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5
Statistical Approaches to Meta-Analysis

After having outlined the more general characteristics and procedures in the
analysis of effect sizes, the present chapter will provide an overview of more
specific procedures and formulae proposed in the literature. As introduced
in Section 2.2, comprehensive treatments of meta-analysis associated with dif-
ferent author names and at least partially comprising different sets of proce-
dures and formulae are labeled approaches. The approaches of interest in the
present context are widespread predominantly in the social sciences and espe-
cially in the psychological literature. Furthermore, the focus of this chapter is
narrowed down to the statistical details of the approaches. Whereas the mod-
els presented in the previous chapter are also well-known in other areas of
research, there are some distinctive features of the following approaches that
have to be explicated in detail before an empirical evaluation is undertaken.

After considering the presentation of the models, the question arises why
sets of procedures and techniques are subject to a comparative evaluation at all.
Why not always choose the most proper model and corresponding estimators,
considered as optimal from a statistical point of view for a specific research
problem? First, the introduction of meta-analysis as a new statistical tool for
the social sciences has been associated with proponents from the beginning of
its history. This lead to idiosyncrasies of approaches and preferences of au-
thors becoming entrenched in research practice. For example, the correction of
correlation coefficients before their aggregation has become almost mandatory
in the field of I/O psychology, whereas in the field of educational psychology,
these corrections are only considered optional (see also Section 2.2).

Besides historical reasons, properties of the correlation coefficient as an ef-
fect size also require specialized techniques. Transformations of the correlation
coefficient as presented in Section 3.3 represent such specialized techniques
that are not of relevance when a different effect size, like the odds ratio for
example, is given in the studies under investigation.
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In this book, major approaches for correlations as effect sizes in the field of
psychology are evaluated. Further, a series of refinements are introduced for
a more comprehensive evaluation of the available procedures. The following
sections are structured in correspondence with this classification and all nec-
essary formulae for computation are given. This entails some redundancies
in the presentation of formulae but they are nevertheless completely given for
reference and to document the procedures as employed in the Monte Carlo
study. In addition, the approaches will also be presented in the same order
as the meta-analytical steps in the presentation of the FE and RE model, with
estimation first and inference thereafter.

As a final remark with respect to the approaches, the reader may wonder
why there is also one section that provides computational formulae for the
aggregation of d as an effect size when the focus should be on correlations.
These procedures are given because one of the aims of the Monte Carlo study
is also to evaluate the results of procedures that are based on transformed effect
sizes (see Section 3.3). Thus, the common assumption that the transformation
of effect sizes — specifically from r to d — is, in essence, inconsequential for
the meta-analytical results will be tested. To do this, procedures for the ag-
gregation of transformed effect sizes (i.e., d in the present context) have to be
specified. Of course, the prominent set of procedures proposed by Glass et al.
(1981) could have been added as another approach. This was not done in or-
der to keep the number of approaches at a manageable level, keep the focus on
approaches for correlation coefficients as effect sizes1, and to maintain compa-
rability to similar examinations of approaches in the literature (e.g., Johnson,
Mullen, & Salas, 1995). The question remains which procedures should be
used to aggregate the effect sizes di when there are many procedures available.
Of the major approaches under examination, any could have been chosen for
this task. The approach proposed by Hedges and Olkin (1985) presented in the
following section was chosen to provide the procedures for this aggregation.
The reason for this choice was that it seemed the statistically best founded set.
All other major approaches also provide details on the aggregation of d as an
effect size so that the choice may also be considered as somewhat arbitrary.

5.1 HEDGES AND OLKIN

The first approach is most comprehensively explicated in Hedges and Olkin
(1985) and will be labeled HO in what follows. Technical details of the ap-
proach and further procedures proposed by the authors are scattered across
a series of articles that may also be consulted for reference (Hedges, 1982a,
1982b, 1982c, 1983a, 1983b, 1991).

The presentation is divided into two subsections. The first one will give
details on the aggregation of correlation coefficients and the second one on ag-

1The approach by Glass et al. (1981) does not provide procedures specifically designed for a
meta-analysis of correlations.
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gregation procedures for d. It should be noted at the outset that the authors
of this approach do not explicitly advocate the transformation of r to d when
the database only consists of correlation coefficients, as will be the case in the
Monte Carlo study in Part III of this book. However, they do provide transfor-
mation formulae for effect sizes, so that it is possible to apply their procedures
as presented. To distinguish between the r-based and d-based procedures, the
symbol HOr represents the r-based and HOd the d-based variant, respectively.

In addition to the d-based approach there is also one refinement in proce-
dures introduced that goes back to the work of Hotelling (1953). To differenti-
ate HOr from this refinement, the latter will conveniently be denoted by HOT.

5.1.1 Procedures for r as Effect Size

In the HOr approach, the observed correlation coefficients are first transformed
by using the Fisher-z transformation (see also Section 3.1)

zi =
1
2

ln
1 + ri

1− ri

(Hedges & Olkin, 1985, p. 120, Equation 19; p. 227, Equation 4).
Next, the variances of the transformed effect sizes are given by

σ̂2
zi

=
1

ni − 3
(5.1)

(Hedges & Olkin, 1985, p. 227). Note that there is no uncertainty in determin-
ing these variances since ni of every study is given and the parameter estimate
does not influence the weights as is the case in approaches not using the Fisher-
z transformation.

Estimation of Mean Effect Size. The mean effect size estimate in z-space is
computed by using

z =

k
∑

i=1
(ni − 3) zi

k
∑

i=1
(ni − 3)

(Hedges & Olkin, 1985, p. 231, Equation 12). This exactly corresponds to the
general procedure outlined for the FE model, where the reciprocals of the (es-
timated) variances of the estimates are used as weights.

Due to the fact that the aim of estimation presumably is never a mean effect
size in z-space in practice, the estimate is transformed to an r by the inverse
Fisher-z transformation

r =
exp (2z)− 1
exp (2z) + 1

(Hedges & Olkin, 1985, p. 227, Equation 8). This results in the estimate of the
mean effect size in the HOr approach.
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Significance of Mean Effect Size. The next step of testing the mean effect size
begins by determining the standard errors for the mean effect size with

σ̂z =
1√

N − 3k
(5.2)

(Hedges & Olkin, 1985, p. 231). In Equation 5.2 and in what follows, N denotes
the total number of participants in all studies, that is, N = ∑k

i=1 ni.
Using the standard error, one can test the null hypothesis of zero mean uni-

verse effect sizes by using
g = z

√
N − 3k (5.3)

(Hedges & Olkin, 1985, p. 231), where g is ordinarily assumed to approxi-
mately follow a standard normal distribution.2

Approximate lower and upper limits of the confidence interval are con-
structed by

zL = z− gασ̂z

zU = z + gασ̂z
(5.4)

and are customarily transformed by the inverse Fisher-z transformation when
reporting results.

Homogeneity Test Q. The test statistic is provided — as described in the
context of the FE model — with Fisher-z transformed effect sizes as

Q =
k

∑
i=1

(ni − 3) (zi − z)2 (5.5)

(Hedges & Olkin, 1985, p. 235, Equation 16). It is noted that if ρ1 = . . . = ρk
and N → ∞, Q asymptotically follows a χ2

k−1-distribution.

Hotelling’s (1953) Adjustment. In his seminal paper Hotelling (1953) pro-
posed several improvements of Fisher-z with the aim to correct the bias in Z
and also to stabilize its variance (see also Section 3.1). Of these, the follow-
ing correction proposed to be applied to an average z seems to be especially
attractive

zHot = z− tanh z
(2n− 9/2)

(5.6)

(Hotelling, 1953, p. 219). In Equation 5.6, n denotes a constant sample size
across studies. In practical meta-analyses this will rarely be the case, so that
the mean of the sample sizes across studies might be used instead.

One reason why the correction given in Equation 5.6 is used instead of oth-
ers proposed by Hotelling is the fact that it was constructed to be applied
to an average z and therefore perfectly fits into procedures of meta-analysis.

2To reiterate, the somewhat unusual symbol g is used throughout the text to avoid confusion
of standard normal deviates with values of Fisher-z.
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Another reason is that with this correction, a reported mean z (or transforms
thereof) can be corrected to yield an improved estimate of the mean effect size.
An evaluation of this procedure is therefore of relevance for the conduct of
meta-analyses as well as their reception. Previous results of a Monte Carlo
study conducted by Donner and Rosner (1980) who used the HOT approach
as outlined here and compared its performance to HOr, a maximum likelihood
estimator and an estimator similar to the one proposed by Hunter and Schmidt
(see Section 5.3), suggest a good performance of HOT. They recommended the
use of HOT (and the Hunter and Schmidt procedures) for the estimation of µρ

in S1 in comparison to the other approaches they have evaluated, especially
when n is small. For a Monte Carlo study on a different modification of the
Fisher-z transformation proposed by Hotelling (1953, p. 223), see Paul (1988)
(see also Section 3.1).

A significance test can be performed by using the standard error formula
given in Equation 5.2 and applying the procedures outlined in Equations 5.3
and 5.4 for the significance test and the construction of confidence limits, re-
spectively.

5.1.2 Procedures for d as Effect Size

As was outlined in Section 3.3, correlation coefficients may also be transformed
to d by the following transformation

di =
2ri√(
1− r2

i
) .

Of course, there would be no need to apply this transformation if all effect
sizes were given as correlation coefficients because procedures to aggregate
this type of effect size have just been outlined. In practice, however, it is
scarcely the case that all retrieved studies are of the same design and some
may be experimental studies, so that only d may be available for some studies.
Conventionally, effect sizes are then converted to r or d, depending on conve-
nience. The result is a database that is a mix of converted and non-converted
effect sizes r or d. Though not explicitly stated, the usual assumption is that
the conversion does not have any influence on the results of the meta-analysis.
If this was true, then the application of the following procedures to d values
that result from a conversion from r should lead to the same results as the ap-
plication of the procedures outlined in the previous subsection to the original
correlation coefficients r.

Finally, it should be noted that the conversion formula given in the equa-
tion above is not the form of effect size that Hedges and Olkin (1985) advo-
cated. Instead, they proposed an unbiased estimator of δ that was already
introduced in Section 3.2 and that is considered preferable from a statistical
point of view. The conversion formula that represents the d statistic according
to Cohen (1988) given here was nevertheless used because of its much more
widespread use in the literature and therefore relevance for actual research.
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Estimation of Mean Effect Size. The first step is estimation of the estimate’s
variance. This variance was already given on page 29 in Equations 3.9 and 3.10
for equal n in all studies, respectively.

The reciprocals of these variance estimates can be taken as weights to yield
a mean effect size estimate by

d =

k
∑

i=1
di/σ̂2

di

k
∑

i=1
1/σ̂2

di

(Hedges & Olkin, 1985, p. 111, Equation 6).

Significance of Mean Effect Size. The null hypothesis test follows the general
logic outlined for the FE model and can be accomplished by using

g =
d
σ̂d

as the test statistic with σ̂d given by

σ̂d =

(
k

∑
i=1

1
σ̂2

di

)− 1
2

(Hedges & Olkin, 1985, p. 112, Equation 9).
Approximate lower and upper limits of the confidence interval are con-

structed by the following equations

dL = d− gασ̂d

dU = d + gασ̂d

The results for the confidence interval limits are transformed to r by Equation
3.11 when results are reported in Chapter 8 to make them comparable to the
estimated limits of the other approaches.

Homogeneity Test Q. As for the HOr approach, it is also possible to conduct
a homogeneity test by using the Q-statistic

Q =
k

∑
i=1

(
di − d

)2

σ̂2
di

(Hedges & Olkin, 1985, p. 123, Equation 25). Again, Q is supposed to asymp-
totically follow a χ2

k−1-distribution when the null hypothesis is true. It will be
particularly interesting to evaluate the performance of this test in comparison
to the HOr approach in the Monte Carlo study to be presented. Differences
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between these tests will reflect potential problems concerning the conversion
of effect sizes.

5.2 ROSENTHAL AND RUBIN

The methods proposed by Rosenthal and Rubin (RR) are described in Rosen-
thal (1978, 1991, 1993) as well as Rosenthal and Rubin (1979, 1982). As will
become evident from the following presentation, the procedures are very sim-
ilar or almost identical to those given for HOr.

Estimation of Mean Effect Size. In the RR approach, correlations are also
transformed via Fisher-z prior to further processing

zi =
1
2

ln
1 + ri

1− ri

(Rosenthal, 1991, p. 21, Equation 2.22).
For aggregation, it is not entirely clear what form of weights should be used.

With reference to Snedecor and Cochran (1967), Rosenthal (1993, p. 534) pro-
poses for the weighted aggregation of Fisher-z values to use the degrees of
freedom as weights “or any other desired weight”. For the current case this
would be ni − 3, so that the mean effect size estimate for RR would be identical
to the one presented for HOr. As an alternative to the degrees of freedom, the
sample sizes ni were chosen as weights but it is noted that these weights are
not explicitly recommended by Rosenthal and Rubin. The following computa-
tional procedure is given for the mean effect size estimate

z =

k
∑

i=1
nizi

k
∑

i=1
ni

(Rosenthal, 1991, p. 74, Equation 4.16; p. 87, Equation 4.32 and 4.33).
In the same way as for the HOr approach, the resulting estimates have to be

transformed back to r by

r =
exp (2z)− 1
exp (2z) + 1

.

Significance of Mean Effect Size. For significance testing of the mean effect
size, the following statistic is proposed

gi = ri
√

ni

(Rosenthal, 1991, p. 19, Equation 2.18; see also p. 29). That is, correlations are
transformed to standard normal deviates which are aggregated subsequently
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by applying the weights as proposed in the context of estimating the mean
effect size

g =

k
∑

i=1
nigi√
k
∑

i=1
n2

i

(Rosenthal, 1991, p. 86, Equation 4.31). Recall again that the authors originally
proposed to use the degrees of freedom as weights (i.e., ni − 3).

After having computed the standard normal deviates, approximate lower
and upper limits of the confidence interval are constructed by

zL = z− gασ̂z

zU = z + gασ̂z

Again, such confidence interval limits are transformed by the inverse Fisher-z
transformation when results are reported.

Homogeneity Test Q. The homogeneity test Q is the same as proposed in the
HOr approach and given by

Q =
k

∑
i=1

(ni − 3) (zi − z)2

(Rosenthal, 1991, p. 74, Equation 4.15).

5.3 HUNTER AND SCHMIDT

In contrast to the RR approach, the procedures introduced by Hunter and
Schmidt (1990) as well as Hunter et al. (1982) offer a series of new features
in comparison to HOr. The approach, labeled HS in what follows, is detailed
in a very large series of articles of which only a few are referenced (e.g., Burke,
1984; Hunter, Schmidt, & Pearlman, 1982; Schmidt & Hunter, 1977; Schmidt,
Hunter, & Pearlman, 1982; Schmidt, Hunter, Pearlman, & Hirsh, 1985). There
have also been a series of refinements that are not dealt with in the present
context, so the reader is referred to the relevant literature (e.g., Callender & Os-
burn, 1980; Callender, Osburn, Greener, & Ashworth, 1982; Raju, Burke, Nor-
mand, & Langlois, 1991; Schmidt et al., 1993) and also to a recent assessment
of the impact of the methods on research and practice in personnel selection
(Murphy, 2000), as well as a discussion of the quality of these so-called validity
generalization methods from various perspectives (see Murphy, 2003).

The latter two references signify the close connection of this approach with
the field of I/O psychology and personnel selection in particular. Though not
limited to this field, the main developments and applications have been done
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in the field of personnel selection. The approach is also often called validity
generalization which expresses its main characteristics.

First, the preoccupation of applications using the approach with correlation
coefficients that represent (predictive) validities of personnel selection meth-
ods is indicated. Hence, most of the procedures and their refinements pro-
posed are concerned with correlation coefficients as an effect size measure, but
procedures for coefficients from the d family have also been proposed (see, e.g.,
Hunter & Schmidt, 1990). The approach is therefore not limited to correlation
coefficients.

Second, one major question in personnel selection is whether validities can
be generalized. The designation of generalizable is done in a binary fashion, that
is, either test validity generalizes or not. Hence, the term validity generalization
denotes a classification of tests in two groups. This seems to be a quite specific
use of the word “generalization” in comparison to more popular ones (see,
e.g., Shadish et al., 2002) and might be understood only by considering the
legal circumstances in the United States of America (for a review, see Landy,
2003). A common misinterpretation of the term is that it is used to characterize
the variability in (predictive) validity coefficients for a certain test across sit-
uations. If the validity coefficients are not stable across situations, one might
easily use a phrase like “test validity does not generalizes (across situations)”
to describe this fact. However, in the HS terminology, a different term is used
in this case, namely situational specificity. It is considered as quite an important
question for practice whether a personnel selection method has to be validated
in every new situation of application on the one hand. On the other hand, va-
lidities might have been demonstrated to be stable across a series of situations
so that it can reasonably be assumed that they hold in a new situation without
the need for collecting new evidence. The former case describes a test which is
situationally specific, and in the latter case validities are not specific for situa-
tions.

Whereas the proponents of this approach have always strongly argued in
favor of generalizability and situational non-specificity, and also presented ev-
idence to support these claims in the field of personnel selection (e.g., Schmidt
& Hunter, 1998), the approach and its procedures has also been severely criti-
cized (e.g., James et al., 1986; James, Demaree, Mulaik, & Ladd, 1992). Because
such issues are not of utmost importance for the statistical quality of the ap-
proach, the reader is referred to the book edited by Murphy (2003) for a com-
prehensive overview.

One further important and distinctive feature of the HS approach is the au-
thors’ strong recommendation to correct correlations for various so-called ar-
tifacts before they are aggregated (for the pros and cons of applying the cor-
rections, see, e.g., Schmidt & Hunter, 1999b). A series of research scenarios to
illustrate the relevance of correcting artifacts is given by Schmidt and Hunter
(1996). It might be noted, however, that proponents of other approaches have
provided similar corrections of effect sizes (e.g., Hedges & Olkin, 1985), though
not as elaborate as has been developed within the HS approach. Nevertheless,
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this feature of the HS approach is not of relevance in the Monte Carlo study of
Part III, thus only the basic idea is given here.

One of the potential so-called artifacts which influence the correlation be-
tween two variates X and Y is measurement error, another potential artifact is
restriction of range3. If both artifacts apply in a certain situation, the correla-
tion in the population is attenuated. Let ρa be the attenuated correlation and ρ
its unattenuated counterpart. Then

ρa = ρ× A−1

describes the relationship between these two, where A denotes a so-called ar-
tifact multiplier. The artifact multiplier is considered as a constant which results
from one or multiple artifacts operating in a specific situation. For example, if
one of the correlated variables has a reliability of rtt = .81, then — drawing
on results from classical test theory (Lord & Novick, 1968, p. 69) — the artifact
multiplier for the correction of unreliability in the predictor is A =

√
rtt = .90.

Thus, ρa is attenuated by a factor of .90 in this example.
Meta-analysis based on artifact corrected correlations are certainly useful

— at least as an addendum to analyses based on uncorrected correlations — to
shed light on “what effect size we might expect to find in the best of all possible
worlds” (Rosenthal, 1994, p. 240). What the implications and interpretations of
meta-analytic results including artifact corrections are, is, however, debatable.
In the literature on validity generalization it has been repeatedly argued that
analyses based on such a corrected database can lead to estimates of the re-
lationship between constructs (e.g., Schmidt & Hunter, 1999b). Unfortunately,
this is not the case as Boorsbom and Mellenbergh (2002) have convincingly
argued.

In sum, artifact corrections are an important feature of a “full-blown” HS
approach but they are neither necessary to evaluate the core of the HS proce-
dures as outlined in the following paragraphs nor do they unequivocally lead
to refined interpretations of meta-analytic results as proposed by Hunter and
Schmidt. For more details on corrections for artifacts, the reader is again re-
ferred to the pertinent literature (Hunter & Schmidt, 1990, 1994a) and also pre-
vious Monte Carlo studies that incorporated and partly also evaluated these
corrections (e.g., Aguinis & Whitehead, 1997; Callender et al., 1982; Cornwell
& Ladd, 1993; Duan & Dunlap, 1997; Law, Schmidt, & Hunter, 1994; Raju,
Anselmi, Goodman, & Thomas, 1998).

After these preliminaries, the focus of the following outline of the HS ap-
proach will be on the proposed statistical procedures for aggregating the avail-
able research database. In the HS terminology, this would be called bare-bones
meta-analysis.

3For a more complete list of potential artifacts, see Hunter and Schmidt (1990).



HUNTER AND SCHMIDT 65

Estimation of Mean Effect Size. The aggregation of correlation coefficients
in the HS approach is done by applying

r =

k
∑

i=1
niri

k
∑

i=1
ni

(Hunter & Schmidt, 1990, p. 100). It can be seen by inspecting this equation that
in contrast to the previous approaches HOr and RR, the correlation coefficients
are not transformed before the coefficients are aggregated. A negative bias is
therefore expected in contrast to the (uncorrected) Fisher-z based approaches
which exhibit a positive bias (see Section 3.1). Furthermore, the coefficients are
weighted by ni and not by the optimal weights represented by the reciprocals
of the squared standard errors of the estimates. From a statistical point of
view, this leads to larger standard errors of the mean effect size estimate and
therefore less power in testing.

Significance of Mean Effect Size. The estimate for the standard error of the
mean effect size is a hotly debated issue in the HS approach (cf. Callender
& Osburn, 1988; Duan & Dunlap, 1997; Hunter & Schmidt, 1994b; Osburn &
Callender, 1992) and has also lead to some confusion when evaluating the HS
approach (Johnson, Mullen, & Salas, 1995; Schmidt & Hunter, 1999a). Indeed,
confusion may stem from the various forms of computational formulae that
have been proposed in the HS approach. This issue is taken up by evaluat-
ing the four most prominent versions for the standard error presented in the
following formulae.

The formula recommended for estimation of the sampling variance of the
mean effect size estimate by (Schmidt et al., 1988; see also Osburn & Callender,
1992; Whitener, 1990) is

σ̂2
r1 =

(
1− r2)2

(N − k)
(5.7)

(Osburn & Callender, 1992, p. 115, Equation 3). The index 1 in σ̂2
r1 signifies

that it is the first version presented here. When this version of the sampling
variance is used in what follows, it will be labeled HS1. This version is sup-
posed to yield the best results when a homogeneous situation like S1 is given
(Osburn & Callender, 1992).

The second version HS2 is given by

σ̂2
r2 =

k
∑

i=1

(
1− r2

i
)2 / (ni − 1)

k2 (5.8)

(Osburn & Callender, 1992, p. 116, Equation 4). Except for very small and
divergent sample sizes, HS1 and HS2 are expected to yield similar results (Os-
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burn & Callender, 1992). The terms summed in the numerator of equation 5.8
are essentially the estimated variances of the individual correlations. These
estimates in the numerator have attracted considerable attention in the litera-
ture on validity generalization (e.g., Callender & Osburn, 1988; Fuller & Hes-
ter, 1999; Hunter & Schmidt, 1994b; Osburn & Callender, 1992) and it has been
shown that they depend on several characteristics of the research situation like
range restriction, for example (Aguinis & Whitehead, 1997), for which it may
also be corrected (e.g., Duan & Dunlap, 1997).

The third version for the sampling variance HS3 is given by

σ̂2
r3 =

1
k


[

k
∑

i=1
ni (ri − r̄)2

]
k
∑

i=1
ni

 (5.9)

(Osburn & Callender, 1992, p. 116, Equation 5; see also Hunter & Schmidt,
1990, p. 100). This version of the sampling variance is supposed to “hold” for
the heterogeneous case and should also perform well for the homogeneous
case (Osburn & Callender, 1992, p. 116).

The fourth and last form HS4 proposed to estimate the sampling variance is
given by

σ̂2
r4 =

(
1− r2)2

(N − k)
+

1
k


[

k
∑

i=1
ni (ri − r̄)2

]
k
∑

i=1
ni

−

k
∑

i=1

(
1− r2

i
)2 / (ni − 1)

k2

= σ̂2
r1 + σ̂2

r3 − σ̂2
r2

(Osburn & Callender, 1992, p. 116, Equation 7). It is explicitly recommended
for the heterogeneous case (Whitener, 1990).

In principle, each of these formulae discussed in the cited literature can be
used for tests and to construct confidence intervals. In the Monte Carlo study
presented in Part III all four versions will be evaluated with respect to their
performance in the various situations described in Section 4.5 (for an evalua-
tion with real data, see Fuller & Hester, 1999).

The formula to compute a standard normal deviate to test the mean effect
size estimates is given for all versions by

g =
r
σ̂r

.

As in the previous approaches, the approximate lower and upper limits of
a confidence interval are constructed by

rL = r− gασ̂r

rU = r + gασ̂r
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(Hunter & Schmidt, 1990, p. 121). Both for the test as well as for the construc-
tion of the confidence interval σ̂r stands for one of the four versions of the
sampling variance. Although it is well-known that the correlation coefficient
is not normally distributed unless n is very large (see Section 3.1), the tests may
nevertheless perform as suggested by the formulae, which is due to the central
limit theorem. In Chapter 8 the corresponding results on the performance of
the four versions will be reported.

Homogeneity Test Q. A homogeneity test is conducted in the HS approach
by using

Q =

k
∑

i=1
(ni − 1) (ri − r)2

(
1− r2)2

(Hunter & Schmidt, 1990, p. 111). Though not labeled as such in the cited
source, in essence, the above equation enables a Q-test as included in the other
approaches. The tendency of the proponents of the HS approach to deny situ-
ational specificity is expressed by their suggested interpretation of the test re-
sults. They state that “if the chi square is not significant, this is strong evidence
that there is no true variation across studies, but if it is significant, the varia-
tion may still be negligible in magnitude” (Hunter & Schmidt, 1990, p. 112).
Thus, the result of the test is taken as informative when in favor of “no true
variation”, that is, situational specificity, and devalued when indicating het-
erogeneity.

Estimation of Heterogeneity Variance. The estimation of heterogeneity vari-
ance only makes sense within the framework of a random effects model, hence
it might be considered as obvious that the HS approach assumes a RE model.
However, the procedures outlined above suggest the HS approach to assume a
FE model because estimated heterogeneity variance is not incorporated in es-
timation and tests. Thus, a somewhat ambiguous case is given here, as is also
evidenced by an inconsistent classification of the HS approach with respect to
the FE-RE model distinction in the literature (cf. Erez et al., 1996; Field, 2001;
Hedges & Olkin, 1985). The ambiguity may result for several reasons. First,
the procedures outlined do not fit clearly in one of the model schemes intro-
duced in Chapter 4. Second, the assumption of differences in universe effect
sizes and therefore nonzero σ2

ρ is an integral part of the HS approach (Hunter
& Schmidt, 1990). At the same time the authors of the approach provide proce-
dures and many arguments to reduce observed variability in effect sizes. They
do this up to a point where they conclude that universe variance is negligible
and generalization of effects (across situations) is therefore possible. Addi-
tionally, they have stated that “. . . applications of our methods have usually
used the fixed effects model described in Hedges and Olkin (1985)” (Hunter &
Schmidt, 1990, p. 405) on the one hand, and also “The methods described in
Hunter et al. (1982), Hunter and Schmidt (1990) [. . . ] are RE models” (Hunter
& Schmidt, 2000, p. 275) on the other hand. Such statements have certainly
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contributed to the ambiguity. As a result, it is not entirely clear how the HS
approach is to be classified with respect to models in meta-analysis because
it is a “hybrid” type in procedures. By taking the answer to the question of
whether population correlations are considered as random variables in an ap-
proach as an anchor to make the classification, the HS approach qualifies as an
RE approach. Thus, it does make sense to estimate heterogeneity variance.

The procedure to estimate heterogeneity variance σ2
ρ as proposed in the HS

approach is drawing on simply taking the following difference between vari-
ance estimators

σ̂2
ρ = σ̂2

r − σ̂2
e (5.10)

(Hunter & Schmidt, 1990, p. 106), where σ̂2
r is used to estimate the variance of

r and σ̂2
e denotes an estimator for the sampling error variance. The reasoning

to arrive at this relationship includes the assumptions that r is an unbiased
(and consistent) estimator of ρ, and that an error component e and ρ in the
relationship r = ρ + e are independent.4 None of these assumptions is correct
in a strict sense. Nevertheless, violations of the assumptions are ordinarily not
considered to be reasons for concern in practical applications of meta-analysis
(see, e.g., Hedges, 1988).

A little rearrangement of Equation 5.10 shows that the variance of r is de-
composed into two parts. One is the heterogeneity variance σ2

ρ and the other
is the sampling error variance σ2

e , where estimators are represented in Equa-
tion 5.10. Estimation of heterogeneity variance is done by computation of the
following terms

S2
r =

1
N

k

∑
i=1

ni (ri − r̄)2

and

σ̂2
e1 =

(
1− r2)2 k

N
,

where the observed variance of correlations S2
r is used as an estimator for the

variance of r. Again, there have been several estimators proposed for σ2
e in

the literature, so that σ̂2
e1 is indexed by 1 to signify that this is a first estima-

tor of σ2
e . According to Hunter and Schmidt (1990, p. 107), this represents an

“almost perfect first approximation”. Note that this is the formula used by
Johnson, Mullen, and Salas (1995), who conducted one of the first comparison
between approaches. They used this estimator in the context of significance
testing when conducting their comparative evaluation of the HOr, RR, and
HS approaches. Of course, it is the wrong estimator of the variance of r as it
estimates the expected variance in observed effect sizes due to sampling er-
ror. If k had been placed in the denominator as in Equation 5.7, it would have

4Note the close similarity of this basic equation to those in HLM models, which shows again
that many standard meta-analytic models can be considered as special cases of the more gen-
eral HLM.
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been an appropriate estimator of σ2
r in the HS approach. Thus, the resulting

estimated variances were much too large in the Johnson, Mullen, and Salas
study. The negative results reported by Johnson, Mullen, and Salas (1995) for
the HS approach and the corresponding conclusions are therefore useless (see
also Schmidt & Hunter, 1999a).

A second estimator is given as

σ̂2
e2 =

(
1− r2)2

(N/k)− 1
.

According to Hunter and Schmidt (1990, p. 108; see also Hunter & Schmidt,
1994b, p. 171) this is supposed to be “an even better estimate of the sampling
error variance”, that is, for the estimation of σ2

e . Hence, only the second es-
timate was actually used in the Monte Carlo study presented in Part III. For
a previous Monte Carlo study on the robustness, bias, and stability of σ2

ρ , see
Oswald and Johnson (1998) who report a negative bias of the estimators pre-
sented here under various distributional conditions.

There have been presented further estimators within the framework of the
HS approach that claim to be applicable also for databases with dependent
correlations and to correct for a potential underestimation in the methods pre-
sented above. However, they are not presented here (see Martinussen & Bjørn-
stad, 1999).

Equation 5.10 can also be regarded as the basic equation of the HS approach
since many arguments pertaining to developments of the model rest on this
equation. As with many procedures in the HS approach, Equation 5.10 has
stimulated much criticism in the literature but arguments will not be repeated
here. The interested reader is referred to the pertinent literature (e.g., Osburn
& Callender, 1990; Thomas, 1989a, 1990a).

75%-Rule. A procedure unique to the HS approach is the so-called 75%-rule
originally proposed by Schmidt and Hunter (1977). The reasoning behind this
rule is as follows. Recall that the development of the HS approach was done
with validity coefficients as the main effect size of interest and personnel se-
lection as the most important field of application in mind. Validity coefficients
are supposed to be influenced by a series of mainly methodological factors of
which many can in principle be corrected for (see Hunter & Schmidt, 1994a).
However, in most applications of meta-analysis all the information necessary
to correct for the artifactual factors is not available so that variance in observed
effect sizes due to uncorrected artifactual influences is always presumed to re-
main. The component supposed to account for the largest amount of observed
variance (S2

r ) is sampling error. If observed variance is larger than expected by
sampling error, then there may be variance in effect sizes left to be explained
(i.e., σ2

ρ 6= 0). This would represent a challenge to the hypothesis of validity
coefficients not being specific to situations, where generalization across situa-
tions is a desirable state of affairs for most researchers. Consider in this context
the following fraction
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x =
σ̂2

e2
σ̂2

r3k
.

An estimator of the sampling error variance in observed effect sizes is given
in the numerator and the observed variance in the denominator (S2

r = σ̂2
r3k).

Clearly, if there is no artifactual variance in the observed effect sizes left and no
explanatory variables exist, observed or unobserved, to explain variability in
effect sizes, then this fraction should lead to a value of one because observed
variance is totally accounted for by sampling error. As already mentioned, not
all artifactual influences can be corrected for, so the following rule of thumb
has been proposed

• Homogeneity, if x ≥ 0.75

• Heterogeneity, if x < 0.75

(see e.g., Hunter & Schmidt, 1990, p. 68). That is, effect sizes are considered to
be homogeneous, if sampling error accounts for at least 75% of the observed
variance in effect sizes, hence the name 75%-rule.

As examples for previous Monte Carlo studies on this rule, consider Spector
and Levine (1987) who found that with small k the ratio as given above is bi-
ased (i.e., larger than 1) in homogeneous situations. The ratio quickly increases
as the number of k decreases, irrespective of n. In a critique of this article, Cal-
lender and Osburn (1988) showed that this result was an artifact stemming
from the extremely skewed distribution of the ratio so that the expected value
of the distribution of ratios, on which Spector and Levine focused, has an ex-
pected value larger than 1 although the individual comparison of estimated
error variance and observed variance resulted in no bias.

Like the homogeneity test based on the Q-statistic, the 75%-rule is also taken
as indicant in the HS approach of whether there are unsuspected moderators
(i.e., explanatory variables) (Hunter & Schmidt, 1990, p. 440). A Monte Carlo
investigation on the comparative evaluation of these tests for the detection of
heterogeneity will be presented in Part III of this book (see also Cornwell &
Ladd, 1993; Koslowsky & Sagie, 1993; Sackett, Harris, & Orr, 1986; Sánchez-
Meca & Marín-Martínez, 1997). For a critical appraisal of the rationale of the
75%-rule, the reader is referred to James et al. (1986).

As an addition to the 75%-rule, there has also been proposed a 90%-rule
with the same rationale as outlined above, but with a cut-off value of .90 for
x that is supposed to be more suitable for Monte Carlo studies in which no
artifactual variance exists (Sackett et al., 1986). This rule is also considered in
the results to be reported in Chapter 8.

5.4 REFINED APPROACHES

Up to this point, the three main approaches to meta-analysis in the field of
psychology have been presented. In the present section, two further sets of
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procedures will be introduced, one approach for RE models and another that
is suitable both in the FE as well as RE model.

5.4.1 DerSimonian-Laird

The most prominent RE approach in psychology draws on the derivations as
given by DerSimonian and Laird (1983, 1986) and will be labeled DSL in the
present context. Although it is almost identical with the procedures outlined
in Section 4.2, computational procedures are given in this section for complete-
ness and reference.

Estimation of Heterogeneity Variance. The heterogeneity variance is pre-
sented first for this approach. This is due to the fact that it is used in the estima-
tor of the mean effect size and significance testing, both of which are presented
subsequently. Note that the Fisher-z transformation is used in this approach,
so that the variance σ2

ζ is of interest, that is, the variance of the universe pa-
rameters in z-space. The heterogeneity variance is estimated for correlations
as effect size data by the moment estimator

σ̂2
ζ =

Q− (k− 1)
a

,

where

a =
k

∑
i=1

wi −
[

k

∑
i=1

w2
i

/
k

∑
i=1

wi

]
.

This estimator is unbiased by construction. Ordinarily, σ̂2
ζ+ = max{0, σ̂2

ζ } is
used in applications because σ̂2

ζ may be negative. σ̂2
ζ+ can be called a truncated

estimator which is no longer unbiased (see also Böhning et al., 2002). There
have been published several tests of the quality of this estimator and also al-
ternative estimators have been proposed. They will not be dealt with here and
the reader is therefore referred to the relevant literature (e.g., Böhning, 2000;
Biggerstaff & Tweedie, 1997; Friedman, 2000; Malzahn, 2003; Malzahn, Böhn-
ing, & Holling, 2000).

Estimation of Mean Effect Size. The mean effect size is estimated in the DSL
approach by a weighted estimator as follows

z =

k
∑

i=1
w∗

i zi

k
∑

i=1
w∗

i

,

where

w∗
i =

(
1

ni − 3
+ σ̂2

ζ

)−1

.
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Estimation of the mean effect size follows the procedures as outlined within
the general framework of the RE model in Section 4.2. As was shown, the
procedures of the RE and FE model differ mainly with respect to the weight
used in computations. For the present case, note that there is a special case
for which the mean effect size as given above for the DSL approach would
be identical to the one resulting from the application of FE model procedures
as specified for the HOr approach. This would be the case if the number of
persons per study were constant across studies because both parts of the sum
to compute the weights (i.e., (ni − 3)−1 and σ̂2

ζ ) are the same for all studies
to be aggregated. In other words, in situations of equal n for all studies the
estimate of the mean effect size of DSL will not differ from HOr. This is due to
the fact that the variances of the Fisher-z transformed estimators only depend
on n. When n is equal for all studies, the weights do not differ. However,
when n is different for the studies under investigation the weights will mostly
differ between HOr and DSL estimators and different estimates may result
in practical applications. This should be borne in mind since the design of
the Monte Carlo study in Part III will be characterized by a constant n for all
studies.

Significance of Mean Effect Size. Significance tests are performed in a usual
form by using the test statistic

g =
z
σ̂z

with

σ̂z =

√√√√√ 1
k
∑

i=1
w∗

i

,

so that g can be compared with the critical value from the standard normal
distribution for a desired level α.

Approximate lower and upper limits of the confidence interval are con-
structed by

zL = z− gασ̂z

zU = z + gασ̂z .

Again, the confidence limits are customarily transformed into r-space subse-
quently by the inverse Fisher-z transformation.

5.4.2 Olkin and Pratt

The last approaches to be presented are based on an early publication by Olkin
and Pratt (1958) on the unbiased estimation of the correlation coefficient (see
also Section 3.1), which was applied to the problem posed in meta-analysis by
Hedges (1988, 1989; see also Hedges & Olkin, 1985).
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Estimation of Mean Effect Size. The estimation of the mean effect size draws
on the UMVU estimator G proposed by Olkin and Pratt (1958) (already given
in Equation 3.5 on page 26). The following formula repeats the approximation
of G also given in Section 3.1.

Gi = ri

(
1 +

1− r2
i

2 (ni − 1− 3)

)
.

As a first version of an estimator for the mean effect size, consider

G =

k
∑

i=1
niGi

k
∑

i=1
ni

.

The estimator and further computational procedures using this estimator will
be labeled as OP approach.

A second version of the estimator is established in analogy to the procedures
in the FE model. To compute the weights for aggregation according to the FE
model the variance of this estimator is needed. The variance of G is given
by Equation 3.7 on page 27. Defining the weights wi(FE) as usual in the FE
approach as σ̂−2

G , the weighted estimator is given by

GFE =

k
∑

i=1
wi(FE)Gi

k
∑

i=1
wi(FE)

.

Since the weights are constructed as is common in the FE model, this will
be labeled the OP-FE approach. Recall that in contrast to z-based approaches
and HS, the variance strongly changes across values of ρ. This may have a
profound influence on the results when applying this approach. Especially
when n is small and estimates thus vary strongly, biased results may emerge.
This is due to the facts that, first, the variances are smaller for larger absolute
values of ρ (see Figure 3.4) and, second, the (strongly varying) ri are plugged
into Equation 3.7 to obtain estimates of the variance of G. Hence, in applying
this procedure high correlations emerging by chance will receive a high weight
and an upward bias may result in mean effect size estimation.

A third estimator that draws on the general procedures for the RE model is
presented next. It uses weights that incorporate an estimate of heterogeneity
variance that is given in the last paragraph for this approach. The weights
in the random effects version are designated as wi(RE) and are given by (σ̂2

ρ +
σ̂2

G)−1. They are used to estimate GRE as follows
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GRE =

k
∑

i=1
wi(RE)Gi

k
∑

i=1
wi(RE)

.

This estimator as well as related computational procedures employing it will
be labeled the OP-RE approach.

Significance of Mean Effect Size. The test for the OP approach draws on
the fact that G has the same asymptotic distribution as r (Olkin & Pratt, 1958;
Hedges & Olkin, 1985). As a result, approximately the same standard error is
assumed which is estimated by

σ̂G =
1− G2

√
N − k

. (5.11)

The authors also state that G has larger variance than r so that the proposed
estimator can be considered to be only an approximation. Interestingly, this
approximation has already been used in a Monte Carlo study on combined
estimators for the universe correlation by Viana (1982).

For the OP-FE approach, the standard error is computed by

σ̂GFE
=

(
k

∑
i=1

wi(FE)

)− 1
2

and correspondingly for the OP-RE approach by

σGRE
=

(
k

∑
i=1

wi(RE)

)− 1
2

.

Therefore,

g =
G)
σG

, g =
GFE

σGFE

, g =
GRE

σGRE

are g-values to be compared with a critical value from the standard normal
distribution for the OP, OP-FE and OP-RE approach, respectively.

The confidence limits are constructed by

rL = G− gασ̂G

rU = G + gασ̂G

for the OP approach, for the other approaches they are constructed analo-
gously.
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Homogeneity Test Q. For the homogeneity test, only OP-FE is considered.
For this approach, the test statistic is computed as

Q =
k

∑
i=1

wi
(
Gi − GFE

)2
.

Estimation of Heterogeneity Variance. The estimated variance of G is used
to estimate the heterogeneity variance by

σ̂2
ρ = S2

G −
1
k

k

∑
i=1

σ̂2
GFE

,

where S2
G is the observed variance of the Olkin-Pratt estimator

S2
G =

1
k

k

∑
i=1

(
Gi − GFE

)2

(Hedges, 1988, p. 198; see also Hedges, 1989, pp. 473–474). Again, estimation
is restricted to usage of the estimated variance of the OP-FE approach.

5.5 CONSEQUENCES OF CHOOSING AN APPROACH:
DIFFERENT ESTIMATED PARAMETERS

After having outlined statistical details of several approaches, some conse-
quences of choosing between approaches will be examined in this section. The
common assumption that the choice of an approach is largely inconsequential
for the results is thereby scrutinized and challenged. The treatment will be
restricted to a theoretical examination. An empirical Monte Carlo study will
be presented in the subsequent Part III of the book to validate some predic-
tions derived from theoretical results presented in the present section and to
comparatively evaluate the performance of the procedures as proposed in the
approaches.

In the present section, the focus will be kept on the expected value and vari-
ance of the mixing distribution as parameters of interest in meta-analysis. It
will become evident that one of the main differences between the approaches
as outlined in this chapter are differences in the use of effect sizes. That is,
whether correlation coefficients are used without any transformations or trans-
formed to Fisher-z or d, respectively. Also, the focus will be laid on S2 because,
on the one hand, there are no relevant modifications of universe parameters in
a homogeneous case (S1), and, on the other hand, the general problems out-
lined in the current section readily generalize to S3.

There are two different values ρ1 and ρ2 in the universe of studies in S2. As
specified in Section 4.5, both values have equal probability so that for estima-
tors of the expected value of the mixing distribution based on r values it would
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be natural to consider the mean of the two universe correlations given by

µρ =
ρ1 + ρ2

2
(5.12)

as the parameter to be estimated. This is simply the mean of the two different
universe correlations. Of course, it would be reasonable in such a situation
not only to estimate a single parameter of the effect size distribution, but —
if possible — to identify the classes and estimate ρ1 and ρ2 separately in an
analysis with HLM, for example. As already stated, an evaluation of such
procedures is not the aim of the present context. Instead, the focus will be on
an evaluation of the weighted mean effect size as an estimator of the expected
value of the mixing distribution.

With regards to the expected value of the mixing distribution, it would intu-
itively be equally natural to expect the estimators of all approaches to estimate
the parameter µρ. To the best of the author’s knowledge, all applied meta-
analyses on issues of substantive interest which used any of the approaches
applying a transformation of the correlation coefficient, seem to presume this.
That is, mean effect size estimates are interpreted as if they estimated a mean
universe correlation. What this exactly means in applications of meta-analysis
is rarely explicated but it seems as if in every case a mean correlation as given
in Equation 5.12 was implied. The question to be dealt with here is whether
such an interpretation is valid. This is not the case because in contrast to es-
timators based on r, estimators based on the Fisher-z transformed correlation
coefficients (HOr, HOT, RR, DSL) do not estimate a “mean ρ” in the universe
of studies but

µρz = tanh µζ

= tanh
(

ζ1 + ζ2

2

)
= tanh

(
tanh−1(ρ1) + tanh−1(ρ2)

2

)
.

(5.13)

It is important to note that µρz is the expected value in the space of ρ that
results from the inverse Fisher-z transformation of the expected value µζ of
ζ. Hence, the computation of the expected value is carried out in z-space and
the result is transformed via the inverse Fisher-z transformation to arrive at an
expected value of ρ. To distinguish the expected value of ρ for which compu-
tations are carried out in r-space (i.e., µρ) from the one for which computations
are done in z-space, a double index is used in µρz to indicate the origin from
another space.

As shown in Equation 5.13, for the given case S2 the mean of ζ1 and ζ2
transformed to a mean ρ using the inverse Fisher-z transformation is µρz. The
focal question is: Is it true for all combinations of ρ in S2 that µρ = µρz? If it
were true, then a differentiation of µρ and µρz would not be necessary and the
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aforementioned interpretation of mean effect size estimates based on Fisher-z
transformed correlations would be correct.

As already stated, this is not the case and it is quite important to make this
distinction since an inverse Fisher-z transformation of µζ does not lead to µρ in
general. Only when ρ1 = ρ2, that is in the homogeneous case S1, does µρ = µρz
hold. For the case of only two different ρs, Equation 5.13 can equivalently be
expressed as

µρz =
√

1 + ρ1 + ρ2 + ρ1ρ2 −
√

1− ρ1 − ρ2 + ρ1ρ2√
1 + ρ1 + ρ2 + ρ1ρ2 +

√
1− ρ1 − ρ2 + ρ1ρ2

(5.14)

in terms of the original ρs. This equation makes it clearer that µρ equals µρz
only when ρ1 and ρ2 are the same. It may be noted that Olkin (1967, p. 116) has
already provided an expression similar to the one given above when consid-
ering the weighted average of correlation coefficients from two independent
populations with a common ρ, a problem not exactly the same as in the present
context.

It is important for meta-analysis in general that Equation 5.14 is not re-
stricted to S1 and can be generalized beyond this restricted situation. In fact,
it can be generalized to an arbitrary number of different values ρ. The follow-
ing result provides such a general expression for which Equation 5.14 can be
regarded as a special case.

By induction we have the following

Lemma. For all c and ρ = (ρ1, . . . , ρc) we have

(i) ∏c
j=1 (1 + ρj) = ∑α ρα

(ii) ∏c
j=1 (1− ρj) = ∑α (−1)|α|ρα

where summation extends over all α ∈ {0, 1}c satisfying |α| ≤ c.

Note that α = (α1, . . . , αc), |α| = ∑ αj, and ρα = ρα1
1 × · · · × ραc

c . Now, let
ρ = (ρ1, . . . , ρc) and z = (z1, . . . , zc) be the vector of corresponding Fisher-z
values. Define h(ρ) = tanh(z). Then

Theorem.

h(ρ) =
(∑α ρα)1/c − (∑α (−1)|α|ρα)1/c

(∑α ρα)1/c + (∑α (−1)|α|ρα)1/c

Proof.

h(ρ) =

(
∏c

j=1
1+ρj
1−ρj

)1/c
− 1(

∏c
i=j

1+ρj
1−ρj

)1/c
+ 1

=

(
∏c

j=1 (1+ρj)
∏c

j=1 (1−ρj)

)1/c
− 1(

∏c
j=1 (1+ρj)

∏c
j=1 (1−ρj)

)1/c
+ 1

The result then is a consequence of the above given Lemma.
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As an example to see how the generic form of the expression h(ρ) works for
cases other than the two-point distribution of focal interest, consider the case
of three different ρ. Let ρ = (ρ1, ρ2, ρ3) = (.10, .50, .90). Then (∑α ρα)1/c and
(∑α (−1)|α|ρα)1/c expand to(

∑
α

ρα

)1/c

= 3
√

1 + ρ1 + ρ2 + ρ3 + ρ1ρ2 + ρ1ρ3 + ρ2ρ3 + ρ1ρ2ρ3 = 3
√

a(
∑
α

(−1)|α|ρα

)1/c

= 3
√

1− ρ1 − ρ2 − ρ3 + ρ1ρ2 + ρ1ρ3 + ρ2ρ3 − ρ1ρ2ρ3 = 3
√

b,

so that

h(ρ) =
3
√

a− 3
√

b
3
√

a + 3
√

b

=
3
√

3.135− 3
√

0.045
3
√

3.135 + 3
√

0.045
= .61.

The resulting value of h(ρ) = .61 shows that the use of Fisher-z yields an
overestimation in comparison to µρ = .50, but now for the case of a three-
point mixing distribution. As can also be easily recognized, the task to explic-
itly specify the expression for cases with more than three different ρ becomes
rather laborious, though widely available computing resources make it accom-
plishable.

To give a more comprehensive impression of how large the differences can
get in S2, a series of differences µρ − µρz for varying positive ρ1 and ρ2 were
computed and are depicted in Figure 5.1. The differences in µρ and µρz for
varying ρ1 and ρ2 are portrayed with a surface to enhance visibility of the
trends.
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Figure 5.1 Differences between µρ and µρz by different ρ1 and ρ2.

As is evident, µρ is always smaller than µρz when ρ1 6= ρ2. For the homo-
geneous case there is a ridge from the lower corner of the graph to the upper
at a height of zero, indicating the equality of µρ and µρz for this parameter



CONSEQUENCES OF CHOOSING AN APPROACH 79

constellation. With growing differences between the two ρs, differences in ex-
pected values become increasingly larger up to values of approximately −.35
in extreme cases.

There are several implications of this observation. Most importantly, the
estimated parameters in the universe are indeed different for the estimators.
That is, the Fisher-z transformation introduces a different estimated parameter
through its nonlinear transformation of the correlation coefficients in heteroge-
neous situations. In general, approaches that employ the Fisher-z transforma-
tion will always result in higher absolute values for the estimate of the mean
effect size in such situations. This may not be entirely clear to every research
consumer of meta-analyses when interpreting the results. Second, as a result
Fisher-z based estimators may be regarded as inappropriate as estimators of
µρ because estimates will necessarily differ from this parameter as illustrated
in Figure 5.1. Although the differences as large as the extreme cases depicted
in the figure will probably be easily identified in applications of meta-analyses
for a two-point mixing distribution in the universe, by simple inspection of
the effect size distribution, smaller differences may remain undetected. Fur-
thermore, simple detection of such cases may become quite difficult with dis-
crete mixing distributions with more support points than two, especially when
these are fairly close to each other. The application of the Fisher-z transforma-
tion will in these cases inflate the mean effect sizes in relation to µρ, a fact that
underscores the importance of homogeneity tests.

Another implication of the fact that Fisher-z based procedures estimate µρz
and not µρ in heterogeneous cases is that it would be somewhat unfair to judge
the quality of z-based estimators by comparison with µρ, a parameter they are
not supposed to estimate. Rather than discarding Fisher-z based estimators
from analyses in S2 to be reported for the Monte Carlo study in Part III, the
parameters for comparisons of the estimators correspond to the value they
actually estimate, with µρ as the value for estimators based on r and µρz for
estimators based on Fisher-z transformed values. The parameters thus will be
chosen to match the parameter to be estimated when reporting results of the
Monte Carlo study in Chapter 8.

Basically the same is true for estimators based on d. A similar terminology
is used to examine this issue. Hence, the expected value in the space of r that
results from transforming an expected value computed in d-space and subse-
quently transformed into r-space by way of Equation 3.11 will be denoted by
µρd. As was shown in Section 3.3, the transformation of r to d has a similar
functional form in comparison to the Fisher-z transformation. Accordingly,
also a similar form for the difference between µρ and µρd is expected and in-
deed will be given as shown in Figure 5.2.

The graph depicted is slightly steeper in the tails of large ρ differences as
the transformation suggests. The values for µρd were computed in analogy
to Equation 5.13 with the r to d transformation applied to ρ1 and ρ2 and the
inverse transformation from d to r applied to the mean δ resulting in µρd. As
was the case for the Fisher-z transformation, a ridge for equal values of ρ1 and
ρ2 indicates the equality of µρ and µρd in the homogeneous case.
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Figure 5.2 Differences between µρ and µρd by different ρ1 and ρ2.

However, values for the mean effect size using HOd are not very close to
µρd as the general logic outlined here would suggest. Actually, they are much
closer to µρ. How can this be the case if HOd is assumed to be an estima-
tor of µρd? The reason for this effect lies in the confoundation of the employed
weights with δ when aggregating the d values. Holding n constant, the weights
are dependent on the parameter δ or estimates thereof, respectively (see Sec-
tion 3.2). The effect of using these weights is to downweight higher d. Assume
equal n in two groups and recall that the weights are the reciprocals of σ2

d , then
by holding n constant, σ2

d increases with d, and the weights, being reciprocals
of σ2

d , decrease. The form of the relationship between σ2
d and d is illustrated in

Figure 5.3.
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Figure 5.3 Reciprocals of σ2
d by d.

In this figure, an n of 100 was assumed for computing the weights and val-
ues are depicted up to d = 5, which corresponds to r ≈ .93. There is a clear
trend for decreasing weights with increasing d. This leads to mean d values
being much closer to, but not exactly at, µρ in comparison to µρd. A selection
of varying values for S2 is presented in Table 5.1 along with values for µρ,
µρd and a weighted version of µρd. The latter was computed by applying the
weights to the population parameters when aggregating.
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Table 5.1 Comparison of Theoretical Values of µρ and µρd in S2

ρ1 ρ2 µρ µρd µρd(w)

.00 .10 .05 .0502 .0501

.00 .20 .10 .1015 .1005

.00 .30 .15 .1553 .1517

.00 .40 .20 .2132 .2039

.00 .50 .25 .2774 .2575

.00 .60 .30 .3511 .3123

.00 .70 .35 .4401 .3675

.00 .80 .40 .5547 .4191

.00 .90 .45 .7183 .4470

Note. The n was fixed at 100 for all values of w. µρd(w) is the weighted version of µρd.

It is evident by comparison of columns three to five that the weighted ver-
sion of µρd leads to results much closer to µρ for larger differences between ρ1
and ρ2. Since the weights are not chosen to produce this effect it can be de-
scribed as somehow incidental. However, recognizing this effect, it would not
be reasonable to compare mean effect sizes based on d with an unweighted
version of δ, at least not for larger differences. Hence, the results for the bias
of the estimators, for example, to be presented in Chapter 8 are based on com-
parisons between µρ and mean effect size estimates based on d.

Although the estimated parameter for r-based approaches is µρ, there may
also arise problems for some approaches in estimating this parameter when
the variances of r or G are used in computing the weights for aggregation. The
approaches for which this problem may be relevant are OP-FE and to a smaller
degree also for OP-RE. The latter also employs estimates of the heterogeneity
variance that are equal for all studies to be aggregated so that weights depend
on the variance of the estimate to a lesser degree. As already mentioned, this
homogenizes the weights.

The problem of this dependency is exacerbated when n is low. In such situ-
ations, observed correlation coefficients are highly variable. Theoretically, the
variances of estimates are the same in this situation. However, due to the fact
that the (highly variable) estimates of the universe parameter (r or G) are used
in estimating their variances, the variances also vary strongly and therefore so
do the weights. Because there is a relationship of high or low weights occuring
along with high or low estimates, a bias in the pooled estimate may be intro-
duced by plugging in the estimates of the variances in the computation of the
weights. In cases with (nearly) equal n, it would thus be sensible to estimate
the variance of the estimates based on an n-weighted pooled estimate of all
effect sizes available. Such a procedure is employed, for example, in the HS
approach as outlined in this chapter. Moreover, the problem does not pertain
to HS at all for the reciprocals of the variances are not used as weights for the
pooled estimate.
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In sum, the choice of an approach is often associated with a choice of effect
size measures for computations. As shown here, this may have profound ef-
fects in heterogeneous situations. The generally applied interpretation of mean
effect sizes based on correlation coefficients as estimates of the expected value
µρ of the mixing distribution only holds for r-based procedures but not in gen-
eral for procedures based on transformations of r, since transformations have
also to be applied at the level of parameter values (universe of studies).

With regard to the commonly applied Fisher-z transformation this places
some remarkable constraints on its usefulness in the context of meta-analysis.
It is essential when this transformation is applied for aggregating effect sizes to
guarantee the homogeneous case on theoretical or empirical grounds. Other-
wise, the mean effect size does not in general estimate what is mostly intended
to be estimated, namely µρ. Of course, it may not be an easy task to inter-
pret mean effect sizes in the heterogeneous case without explicitly modeling
the situation adequately by application of HLM or mixture modeling, for ex-
ample. But cases are not uncommon at all in which explanatory variables are
not available and the effect size database remains heterogeneous. When us-
ing r-based approaches, interpretation of mean effect sizes as estimates of µρ is
theoretically founded, whereas for approaches that apply transformations it is
not. In the case of HOd, the situation is much more complicated in comparison
to HOr because weights also have to be taken into account. To be sure, the
expected value µρ is more adequate for most cases in S2 treated here, but it
is not the parameter to be estimated by HOd from a theoretical point of view.
In the Monte Carlo study in Part III an evaluation of the precision of estimates
will be reported with respect to the parameters to be estimated as reported in
this section.

5.6 COMPARISONS OF APPROACHES: STATISTICAL
PROCEDURES

The approaches presented in previous sections are a set of procedures and
techniques that has become very common in the application of meta-analysis
in psychology and other social science disciplines. The procedures outlined
are not the only available. There are even more statistical refinements and pro-
cedures to be found in the literature (e.g., Kraemer, 1983; Viana, 1980, 1982)
than have been presented and referenced up to this point. However, the fo-
cus of the following paragraphs will be laid on the more common procedures
and their properties. Furthermore, the comparison largely implies correlation
coefficients as effect sizes. Some of the following statements might have to be
altered when comparing proposed procedures for other effects sizes.

The first characteristic used to distinguish the approaches is the assumed
model. Among the approaches considered, the majority can be classified as
FE approaches. This also mirrors current research practice, in that procedures
based on the FE model are still the most often applied. Approaches based on
RE models have been repeatedly called for (Hunter & Schmidt, 2000; National
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Research Council, 1992) but this does not yet seem to have had a profound
effect on research practice. The FE approaches are HOr, HOT, RR, HOd, OP,
and OP-FE whereas the RE approaches are DSL and OP-RE. Being a hybrid
type, the HS approach is not easy to classify for various reasons (see Section
5.3) but it seems to be more of an RE approach in nature. Yet, it is noteworthy
that others have classified it as an FE approach (e.g., Erez et al., 1996; Overton,
1998).

The HS approach also stands out somewhat for its peculiar procedures, like
the 75%-rule, which is not included in other approaches. A feature of this
approach that is very much emphasized by Hunter and Schmidt (1990) are
the various techniques to correct for artifacts. These are not of concern in the
present context but it should be recognized that an important research prob-
lem is addressed with such corrections. Although distinctive in emphasis and
elaboration, corrections of effect sizes are not unique to the HS approach (see
also Hedges & Olkin, 1985, pp. 131).

With the FE and RE model as outlined in Chapter 4, it is easy to recognize
the common structure of the approaches as far as estimation of the mean effect
size and inferential procedures are concerned. The commonalities go so far
that, in fact, HOr and RR are largely indistinguishable and may not count as
different approaches at all. Again, it is recognized that they have been classi-
fied as such in previous comparisons (e.g., Johnson, Mullen, & Salas, 1995).

A second characteristic for comparing the statistical procedures of the ap-
proaches is the effect size measure used in synthesizing correlation coefficients.
As has been outlined in the previous section, important differences exist when
transformations of the correlation coefficient are applied. This makes the ag-
gregated effect size measure a quite important characteristic, at least in hetero-
geneous situations. The r-based approaches are HS, OP, OP-FE, and OP-RE.
The Fisher-z-based approaches are HOr, HOT, RR, and DSL, whereas HOd
uses another transformation that also leads to a different estimated parameter
in the universe of studies in heterogeneous situations. Regarding bias of the
estimators it is expected that the approaches may lead to quite accurate results
only with respect to the corresponding estimated parameters.

The third characteristic to compare or classify approaches is the weighting
scheme. Whereas some approaches use so-called optimal weights (i.e., recipro-
cals of squared standard errors), others simply use the individual study sam-
ple size as weights in their procedures. To classify the approaches with re-
spect to this attribute, recall that the optimal weights for the approaches us-
ing the Fisher-z transformation are in essence determined by the sample sizes.
This can be seen by inspecting Equation 5.1 on page 57 for HOr, for exam-
ple. Hence, in these cases, approaches can as well be classified as using ni as
weights because the differences are minuscule in general. As a consequence,
almost all of the presented approaches use the sample size as weights, except
for OP-FE, OP-RE, and HOd.

Now, does the weighting scheme really make a difference? At least some
expectations retrievable in the literature suggest that this is not the case. For
example, Huffcutt (2002) clearly states that “it is unlikely that the choice of
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weighting method has any real influence on the mean effect size [. . . ] esti-
mates” (p. 209). Furthermore, Sánchez-Meca and Marín-Martínez (1998b) have
not reported any striking differences between weighting methods for d as an
effect size measure on the basis of their Monte Carlo study results. It is never-
theless argued that the weighting does make difference.

The reasons for this are, first, that the empirical evidence available is based
on the effect size d, and this is a special case as has already been scrutinized.
The theoretical analysis in Section 5.5 has revealed an effect of the weights
which might have obscured a profound effect of weighting in the Monte Carlo
study by Sánchez-Meca and Marín-Martínez (1998b). Their results may there-
fore not generalize to the present case of interest, correlation coefficients. Sec-
ond, recall the dependency of the weights for the UMVU estimator on ρ and
also bear in mind the potential variability of effect sizes due to sampling error.
Taking further into account that the observed effect sizes have to be plugged
into the estimator for the standard error reveals that using such weights will
lead to an upward bias in mean effect size estimators. This is exactly what can
be expected for the estimators in OP-FE and OP-RE.

Hence, the weighting scheme is an important classification aspect for ap-
proaches, at least in cases for which a similar plug-in procedure is used as in
OP-FE and OP-RE. How, then, can these be the statistically optimal weights?
The reason is simply that to prove the optimum properties of this weighting
scheme, one has to assume that the weights are known. Because this is almost
never the case, one has to use the plug-in procedure which causes the problem
and makes the weighting scheme suboptimal. For a theoretical analysis and
empirical demonstration of the considerable effect of using plug-in estimates
in the context of estimating heterogeneity variance, see Böhning et al. (2002).

Of the approaches introduced, HOd is somewhat special. It is hardly com-
parable to the other approaches because in the way it is used in the present
examination it would almost never be used in practice (i.e., a database con-
sisting only of r would ordinarily not be converted to d). Remember that the
approach was introduced to show how correlation coefficients converted to d
would be aggregated. It is intended to enable a test of the common assumption
that the well-known conversion of r to d does not have an effect on the results
of meta-analysis.

There are some empirical comparisons of meta-analytical approaches in the
literature available to date. One quite influential early comparison that has
raised serious doubts on the quality of the HS approach was conducted by
Johnson, Mullen, and Salas (1995). They compared the approaches HOd, RR,
and HS by analyzing a small database which they also transformed by adding
constant values, for example. Hence, they have not conducted a Monte Carlo
study but analyzed a specific dataset and its transformations to examine the
quality of the approaches. Unfortunately, there are several problems with this
comparison. First, they stated with reference to the techniques proposed by
Hedges and Olkin (1985) that “. . . study outcomes usually are converted into
standard deviation units. . . ” (Johnson, Mullen, & Salas, 1995, p. 95). Hedges
and Olkin actually do not advocate transformations of r to d as a standard
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technique applied to correlation coefficients. Instead, they provide elaborate
procedures for the analysis of correlation coefficients, as can be seen in Section
5.1. Although sometimes approaches as presented in this book are associated
with certain effect sizes, it is not true for any of the approaches outlined that
they can only be applied to a certain kind of effect size family. Admittedly,
the HS approach has a main focus on correlations, but is not limited to the
analysis of this effect size measure. It is therefore important to recognize that
the present examination evaluates the procedures of the approaches that are
proposed for correlational data and may not generalize to other procedures
proposed. Second, the formula for standard error in the HS approach as used
by the authors (Johnson, Mullen, & Salas, 1995, Formula 12, p. 97) is wrong
and leads to strong overestimates of the standard error of the mean effect size
(see also Schmidt & Hunter, 1999a). Third, Johnson et al. tried to vary certain
“parameters of the databases [. . . ] while attempting to hold all other variables
constant. . . ” (Johnson, Mullen, & Salas, 1995, p. 99). Unfortunately, there was a
(linear) relationship in the database between r and n (r = .158) that influenced
the results of their comparisons between the approaches. In sum, their com-
parison is only of limited value for a comparative evaluation of the approaches
under consideration.

Despite these problems, the Johnson et al. study may have had a profound
effect on other researchers and may have led them to abstain from using the
HS approach. Others even tried to “explain” the divergence from conventional
statistical expectations that was reported in the Johnson et al. study for the HS
approach (e.g., Erez et al., 1996, p. 283). Nevertheless, the Johnson et al. study
had at least the beneficial effect of drawing the attention of researchers to the
potentially diverging approaches in psychology.

Another more recent comparison of approaches focusing on correlation co-
efficients as effect sizes was done by Field (2001). This study was not plagued
with the problems of the Johnson et al. study and developed this work by
conducting a Monte Carlo study. Field (2001) reported a series of results on
the estimation of the mean effect size, significance test for the mean effect size,
and homogeneity test performance. In separate Monte Carlo studies the per-
formance of the approaches in homogeneous as well as heterogeneous situa-
tions was examined. Interestingly, his results indicated a bias in estimating the
mean effect size in heterogeneous situations being very much larger for the
approach using the Fisher-z transformation (DSL) in comparison to the HS ap-
proach. In contrast, such effects were not observed in homogeneous situations
(here, HOr was compared to HS). A clear theoretical rationale for this effect
was, however, lacking.5 For more detailed results the reader might wish to
consult the original article. Overall, the reported results seemed to favor the

5It might be noted that Hunter et al. (1982, p. 42) already pointed to the excess bias resulting
from the Fisher-z transformation. In later work (Hunter & Schmidt, 1990, pp. 216–217), they
repeated this observation but still without providing an elaborate statistical argument. They
only pointed to an (still) unpublished paper which was referenced by Field (2001) to support
his prediction. Hence, an elaborate theoretical argumentation as given in the previous chapter
has not yet been available.
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HS approach over other approaches mainly on the grounds of larger bias in
heterogeneous situations for Fisher-z based approaches.

A further comparison, namely of the DSL and HS approach, was conducted
by Hall and Brannick (2002). Although large parts of the study focused on
artifact corrections, which are not of interest here, they reported some results
worth noting in the present context. In a comparison between the approaches
based on Monte Carlo study data, a similar pattern of results with respect to
the bias of the mean effect size estimators was observed as in the Field (2001)
study. That is, in homogeneous situations both approaches lead to approxi-
mately equal results and in heterogeneous situations the results differed. Dif-
ferences grew bigger the larger the variance of universe parameters was, with
DSL leading to overestimates. This result is perfectly compatible with expec-
tations on the basis of the theoretical analyses of the estimators’ properties
outlined in this chapter. Hall and Brannick (2002), however, attributed this
observation to some peculiarity of their Monte Carlo procedure. Most interest-
ing for the present examination of approaches are reanalyses of four published
meta-analyses. The authors reported higher estimates of the DSL approach in
comparison to the HS approach on the basis of the four real datasets, though in
one case the estimates were virtually identical. The maximum difference was
between a value of .237 (HS) and .286 (DSL) for one study. This difference is
remarkable and might have been even bigger if the mean effect size level and
the variance of universe correlations would have been larger. These additional
results in the Hall and Brannick (2002) study point to the fact that the theoret-
ical analyses of this chapter are not only statistical gimmicks but can have a
real impact. For further theoretical and empirical comparisons of approaches
with different models and effect size measures, the reader is referred to the
pertinent literature (e.g., Overton, 1998; Brockwell & Gordon, 2001).

To summarize, the approaches under examination have many attributes in
common as can be recognized from the perspective of the general frameworks
of meta-analysis. HOr and RR, for example, are different in a minor detail at
best. Nevertheless, important differences between approaches lie in the un-
derlying model (FE vs. RE), the effect size measures used in aggregation (r vs.
Fisher-z) and also in the weights employed in aggregation. Previous compar-
isons of approaches — most of which were based on Monte Carlo study results
— show convergence as well as differences in results, where differences can
at least partly be attributed to properties of the estimators as outlined in this
chapter.


