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7
Aims, Design, and Implementation

In this part of the book, a comprehensive Monte Carlo study for the compar-
ative evaluation of the statistical approaches will be presented. First, the aims
and general procedure will be outlined. Procedural details will be given to en-
able an assessment of the precision of the study and justify the validity of the
results to be presented in Chapter 8. Next, the parameters characterizing the
universe from which the effect sizes are drawn will be presented and related
to the situations of fixed and random effects as outlined in Chapter 4. This
will define the scope of interpretation of the results and shed light on viable
generalizations of the results. Finally, technical details on the generation of cor-
relation coefficients in Monte Carlo studies in general are discussed and some
specifications for software programming to conduct the Monte Carlo study are
given.

Monte Carlo studies are designed to investigate the properties of statistical
procedures, techniques, or estimators in particular by conducting a specified
number of replications of a statistical procedure when an analytical treatment
of the problem is not feasible. In a sense, they can be regarded as experiments
conducted to study the behavior of statistics of interests subject to the variation
of a set of parameters within the framework of a prespecified model. Accord-
ingly, the design of a Monte Carlo study delimits the scope of interpretation of
the results (see Skrondal, 2000). If interest lies, for example, in the performance
or robustness of a parameter’s estimator, it can only be evaluated with respect
to the specific other parameters of the model that have been varied or held
constant in a Monte Carlo study. Hence, in the following sections the design of
the Monte Carlo study conducted to compare the computational approaches of
meta-analysis as outlined in the previous chapters will be described in detail.



94 Aims, Design, and Implementation

7.1 GENERAL AIMS AND PROCEDURE

The main aim of the Monte Carlo study is to compare as well as evaluate the
various statistical approaches of meta-analysis as presented in Chapter 5. One
of the most important questions to be answered based on the results is whether
and when the choice of an approach of meta-analysis makes a difference. In the
present Monte Carlo study, the effect sizes under scrutiny will be confined to
correlations. Only the d-statistic will be of concern insofar as correlations can
be transformed to d and the meta-analysis be based on these transformed effect
sizes. The correlation coefficient was chosen as an effect size measure to com-
pare the meta-analytical approaches for several reasons. First, it is one of the
most often reported effect sizes indices in the empirical literature in the social
sciences and psychology in particular. It therefore represents one of the most
representative effect size measures in these scientific areas. Second, all the ap-
proaches presented in Chapter 5 explicitly propose procedures to aggregate
this effect size measure. Third, its various forms can be easily accommodated
to express the size of an effect in a wide variety of research situations and also
for results from focused hypothesis tests, a fact that lead several researchers to
strongly advocate its use (e.g., Rosenthal & DiMatteo, 2001; Rosenthal et al.,
2000). The empirical comparison of meta-analytic approaches is thus limited
to a research database consisting of correlations.

If present, differences between the results of these approaches will be high-
lighted and compared to expectations from an analytical point of view. Com-
parisons of empirical results with the latter type of expectations are also of
interest insofar as many of the theoretical results presented and referenced in
Part II hold only asymptotically. Thus, it will be investigated whether the ap-
plication of the proposed procedures yields sufficiently accurate results so that
their use is justified under restricted conditions (see Hedges, 1994b). The re-
striction of conditions predominantly refers to the number of studies to be ag-
gregated and the number of persons in the studies. It is important to recognize
and differentiate these two types of asymptotics. On the one hand, holding
everything equal, results may be expected to converge asymptotically to some
parameter when n grows larger. On the other hand, this might be the case —
ceteris paribus — when the number of studies in a meta-analysis grows. It may
well be the case that for some estimator of interest, only one of these types is
relevant and a growing n or k does not have an effect on the results.

The approaches will be compared with respect to the statistical properties
of the proposed procedures for the various meta-analytical tasks. The tasks
are estimation, testing, and confidence intervals for the mean effect size, ho-
mogeneity tests, and estimating heterogeneity variance. The presentation of
the results is structured correspondingly. Special attention will be payed to
indices that were developed in individual approaches, like the 75%-rule of the
HS-approach), and their usefulness as meta-analytical tools will be assessed in
a separate subsection.

Some computational details and specifications on the indices used to make
comparisons (e.g., for the mean squared error) will be reported when they are
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needed, that is, in the relevant sections in Chapter 8. It will then be pointed
out which of the respective indices performs best with regards to conven-
tional statistical criteria, like the mean squared error of the point estimators,
for example. A possible and hardly surprising result might be that there is
no single approach to meta-analysis performing best under all conditions de-
fined by the design. Instead, a newly assembled collection of procedures from
various approaches might emerge as a set of meta-analytical techniques per-
forming best under the examined conditions. If the performance of the indices
varies strongly in dependence on parameters varied in the Monte Carlo de-
sign, the parameter configurations under which single indices perform best
will be highlighted. This can be useful information for future meta-analyses to
condition their choice of an index on the specific circumstances (e.g., mean n
of the studies to be integrated and number of studies k).

The comparison of approaches will be conducted under various parameter
configurations that correspond to different models. As mentioned in Section
4.1, the most often applied approaches in meta-analyses on research topics in
psychology assume a fixed effects model. This has been severely criticized
for various reasons and calls have been made for an increased use of the ran-
dom effects model (e.g., National Research Council, 1992). Nevertheless, the
research practice in meta-analysis has not yet followed this call (for examples,
see Hunter & Schmidt, 2000). Hence, a comparative evaluation of the effects
of applying the fixed effects procedures of the approaches in heterogeneous
cases is of vital interest. This is the case for at least two reasons. First, it will be
possible to point out situations in which flaws in the conclusions of such meta-
analyses are likely to prevail. Second, it will be possible to assess the tenability
of conclusions of such meta-analyses and the potential need for reevaluations.
Comparisons of meta-analytical approaches that pursue a similar goal have
already been conducted (e.g., Johnson, Mullen, & Salas, 1995), but there are
some shortcomings in procedure and design associated with these compar-
isons that make it reasonable to reinvestigate this topic (see also Section 5.6).
Furthermore, most comparisons of procedures referenced in Section 5 have
focused on single indices and used different procedures in their simulation
studies that complicates and exacerbates the comparison of approaches. The
present effort therefore also aims at comparing the approaches within a sin-
gle simulation framework and to evaluate the approaches comprehensively in
procedures and design.

7.2 GENERAL EXPECTATIONS AND PREDICTIONS FOR
THE RESULTS

On the basis of the many properties of estimators and procedures highlighted
in Part II, some more specific predictions for the results can be made. These
will be highlighted in the following paragraphs.
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Estimation of the Mean Effect Size. The bias of the correlation coefficient and
Fisher-z transformed correlations is a very well investigated topic in the statis-
tical literature. At least since Hotelling’s seminal paper in the 1950s, the biases
are well-known and can count as theoretically well understood. Nevertheless,
there is a plethora of articles investigating the comparative biases of the r and
Fisher-z transformed r in simulation studies (e.g., Corey et al., 1998; Donner &
Rosner, 1980; Field, 2001; Silver & Dunlap, 1987). Adding yet one more Monte
Carlo study to demonstrate the biases seems like flogging a dead horse.

Hence, it is expected on the basis of theoretical results outlined in the pre-
vious part that in a homogeneous situation (S1) the approaches, as categorized
by type of effect size measure and using n as weights, show slightly different
biases in opposite directions, especially when n is small. Corresponding re-
sults will only add to the credibility of the simulation procedure and represent
nothing new. Yet, additional estimators are included in this Monte Carlo study
which have not been investigated as thoroughly as HOr and HS, for example.
It is expected that OP will be unbiased and HOT will show a similar behavior.
These predictions are expected to hold across all values of n and k in the Monte
Carlo design. OP-FE and OP-RE are expected to show positive biases due to
the weighting scheme used (see Section 5.6). In comparison, OP-FE will show
a larger bias than OP-RE because incorporation of (estimated) heterogeneity
variance will level differences in weights in the latter approach. The size of
the biases is not easy to predict and will emerge as a result of the Monte Carlo
study. Biases for these two approaches will also diminish when n grows larger
because of decreasing variability of observed effect sizes for larger n. The bias
will stay unchanged across values of k, which will be true for all approaches
since biases are not expected to vanish or be exacerbated because more (bi-
ased) data points are added. Predictions for HOd can hardly be made due to
its strange behavior (see Section 5.5). As a consequence, there are also no good
reasons to expect HOd to show similar results as any of the other approaches.

In a heterogeneous situation (i.e., S2 and S3) predictions are quite different.
Here, Fisher-z based approaches estimate µρz and not µρ. Only with respect to
the parameter which is estimated, approaches are expected to perform well. It
should nevertheless be borne in mind that Fisher-z based approaches have a
positive bias with respect to µρ the larger the heterogeneity variance. The rea-
sons for this are expounded in Section 5.5. Again, OP is expected to perform
uniformly best in the heterogeneous situations because of its UMVU quali-
ties. HOT is now expected to estimate a different parameter in comparison
to OP due to its Fisher-z basis. OP-FE and OP-RE are expected to retain their
bias in general, but it is again predicted that OP-RE will show smaller bias
the larger the heterogeneity variance. This interesting effect is expected be-
cause with growing heterogeneity variance the weights will be dominated by
the estimates of the heterogeneity variance. Again, it is unclear how HOd will
perform.

Overall, OP is expected to perform uniformly best. In some of the situations
under investigation other approaches might nevertheless show acceptable per-
formance with the standards of precision in the social sciences in mind.
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With respect to another aspect of estimating the mean effect size, namely the
estimators’ mean squared error, predictions are not easy to make. Of course,
there will be a tendency of estimators with large bias to also show large mean
squared errors, but it is not necessarily the case that estimators with small bias
will perform well with respect to this criterion. These facts notwithstanding,
OP is again expected to perform best in relation to all other estimators.

Significance Tests. With respect to tests of the mean effect size, it is important
to discriminate between two cases: when µρ = 0 and when it does not. Of
course, the null hypothesis need not be H0: µρ = 0, any other value of interest
might be inserted instead of 0, but this traditional “nil hypothesis” will be
focused on here. For the purpose of testing, there is a large set of candidates
included in this Monte Carlo study.

Predictions concerning Type I error rates will first be explicated, that is, the
performance of the approaches when the null hypothesis is true will be exam-
ined. In a homogeneous situation S1, all approaches are expected to retain an a
priori chosen α level to an acceptable degree, except for cases in which small
n is coupled with small k and a disadvantageous weighting scheme is used,
as for OP-FE, OP-RE, and HOd. This is due to the facts that all testing proce-
dures follow the same basic rationale on the one hand, and deleterious effects
of some weighting schemes as already outlined on the other. When the null
hypothesis is not true, the power of the approaches’ procedures is concerned.
Power will be higher for all approaches the larger the effect, that is, the higher
the absolute value of µρ. With regards to power it is important to recognize
both n and k being relevant for the performance. One of the reasons to apply
meta-analysis at all is because of its suspected high power due to aggregating
study results (i.e., increasing k and total n). This is indeed a valid suspicion
as Cohn and Becker (2003) as well as Hedges and Pigott (2001), for example,
have demonstrated. However, in these papers it was also demonstrated that
power is not always high in meta-analysis. For example, adding studies with
small sample sizes may decrease power (Hedges & Pigott, 2001) for RE ap-
proaches. Hence, this effect is expected to occur in the results of the simulation
study. Otherwise, FE approaches will tend to reject the null hypothesis more
often than the more conservative RE approaches (see Hedges & Vevea, 1998,
for example). Because OP is expected to be most precise in estimation, this is
expected to generally translate to better performance in testing as compared to
other FE approaches.

In heterogeneous situations the RE approaches are expected to perform better
overall as compared to FE approaches, because the basic model assumption
(heterogeneity) is correct and the approaches account for this in their proce-
dures. This will also generally lead to more conservative decisions in compar-
ison to FE approaches. Hence, higher power of FE approaches is expected to
come at the cost of excessive Type I error rates. More specifically, the null hy-
pothesis will always be false in S2 in the Monte Carlo study due to the design
which does not include negative universe parameters. In essence, basically the
same results as in S1 are expected to emerge with acceptable performance of
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most approaches in most situations, except for some combinations of the de-
sign variables (low n coupled with high k). In S3, RE approaches are expected
to perform best when the null hypothesis is true (i.e., µρ = 0) because FE
approaches do not incorporate heterogeneity variance in the standard error.
More specifically, this prediction applies to DSL and OP-RE. However, DSL
will retain the prescribed α-level best because it is suspected that the weighting
scheme of OP-RE will impair its performance when n is small. With reference
to Osburn and Callender (1992), it was pointed out in the context of presenting
the HS approach that using the variants HS3 and HS4 may result in good per-
formance in heterogeneous situations (see also Whitener, 1990). Hence, these
two approaches are also expected to perform well. If the null hypothesis is
false, then the power can again be examined. In these cases DSL is again pre-
dicted to show more conservative behavior in comparison to FE approaches.
However, it is again predicted that the higher precision of OP will have a ben-
eficial effect on its performance, though at the cost of an excessive Type I error.

Confidence Intervals. In evaluating confidence intervals of the approaches
two aspects have to be accounted for: coverage rates and interval widths. Cov-
erage rates refer to the proportion of intervals covering the universe parameter
in a series of replications. High coverage rates may come at the cost of large
intervals, so they are not unequivocal indicators of the quality of the proce-
dures. Thus, such rates have to be qualified by simultaneously considering the
interval widths.

The most important property of estimators to attain high coverage rates —
disregarding interval widths — is low bias. Since OP is expected to show the
smallest bias in all situations, it is again predicted to show the best perfor-
mance. This is anticipated to be true in all situations S1, S2, and S3. RE ap-
proaches will show high coverage rates in all situations but these approaches
will also have the largest interval widths notwithstanding which situation is
examined. This is caused by incorporating estimates of heterogeneity variance
in standard errors, which will almost always be positive, even in the homo-
geneous situation. Coverage rates are expected to become better for all ap-
proaches for larger n and k as conventional statistical results would suggest.

Homogeneity Tests. Two different types of homogeneity tests were intro-
duced in Chapter 5, those based on the Q-statistic and the 75% or 90% rule,
respectively. First, focus will be on the Q-statistic, which is available to con-
duct a test in the approaches HOr, HOd, HS, and OP-FE. For the predictions
it is important to recall one of the most important assumptions of this test,
namely the normal distribution of the deviates. These are squared, weighted
and summed over k studies to arrive at the Q-statistic. Under this assump-
tion and if the null hypothesis is true, the Q-statistic has an asymptotic central
χ2

k−1-distribution, that is, when study sample sizes are (very) large.
As a consequence, it can be predicted that HOr will perform best in compar-

ison to the other approaches. The basis for this prediction is the reasonableness
of the assumption of normally distributed deviates for Fisher-z transformed
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correlations. In contrast, it is not wise to assume a normal distribution either
in the case of r-based approaches (HS and OP-FE) or for HOd. At least when
ρ is moderate to large and/or sample sizes are not huge, the assumption is
not tenable. With regards to HOd, the assumption might be sensible if d was
not a transformed r as in the present case. In addition to the distributional
assumption, the deleterious effects of the weighting scheme are expected to
operate again for HOd and especially OP-FE. In sum, HOr is expected to per-
form best amongst the approaches under examination. However, on the ba-
sis of theoretical analyses (see Hedges & Pigott, 2001) and previous evidence
from attempts to evaluate this test (e.g., Harwell, 1997; Sánchez-Meca & Marín-
Martínez, 1997), it can be expected that at least for some combinations of the
design variables Type II errors will occur. More specifically, it is predicted that
particularly for situations of small n and large k — which operates to exacer-
bate the small n problem — low power of the homogeneity test based on the
Q-statistic will be observed.

The 75% and 90% rules as homogeneity tests are not expected to represent
viable alternatives to the homogeneity test mentioned in the above paragraph.
Due to their crude rationale and previous evaluations of these rules (for an
overview of results, see Cornwell & Ladd, 1993), a high Type I error rate and
relatively low power for combinations of moderate to low n and k is to be
expected.

Estimation of Heterogeneity Variance. A total of three estimators for the het-
erogeneity variance is available in the Monte Carlo study: DSL, HS, and OP-
RE. Of these, DSL is Fisher-z based and therefore in z-space and not directly
comparable to the other two estimators based on r. Unfortunately, there is no
transformation formula available to date to make these three estimators di-
rectly comparable. Nevertheless, some predictions for their comparative per-
formance are possible.

In the homogeneous situation S1, all estimators are expected to show posi-
tive but small bias. This is due to their construction which prescribes negative
estimates to be set to zero. If either non-truncated (i.e., negative estimates are
not set to zero) or truncated estimators are compared, then DSL and HS are
predicted to perform better than OP-RE. Despite the fact that OP-RE is unbi-
ased (see, e.g., Hedges, 1989), the deleterious effects of the weighting scheme
are expected to hamper good performance, at least when n is small. DSL is
not expected to suffer from any weighting scheme problem and is unbiased
by construction, though the weighting scheme might cause problems with the
estimator when other effect sizes are used as in the present case (see Böhning
et al., 2002). Hence, the DSL estimator is expected to perform best.

Basically the same predictions for relative performance of the approaches
can be made for heterogeneous situations. DSL is expected to perform best, HS
might show negative bias (see Hall & Brannick, 2002), OP-RE will perform
worst.
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7.3 DISTRIBUTIONS IN THE UNIVERSE OF STUDIES

In line with the differentiation between fixed and random effects models drawn
in Chapter 4 and with regard to the importance of assumptions about the dis-
tribution of the universe effect sizes to be modeled, the situations introduced
in Section 4.5 will be distinguished in the Monte Carlo study. The choice of the
situations is mainly oriented on the assumptions that are ordinarily made in
published meta-analyses about the universe of studies.

As a consequence, S1 is an important situation to include in the design,
mostly because of its prevalence in the literature. It represents the homoge-
neous case where only a single universe effect size is assumed to be estimated
by the studies under investigation. Additionally, S1 is also included in the de-
sign of the Monte Carlo study to test whether the FE methods work properly
when their basic assumptions are met and also to explore how RE methods
perform in homogeneous situations.

One of the heterogeneous situations included in the design is S2. Here, two
different values ρ1 and ρ2 are present in the universe of studies with equal
probability of occurrence. The difference between these values is not yet spec-
ified, but is a design aspect. The probabilities of .50 associated with the two
values of ρ are the weights of the components in mixture distribution parlance
and will not vary as part of the design. The Monte Carlo study thus also in-
vestigates the performance of the approaches in S2 and compares estimates of
mean effect sizes, for example, with the expected value of the mixing distribu-
tion they are intended to estimate. It should finally be kept in mind that the
design of the Monte Carlo study will be limited to situations in which the com-
ponent weights will also always be equal. Of course, this restriction precludes
reliable generalizations to situations in which there are more than two classes
and where components weights are very different.

The second type of heterogeneous situation included in the Monte Carlo
study is S3. Here, a univariate continuous distribution is given in the universe
of studies which is the beta distribution in the present study. The normal dis-
tribution was not used because it is not bounded by the interval [−1, 1] and
to avoid discarding invalidly large values. An alternative procedure was re-
alized by Overton (1998), for example, who randomly set invalid values from
the normal distribution to values between .90 and .9999 according to a uniform
distribution extending over this range. This is certainly an unsatisfactory state
of affairs because the density of the normal distribution is distorted by such
trimming of values and a determination of its actual parameters and properties
is thus impeded. Hence, such procedures are not considered as satisfactory.

In contrast to an earlier work that also used the beta distribution (Hedges,
1989), using parameters for the beta distribution that yield U-shaped or rect-
angular distributions was refrained from because they did not appear as plau-
sible for the distribution of effect sizes in the universe. The same is true for
distributional forms of a J-shape. Discussion of this issue will be resumed in
the following section when the specific parameters values for the Monte Carlo
design will be introduced.
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The question remains how the particular parameters of the beta distribution
were calculated in the Monte Carlo study. To elucidate the procedure, consider
the following probability density function of the beta distribution with param-
eters p and q

pX (x) =
1

B (p, q)
xp−1 (1− x)q−1 , 0 6 x 6 1,

given in standard form (see Johnson, Kotz, & Balakrishnan, 1995). As is evi-
dent, this standard form is bounded by the interval [0, 1]. Next, the aim is to
find values of the parameters p and q that correspond to desired expected val-
ues and variances in terms of ρ. For example, how should p and q be chosen
to yield a beta distribution with an expected value of µρ = .10 and σ2

ρ = .15?
To find an expression for the computation of the parameters it is important to
note that a random variable X following a beta distribution still continues to
be beta-distributed when linearly transformed. Accordingly, the transforma-
tion P = 2X− 1 is applied to a standard beta-distributed random variable X to
yield a distribution on the interval [−1, 1]. Furthermore, the moments of this
transformed variable are (see Johnson, Kotz, & Balakrishnan, 1995, p. 219)

E(P) =
2p

p + q
− 1,

and
Var(P) =

4pq
(p + q)2(p + q + 1)

.

Equating E(P) and Var(P) with µρ and σ2
ρ , respectively, and solving simulta-

neously for p and q leads to the following equations

p =
1 + µρ − µ2

ρ − µ3
ρ − σ2

ρ − µρσ2
ρ

2σ2
ρ

= −
(1 + µρ)(−1 + µ2

ρ + σ2
ρ )

2σ2
ρ

q =
1− µρ − µ2

ρ + µ3
ρ − σ2

ρ + µρσ2
ρ

2σ2
ρ

=
(−1 + µρ)(−1 + µ2

ρ + σ2
ρ )

2σ2
ρ

Now µρ and σ2
ρ correspond to the desired values for the expected value and

variance in terms of the beta-distributed variate on the interval [−1, 1]. Ap-
plying these equations to the example given above (µρ = .10 and σ2

ρ = .15)
yields p = 23.65 and q = 19.35, respectively. In the Monte Carlo study these
equations were applied to compute the parameters of the beta-distribution for
a whole set of combinations of µρ and σ2

ρ . The resulting values are reported in
Tables A.1 and A.2 in the appendix. The type of continuous distribution of the
random variable P in the universe of studies is now specified and characterizes
S3 of the Monte Carlo study.

In sum, a total of three situations S1 to S3 is given of which the first repre-
sents a homogeneous case and the second and third are heterogeneous cases.
The first two situations S1 and S2 are characterized by discrete distributions
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whereas the third is continuous. Of course, one could easily imagine a host
of further situations: for example, situations with more than two groups and
a discrete distribution, a variety of different component weights in the dis-
crete situations, different parametric continuous distributions in the universe
and maybe even mixtures of continuous distributions at the universe level.
Thus, although this Monte Carlo study can count as one of the most compre-
hensive in design on the present research topic up to date, it is necessarily
limited. These limits of the design should be borne in mind when examining
the results. Having described the types of situations under investigation, the
parameter values that were chosen for the various variables of the design will
now be specified.

7.4 PARAMETERS

The variables of the design to evaluate the approaches of meta-analysis are

• the values of µρ for all situations S1 to S3,

• the variance of the beta distribution (σ2
ρ ) in S3,

• the number of studies k to be aggregated in a meta-analysis, and

• the number of persons n to compute the effect sizes in the individual
studies.

The values for µρ represent one single universe effect size common to all k
studies in S1 and the expected value of the beta distribution in S3. For S2, two
different values ρ1 and ρ2 were chosen. Of course, there is also a corresponding
µρ in S2, however, it is ambiguous for the specification of ρ1 and ρ2.

As specified in Section 4.5, the weights for the components in S2 were held
constant. Additionally, the number of persons for each effect size is considered
to be invariant within each simulated meta-analysis. That is, if in S1 there is
one universe parameter µρ underlying a number of k = 32 studies, for exam-
ple, then the effect sizes ri of all 32 studies have some fixed number of persons.
Although not representative of published meta-analyses, n is held constant
mainly to exclude any interaction effects of n with other aspects of the design.
An interaction effect of n and µρ, for example, is indeed a very interesting re-
search topic on its own. The well known publication bias in meta-analysis
(Begg, 1994; Rosenthal, 1979) can be regarded as such an interaction and con-
tinues to stimulate research efforts to assess and eliminate such influences on
the results of a meta-analysis (e.g., Hedges & Vevea, 1996; Iyengar & Green-
house, 1988; Rust, Lehmann, & Farley, 1990; Schwarzer, Antes, & Schumacher,
2003; Vevea & Hedges, 1995). Thus, the reasons to hold n constant are to en-
sure exclusion of such interaction effects from the results and to keep the focus
on the effects of the design variables as implemented.

The specific values that are used for the design variables listed above are
presented in Table 7.1. The first row of Table 7.1 shows that the values for µρ

are positive in all simulated cases.
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Table 7.1 Parameter Values in the Simulation Procedure

Parameter Values Number of
Values

µρ 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 10

σ2
ρ (σρ) 0.0025 (0.05); 0.01 (0.10); 0.0225 (0.15);

0.04 (0.20); 0.0625 (0.25)
5

k 4; 8; 16; 32; 64; 128; 256 7

n 8; 16; 32; 64; 128; 256 6

Note. µρ = expected value of correlation in the universe, σ2
ρ = variance of correlations

in the universe, k = number of studies per meta-analysis, n = number of persons per
study used to compute the observed correlations (ri).

Since the distributions in the interval below zero would mirror those simu-
lated on the positive side, only the given set of values is of concern. Note that
the values provided for µρ also represent the range of values chosen for ρ1 and
ρ2 in S2. The second row shows the values for the variances and the respective
standard deviations in parenthesis for the beta distributions in situation three.
The given values are considered to cover the range of plausible variances for
the mixing distribution. The third and fourth row show the range of values
for the number of studies in a meta-analysis and the number of persons per
study, respectively. The values were chosen to yield a higher resolution for
small values but also to extend to relatively large values. This was achieved by
calculating powers of two beginning with 22 for k up to 28.

The reader might wonder whether the values used in the Monte Carlo study
are representative of published meta-analyses. Unfortunately, investigations
of the characteristics of the distributions of the design variables are quite rare,
so the main resource to judge adequacy of the values is research experience. At
least, there are content analyses of meta-analytic studies of correlations in I/O
psychology available (Cornwell, 1988; see also Lent, Aurbach, & Levin, 1971).
The results of Cornwell’s study on 81 meta-analyses published in seven major
journals of I/O psychology provides descriptive statistics for the distributions
of n and k, respectively. Since there are extreme values for both variables (Max-
imum n = 45, 222 and Maximum k = 2, 162), the author provided the statistics
for a truncated distribution for both variables1. The mean value for n was 283
(Median = 102; Mode = 73) and a value of 37 (Median = 12; Mode = 6) resulted
for k. Hence, the choice of including a value of k = 4 in the present Monte
Carlo study seems warranted. An additional argument in favor of the inclu-
sion of such small values is the fact that subgrouping of studies corresponding
to the levels of assumed explanatory variables very often leads to very small
k in the subgroups (see, e.g., Farrell & Hakstian, 2001). The largest value for k

1The distributions were truncated at n ≤ 500 and k ≤ 120.
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included in the design does not occur very often but there are other research ar-
eas, like attitude–behavior research, for which a very large number of research
articles is available (see, e.g., Eckes & Six, 1994; for an overview, see Schulze &
Wittmann, 2003). The values chosen for n in the present design seem to cover
the range of values occurring in practice although very small values are not
very often reported in the content analysis (however, Minimum n = 7). But
again, there are research areas for which very small n is customary as Hunter
and Schmidt (1994b), for example, have pointed out. The variances chosen in
the present design also match those used by Cornwell and Ladd (1993) and
those used in other Monte Carlo studies in the field.

In sum, the levels chosen for the design variables seem to cover customary
values of research practice, at least in the I/O psychology area. Nevertheless,
the criterion of realism should not be overvalued when considering the levels
of the design, since research practice might change and in some fields of study
totally different characteristics may prevail. Moreover, against the background
of the aim to study the properties of statistics that draw on asymptotic statis-
tical theory, it is important to include also low values of the design variables.
The inclusion of values for µρ that can be judged as very high in compari-
son to estimates observed in meta-analyses in any field of psychology is also
intended not only to mirror research practice but to study the behavior of pro-
cedures also under extreme conditions. However, it is not the case that such
high values do not occur in I/O psychology (see Hite, 1987) or social psychol-
ogy (see Schulze & Wittmann, 2003), for example.

To gain an overview of the large number of design variable combinations
under study, it is instructive to review their number. In S1, only one of the
ten universe effect sizes is given and the variance is zero in all cases. These
10 values are combined with all of the k and n values resulting in a total of
10× 7× 6 = 420 meta-analyses to be simulated.

The second situation S2 differs from the first in that two different values for
ρ are given, resulting in a number of non-redundant combinations of (10×9)

2 =
45. The differences between the values range from .10 to a maximum of .90.
Again, these 45 universe value combinations are combined with all of the k
and n values leading to a total of 45× 7× 6 = 1890 meta-analyses.

Finally, the values for µρ of the beta distribution were combined with the
variances of row two in Table 7.1. The full combination of all values unfortu-
nately lead to J-shaped beta distributions in extreme cases. This is illustrated
in Figures A.1 to A.5 in the appendix and can be seen by inspecting the pa-
rameter values p and especially q in Table A.2 in the appendix. For values of p
or q less than one, the beta distribution turns into a J-shape (Johnson, Kotz, &
Balakrishnan, 1995). The utilization of such distribution types would lead to
sampling values from the beta distribution that are predominantly very large
and close to one, with a few extremely low values to attain the prescribed val-
ues for µρ and σ2

ρ . Two reasons lead to the omission of such distributions from
the Monte Carlo design. First, the described problem only applies to very high
values of µρ in combination with high values of σ2

ρ that are very unlikely to
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arise in practice. Second, the utilization of these distributions would presum-
ably have an enormous impact on the results of the study, in particular on the
tests of homogeneity and estimates of heterogeneity variance. They would
lead to biased assessment of the overall performance of estimators due to ex-
treme values that emerge from J-shaped distributions. The following combi-
nations were omitted: µρ = .90 with variances σ2

ρ = .0625, .04, .01, .0225 and
µρ = .80 with variances σ2

ρ = .0625, .04. The omission of the six combina-
tions of µρ and σ2

ρ resulted in 10× 5− 6 = 44 combinations and thus a total of
44× 7× 6 = 1848 meta-analyses in S3.

The sum of the meta-analyses of all situations amounts to a total of 4158.
For all these combinations, the statistics and tests of the several approaches
to meta-analysis are computed to facilitate a comparative evaluation of the
approaches in a wide range of possible situations given by these combinations.
For all of the 4158 combinations, the computations were repeated in 10,000
iterations. Correspondingly, the results to be presented in Chapter 8 are either
the means of certain statistics computed over all iterations or statistics derived
from the iterations, like the standard deviation of the estimators for the mean
effects over 10,000 values. The number of iterations in the present study can be
considered to be relatively large in comparison to other Monte Carlo studies in
the context of meta-analysis. Most previous Monte Carlo studies have chosen
1000 iterations (e.g., Cornwell, 1993; Law, 1995; Sackett et al., 1986; Sánchez-
Meca & Marín-Martínez, 1998a; Spector & Levine, 1987) or 5000 iterations (e.g.,
Harwell, 1997; Sánchez-Meca & Marín-Martínez, 1998b), only a few studies
have used 10,000 iterations (e.g., Alexander et al., 1989; Silver & Dunlap, 1987)
and rarely were more iterations used (100,000 by Field, 2001). The number of
iterations chosen here is therefore regarded as sufficient.

7.5 DRAWING RANDOM CORRELATION COEFFICIENTS

A final important technical aspect of the simulation study will now be dis-
cussed in considerable detail because it is one of the most important steps in
the Monte Carlo study. Up to this point it has been laid out which variables
and values are chosen for the design of the Monte Carlo study. The next task
is to generate random correlation coefficients ri that conform to these prescrip-
tions. For convenience, assume correlations coefficients have to be generated
for a single ρ, that is, S1 is of concern and ρ = ρ1 = . . . = ρk. Note that
the problem to be described is fully equivalent for all other situations and the
results of this sections do not only pertain to S1.

There are k independent studies with a common sample size n. The ob-
served correlation coefficients ri provided by the studies are assumed to be
based on pairs (x1, y1), . . . , (xn, yn) of two variates X and Y having a joint bi-
variate normal distribution. Drawing random correlation coefficients means
that we want to generate a set of k values of ri for a given ρ. The first proce-
dure that comes to mind is to generate n pairs for the two variates X and Y and
compute the sample correlation correlation coefficient. That is, one would use
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the following equations to generate the values for x and y on an observational
level:

x = v×√
ρ + e1 ×

√
1− ρ

y = v×√
ρ + e2 ×

√
1− ρ

(7.1)

where v, e1, and e2 are realizations of corresponding variates that follow a stan-
dard normal distribution and are mutually independent. This procedure has
often been used in Monte Carlo studies to generate correlation coefficients (e.g.
Corey et al., 1998) and it is easy to show that X and Y have correlation ρ when
generated by this procedure.

Unfortunately, this procedure is computationally rather intensive and takes
up a great amount of computation time in a large simulation study. This is the
case because to generate a single correlation ri one has to draw n× 3 times for
v, e1, and e2 from a standard normal distribution and correlate the resulting
values of x and y subsequently. To speed up the whole process of generating
correlation coefficients it would be much more efficient to directly draw corre-
lations from the sampling distribution of the correlation coefficient or approx-
imations thereof without generating pairs of values for X and Y. Several can-
didates for a more efficient approach using this strategy are considered now.
The reader not interested in technical details may skip the following section
and directly go to Section 7.6 without loss of understanding for the subsequent
chapter.

7.5.1 Approximations to the Sampling Distribution of r

Alternatives to the computationally intensive procedure are given by using
a series of analytical results on the distribution of the correlation coefficient.
First, it is well known that when ρ = 0

r
√

df√
1− r2

∼ tdf, (7.2)

where df are the degrees of freedom (df = n− 2) in Equation 7.2. Accordingly,
one could draw values from a central t distribution with df degrees of freedom
and use the transformation

r =

√
t2

t2 + df
(7.3)

that results from solving Equation 7.2 for r to simulate a series of ri values. This
procedure would fulfill the need for a more efficient strategy but the question
arises how r values can be generated in cases where ρ 6= 0.

Ideally, one would draw directly from the sampling distribution of such
correlation coefficients but their distribution is unfortunately mathematically
rather complex (see Section 3.1). Since it cannot be given in closed form, its
usage as a distribution to draw correlations from is obstructed. Nevertheless,
it will be considered as a benchmark to judge the quality of the approximations
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to the distribution of r we will turn to in the following paragraphs. The PDF
of r was already given in Equation 3.1 on page 21.

Three approaches that rely on different distributional approximations to the
PDF as given by Equation 3.1 are considered and discussed in some detail in
the following paragraphs. A comparison and evaluation of these approaches
with respect to the proximity to the PDF of r will follow their presentation.

The Fisher Approximation. A first method to generate r values with a specific
ρ in the underlying population is to randomly draw values from a normal
distribution N (µZ, σ2

Z) with the following parameters

µZ =
1
2

ln
(

1 + ρ

1− ρ

)
= tanh−1 ρ (7.4)

and
σ2

Z =
1

n− 3
. (7.5)

In the next step, the resulting values of z are transformed to sample correlation
coefficients r via

r =
exp(2z)− 1
exp(2z) + 1

= tanh r.

Although refinements of these formulae have been proposed in intensive in-
vestigations of the mathematical properties of the distribution function of r
(Hotelling, 1953; Ruben, 1966), the approximation by using Equations 7.4 and
7.5 is a very popular one (see Chapter 3.1) and might therefore be considered
as a possible and natural procedure for a simulation study.

The Harley Approximation. A second approach is based on the analyses
reported by Harley (1957) that dealt with an approximation of the noncentral
t distribution by the distribution of a transformed correlation coefficient. She
showed that in a population with a given ρ of

ρ =

√(
2τ2

2n− 3 + τ2

)
, (7.6)

the function √
2 df(1− ρ2)

2− ρ2
r√

1− r2
∼ tdf,τ (7.7)

is distributed as noncentral t with noncentrality parameter τ. Using equation
7.6 and solving for τ leads to

τ =

√
(2 df +1) ρ2

2− ρ2 .
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This result can be used in simulation studies to compute τ of the noncentral t
distribution to randomly draw values from. From a rearrangement of Equa-
tion 7.7, the resulting values of t can then be transformed back to r using the
following equation

r =

√√√√ t2

t2 + (2 df +1) df
2 df +1+τ2

,

which is given here in a form remarkably similar to Equation 7.3.

The Samiuddin-Kraemer Approximation. The last approximation to be con-
sidered here is based on the work by Samiuddin (1970) that was later refined
and extended by Kraemer (1973, 1975; Kraemer & Paik, 1979). Due to the elab-
orations mainly presented by Kraemer it will be labeled Kraemer approximation
in what follows. The approximation also draws on the t distribution.

It was shown that
(r− ρ′)

√
df√

(1− r2)(1− ρ′2)
∼ tdf (7.8)

has a central t distribution with df degrees of freedom. In Equation 7.8, ρ′ is
a function of ρ that has to satisfy a series of requirements not repeated here
(see Kraemer, 1973). Although Kraemer (1973) proposed that the median of
the distribution of r is a good approximation to ρ′ and better than ρ at least
for small sample sizes while Mi (1990) was able to show that if ρ is taken as ρ′

the distributional result stated above holds. Accordingly, the possibility for a
simulation study established by this approximation is to draw t values from
a central t distribution with df degrees of freedom and convert the resulting t
values to r. The conversion can be done by solving Equation 7.8 for r, which
leads to

r =
(n− 2) ρ−

(
ρ2 − 1

)
t
√

n− 2 + t2

n− 2− (ρ2 − 1) t2 .

Of course, it is claimed that all the approximations presented here are sat-
isfactory as compared to the sampling distribution of r. The results reported
by the referenced authors seem to support this claim. It is therefore reasonable
to consider these approximations when a Monte Carlo study is conducted, in
which a large amount of r values has to be randomly generated, as is the case
for the present study. It should finally be noted that none of the authors of
the approximations advocated their use for the purpose of conducting Monte
Carlo studies. The utilization of the approximations can consequently be re-
garded as an innovative aspect of their usefulness, but their utility has to be
scrutinized beforehand. We will now turn to an evaluation of the presented
approximations for this purpose.
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7.5.2 Evaluation of the Approximations

Among the most important questions within the framework of an evaluation
are the procedures of evaluation and provision of according criteria. The ap-
proximations presented in the previous subsection will be evaluated by deter-
mining the distribution and distributional properties of the rs they produce.
As a first criterion, a visual inspection of the probability density function of
the r values of the approximations in comparison to the exact density given in
Equation 3.1 will be carried out. Additionally, the expected value and variance
of the distributions will be compared as a second set of criteria, again with
the exact density as a standard for comparisons. The approximations will be
considered as satisfactory if the distributions of the r values generated by the
procedures very closely match those of the values as given by the exact dis-
tribution. To accomplish this type of evaluation, the distributions in question
were determined by numerical methods using MATHEMATICA. For details on
the specific procedures applied, the interested reader is referred to Section B
of the appendix where an annotated MATHEMATICA notebook can be found.
It can be used to understand the genesis of the results reported here and to
reproduce and possibly extend them.

The general logic underlying the computations is as follows. The character-
istic feature of all the approximations is that there is a transformation T of the
correlation coefficient R, denoted as T ◦ R, the distribution of which (PT◦R) can
be approximated by a member of a well-known family of distributions. That
is, the values T ◦ R are conceived as if they were generated by a variate X with
a probability distribution PX belonging to that family. Yet in other words, the
distributions PT◦R and PX — or equivalently the random variables T ◦ R and
X — are equated. For example, in the Fisher approximation the rs are trans-
formed to z values that have an approximate normal distribution as described
above. In the proposed procedures to generate r values the first step is to draw
values from the hypothesized probability distribution of X and convert the re-
sulting values back to r subsequently by applying the transformation formulae
presented in the previous subsection. To be clear, it is thereby assumed that PX
is not only the asymptotic but the exact distribution of T ◦ R. In the case of the
Fisher approximation PX is the normal distribution, whereas for Harley’s and
the Kraemer-Samiuddin approximation it is the central and noncentral t distri-
bution, respectively. The question to be answered by the evaluation is whether
the distribution of the rs, which are generated by the outlined procedure, does
indeed show the same properties as R expected by exact theory.

All transformations T are strictly increasing so that the inverse function ex-
ists. For an example, consider again the Fisher approximation where it is the
inverse Fisher transformation tanh z. That is, for all transformations there is
T(R) = X, and we also have T−1(X) = R. Under these conditions the aim
can be restated as to determine the probability density of R when the density
pT◦R(x) is given and the inverse transformation is applied. To achieve this
aim, we first consider

P(R ≤ r) = P(T−1(X) ≤ r) = P(T ◦ R ≤ T(r)).
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Again, this will be illustrated for the Fisher approximation by

P(R ≤ r) = P(tanh(Z) ≤ r) = P(Z ≤ z).

The probability density distributions can therefore be computed as

P(R ≤ r) = P(T ◦ R ≤ T(r)) =
∫ T(r)

−∞
pT◦R(x)dx =

∫ r

−1
pT◦R (T(y)) T′(y)dy,

where the critical step is a change of variables2 in the equation above. Yet
again, this can be illustrated as an example for the Fisher approximation by

P(R ≤ r) =
∫ z

−∞
ϕ(x)dx =

∫ r

−1
ϕ
(

tanh−1(y)
)

tanh−1′(y)dy

where ϕ(x) is the normal distribution with expected value ζ and variance
(n− 3)−1. The change of variables is extraordinarily useful for the present pur-
pose of inspecting a distribution of a random variable (R) when it is subject to
a transformation, since the result of this procedure is of utmost importance for
the evaluation of such transformations. Applying this procedure to the present
set of transformations allows a comparative inspection of the distribution of R
for different cases. The following Figures 7.1 and 7.2 depict examples of the
density distributions for the transformations of interest in the present context.
In Figure 7.1 the densities are plotted for n = 32 and ρ = .30. As can be seen,
the densities are virtually indistinguishable by inspection in this case. All ap-
proximations coincide with the exact density of R and can therefore count as
very satisfactory. In Figure 7.2 a more extreme case is depicted, also for n = 32
but ρ = .90. Note that this case is of interest for the present study as it is part
of the design. Here, the curves do not all coincide. The density for the Harley
approximation is obviously most “off” from the others. The Fisher and Krae-
mer approximation are virtually identical but do not perfectly match the exact
density of R. Nevertheless, from inspection of the figures they may still count
as very good approximations to the exact density. The point to be noted is that
graphical comparisons between the densities of the approximations in compar-
ison to the standard distribution allow some of the approximations to appear
as quite satisfactory. Of course, up to now only two special cases with a fixed
n and two different ρ values were chosen for comparison and for other con-
stellations of the parameters the approximations may be even better or worse

2As a reminder, a change of variables is given for two continuous functions f and g, where f
is continuous and g is continuously differentiable with derivative g′, by∫ g(b)

g(a)
f =

∫ b

a
( f ◦ g) · g′

∫ g(b)

g(a)
f (u)du =

∫ b

a
f (g(x)) · g′(x)dx.

The two equivalent forms for the change of variables are given here for ease of comparison
with the equations given in the text (see e.g., Spivak, 1967).
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Figure 7.1 Densities for R of the approximations, n = 32, ρ = .30.
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Figure 7.2 Densities for R of the approximations, n = 32, ρ = .90.

than indicated in the figures. The parameter constellation was actually delib-
erately chosen to illustrate a general trend of the value of the approximations.
First, all approximations become worse the higher the ρ that is chosen. Second,
all aproximations are almost perfect in the region about ρ = 0. Third, a point
not illustrated by the figures, all approximations perform better the higher the
value for n that is is chosen, but they are still visually distinguishable from
the exact density for ρ ' .90 when n is not extremely large. In sum, the ap-
proximations perform very well for some constellations of the parameters but
not for all. As will become evident by the following inspection of the numer-
ical properties, that is, the expected values and variances of the distribution,
the visual inspection of such graphs can be quite deceptive insofar as good-
looking approximations may nevertheless not achieve satisfactory values for
distributional properties.
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Table 7.2 Expected Values and Variances for the Approximations and the Exact
Density of R, n = 8 and n = 128, ρ = 0, . . . , .90

Hotelling Fisher Harley Kraemer

n ρ µ σ2 µ σ2 µ σ2 µ σ2

.00 .000 .1429 .000 .1472 .000 .1429 .000 .1429

.10 .093 .1409 .085 .1455 .093 .1409 .086 .1412

.20 .187 .1349 .171 .1403 .186 .1349 .172 .1363

.30 .281 .1250 .259 .1317 .280 .1251 .260 .1281

.40 .376 .1115 .348 .1196 .374 .1116 .349 .11668

.50 .472 .0945 .440 .1040 .469 .0947 .441 .1017

.60 .571 .0747 .536 .0851 .563 .0753 .537 .0835

.70 .672 .0529 .637 .0629 .654 .0547 .638 .0623

.80 .776 .0305 .745 .0386 .741 .0350 .746 .0388

.90 .885 .0105 .864 .0145 .820 .0187 .864 .0151

.00 .000 .0079 .000 .0079 .000 .0079 .000 .0079

.10 .100 .0077 .099 .0077 .100 .0077 .099 .0077

.20 .199 .0073 .198 .0073 .199 .0073 .198 .0073

.30 .299 .0065 .298 .0066 .299 .0065 .298 .0066

.40 .399 .0056 .397 .0056 .397 .0056 .397 .0056128

.50 .499 .0045 .497 .0045 .495 .0045 .497 .0045

.60 .598 .0033 .597 .0033 .589 .0033 .597 .0033

.70 .699 .0021 .697 .0021 .679 .0022 .697 .0021

.80 .799 .0010 .798 .0011 .761 .0013 .798 .0011

.90 .899 .0003 .899 .0003 .834 .0006 .899 .0003
Note. The columns labeled “Hotelling” correspond to the exact density whereas the
other columns are labeled in accordance with the approximations introduced in the
previous Subsection 7.5.1.

Table 7.2 presents a series of expected values and variances of the approxi-
mations and the exact density for comparison. Similar to the visual inspection
of the figure, only a small subset of possible combinations of n and ρ is chosen
for comparison and presented in Table 7.2, but these values suffice to illustrate
the general points to be highlighted3. First, the approximations by Fisher and
Kraemer seem to fare equally well in comparison to Harley’s, which generally
leads to inferior values for higher ρ in terms of differences to the Hotelling
standard. Second, all approximations get worse for higher ρ and better for
larger n. This is what is to be expected from statistical theory, because the dis-
tribution of R is central t at zero and all the approximations are expected to
be almost perfect in this region. Furthermore, the distributional properties of
the approximations hold only asymptotically, so they get better with growing

3With the notebook presented in Appendix B it easy to compute any desired values to extend
the comparisons.



DRAWING RANDOM CORRELATION COEFFICIENTS 113

numbers of n. Lastly, none of the approximations seems to provide satisfacto-
rily similar expected values and variances to the standard, except in the case
of ρ in the region of zero combined with high n. Although the reported differ-
ences may appear quite small in value, they are actually too large for the pur-
pose of generating correlation coefficients by these procedures. To understand
this judgment, focus on the Fisher approximation as an example. This approx-
imation leads to generally smaller expected values in comparison to the exact
density and somewhat larger variances. This means that a simulation study in
which z values are drawn from a normal distribution, these are converted to r
by the inverse Fisher transformation, and estimates of the mean effect size are
based on these r values, may possibly report flawed conclusions for an assess-
ment of the bias. The reasons for a potential flaw lie in the difference between
the expected value of the Fisher approximation and the exact distribution. The
expected value for a situation of n = 64 and ρ = .50 is µ = 0.49701 for the
exact density and µ = 0.49398 for the Fisher approximation. Now suppose
a comparison between the biases of r and Fisher-z is of interest in this situa-
tion. For the exact density, the biases to be anticipated by statistical theory4

are Biasr = −0.002943384 for r and Biasz = 0.003987731 (given in the space
of r) (see Hotelling, 1953, p. 212 for r and p. 216 for z), the well known nega-
tive bias for r and positive bias for z. But the biases are not to be anticipated
when the expected value of the probability distribution is shifted downwards
by the simulation procedure as is the case with the Fisher approximation. This
downward shift will have the effect that the overestimation of Fisher-z will
not be as large as expected by theory and the negative bias of r will emerge
as larger in absolute value than it effectively is when assessed in relation to
the exact density. In short, the positive bias of z is compensated by using the
Fisher approximation in the simulation procedure and incorrect conclusions
with respect to biases may result.

It is therefore concluded that the considered candidates for a simulation
procedure cannot be used because they produce distortions of the sampling
distributions for statistics. This happens to an extent that is of relevance for
Monte Carlo studies. Hence, none of the candidates will be used and the com-
putationally more costly procedure introduced at the beginning of this section
in the Equations 7.1 will be used instead. The results of the evaluation have rel-
evance not only for a decision in this Monte Carlo study, but also for a reevalu-
ation of previous ones. For example, Spector and Levine (1987) have employed
the Fisher approximation to generate r values in a Monte Carlo study on the
susceptibility of the HS-procedure to Type I and II error rates. In light of the
results presented here, at least some doubt is cast on the results and conclusion
of the Monte Carlo study by Spector and Levine and others who have used the
approximations.

4Note that the bias of r given here does not add up with the expected value to ρ exactly. This
occurs because the approximation by Hotelling (1953, p. 212) is only given up to the third term
of an expansion.
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7.6 DETAILS OF PROGRAMMING

A computer program for MS-DOS was designed and programmed in Borland
C++ Version 5.02. The procedure to generate the correlation coefficients fol-
lowed Equations 7.1. Since a very large amount of numbers had to be ran-
domly drawn for these correlations, a random number generator with a very
long period length was of interest. Remarkably, standard random number gen-
erators in common use appear to have serious deficiencies (Hellekalek, 1998).
According to the review of random number generators by Hellekalek (1998),
the Mersenne Twister (TT800) (Matsumoto & Nishimura, 1998) was the only
random number generator with a flawless performance,5 and was therefore
implemented in the program.

To speed up the draws from the standard normal distributions, an array of
two million values was filled from which values were drawn. The array was
randomly refilled 8 times in the course of the whole computations.

7.7 SUMMARY

The current Monte Carlo study is designed for a comparative evaluation of
the approaches to meta-analysis in common use in the social sciences and the
procedures they propose as valuable tools for meta-analysis. To achieve this
aim, the design of the Monte Carlo study includes a wide range of different
values for the universe correlations ρ in the universe of studies (from .00 to .90
in increments of .10), the number of studies to be aggregated (from 4 to 256),
and number of persons in the studies to be aggregated (from 8 to 256). Ad-
ditionally, different situations are implemented in the design that correspond
to the assumptions of the fixed and random effects models in meta-analysis.
The situations were distinguished by the form of the distribution of universe
effect sizes that were classified as discrete and continuous. For the discrete
distributions homogeneous and heterogeneous situations are included where
the heterogeneous situations have two distinct values. In the case of a continu-
ous distribution, six different variances of a beta-distribution were additionally
varied.

As a result, the whole procedure can be thought of as a two-stage sampling
process. In the first step, universe values are drawn from a distribution in
the universe of studies with prespecified properties as described above and in
the second step, observed values are drawn from distributions with properties
that depend on the universe values drawn in step one. For the second step, dif-
ferent forms to generate the observed correlation coefficients were considered
and the possibility to draw correlations directly from approximate distribu-
tions was rejected as unsatisfactory.

5The source code of the Mersenne Twister TT800, as well as reviews of the quality of random
number generators can be found at http://random.mat.sbg.ac.at


