautions against the use of the HS estimator appear
reasonable in cases of small k (i.e., k < 16), especially when large differences
between effect sizes in the universe if studies are suspected.

Finally, the results for biases in S3 are presented, the situation with a contin-
uous distribution in the universe of studies. Table 8.22 provides overall results
first.

The results in Table 8.22 seem to indicate a much better overall performance
of DSL as compared to the previous situation. However, due to difficulties in
directly comparing variances in situations of type S2 and S3 as well as com-
plications arising from interpreting absolute values for biases in z-space, the
indication of a better performance are not strong. HS shows very small mean
bias whereas OP-RE again strongly overestimates universe variances of effects
sizes. Again, maximum and minimum values indicate varying performance of
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Table 8.22 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S3

Statistic

Max. Mean Median Min. SD

HS-nt .0121 −.0001 −.0001 −.0193 .0036
HS .0433 .0014 0 −.0193 .0059
OP-RE-nt .2161 .0237 .0062 −.0162 .0373
OP-RE .2161 .0255 .0074 −.0147 .0376
DSL-nt .0243 .0008 .0003 −.0154 .0029
DSL .0648 .0047 .0010 −.0129 .0099
Note. Valid values for all entries are 1848. -nt designates non-truncated estimators.
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Figure 8.32 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S3 by n and σ2
ρ .

the approaches across levels of the design variables. Interestingly, the maxima
for the truncated versions of the HS and DSL estimators occur in cases sim-
ilar to S1, that is, for smallest values of k, n, and σ2

ρ . In all other cases both
approaches show smaller biases.

Graphs are finally presented to assess the performance of the approaches in
various design regions. Figure 8.32 illustrates the results for n and σ2

ρ .
The left panel in this figure shows that overestimation is larger for DSL only

for very small n. With sample sizes larger than 16, the bias seems negligible.
In the right panel of Figure 8.32, both HS and OP-RE are depicted. The high
biases of OP-RE for small n are clearly visible. Since OP-RE is r-based and
does not use the Fisher-z transformation, the absolute values for biases can be
deemed extremely large. Furthermore, biases strongly raise for OP-RE with
increasing values of σ2

ρ . This is neither true for DSL nor HS. The results for
HS indicate that biases are only elevated for small n and small σ2

ρ , a case that
approaches homogeneity. This is however, not visible in the right panel of Fig-
ure 8.32 since the surface of OP-RE covers this region. As was highlighted in
the context of presenting the results in S1, the biases for HS can be considered
as non-negligible in some extreme cases in this design region. Nevertheless,
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Figure 8.33 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S3 by k and σ2
ρ .

biases are generally relatively small for the HS approach in S3. Although DSL
also shows a rather good performance in S3, HS appears as the most recom-
mendable approach of the three approaches under examination for this situa-
tion, since it shows the smallest biases and provides estimates in the space of
r.

The next two panels in Figure 8.33 give a very similar impression of the
relative performance of the approaches across values of k and σ2

ρ . For high
universe variances, biases of DSL and OP-RE are rather large. On the other
hand, HS shows small biases in most cases, albeit the values evidently also
vary across levels of k and σ2

ρ . The trend of larger biases across values of σ2
ρ is

the opposite as compared to the other two approaches. High variances seem
to be estimated with appreciable precisions whereas low variances are over-
estimated. This is due to the truncation in the HS estimator. Results for the
non-truncated version, not shown here, indicate almost zero bias in all regions
of the design, in particular also those for which values are slightly elevated in
Figure 8.33.

The last graphs provided to assess biases are given in Figure 8.34. They
underscore the generally good performance of HS, as is evident in the upper
right panel. Although biases are not zero across all levels of the design vari-
ables, the absolute values are very small. DSL is depicted in the upper left
panel and does not show a clear trend of bias across levels of σ2

ρ and µρ. Nev-
ertheless, absolute biases are also small in absolute value for this approach.
OP-RE again shows some variation in biases across levels of the design vari-
ables with largest biases occurring for combinations of large µρ and large σ2

ρ .
Due to the large biases shown in all design level combinations in S3, it is cer-
tainly no interesting alternative to the other two estimators.

In sum, despite small overestimation of the truncated version of the HS es-
timator in S1, it seems to provide the best estimator of heterogeneity variance
amongst the three approaches examined. The cases where HS shows overes-
timation of heterogeneity variance are not likely to be encountered often in
practice, but are of interest to find the boundary values for levels of design
variables in order to caution against potential problems in estimation. The bias
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Figure 8.34 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2
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of DSL was only examined in z-space, so some reservations with respect to a
negative evaluation are in order. The performance of this estimator nonethe-
less showed variation in the Monte Carlo study that does not let it appear as
a promising alternative in comparison to the simple HS estimator. Further-
more, there is no option available to date to transform the results of the DSL
estimator into r-space. Hence, variance estimates are in z-space and hard to
interpret. This is another limitation of this approach which makes its use in
practical applications of meta-analysis unattractive.


