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4
General Frameworks of Meta-Analysis

As an example, suppose a group of researchers has succeeded in collecting all
empirical studies judged as relevant in a field they are interested in. Recogniz-
ing the shortcomings of narratively summing up the collected evidence and
confronted with a large amount of empirical evidence, they are interested in
statistical methods to quantitatively aggregate the effect sizes extracted from
the study reports. Before the researchers turn to specific computational proce-
dures of conducting a meta-analysis, to be described in Chapter 5, they might
first consider the following questions:

1. Are there good reasons, theoretically or based on previous evidence, to
assume that only one universe effect size is underlying all studies? That
is, do all studies estimate exactly the same effect?

2. What kind of inference is intended? Should generalization from the re-
sults pertain to all potential studies in a field of interest, or should inter-
pretations be restricted to the kind of studies in the collected sample?

3. If studies are not all assumed to estimate the same effect size,

• are there any theoretically assumed predictors which correspond to
observed characteristics of the collected studies to explicitly model
potential effect size differences and/or

• are there potential differences in universe effect sizes that are due to
unobserved (latent) variables?

In essence, by answering these questions, the researchers are making a de-
cision between models to be applied to the observed effect size data. Such
decisions and arguments to substantiate them have not always been made ex-
plicit in published meta-analyses. Often, the choice of a model has been made
implicitly by the choice of an approach to meta-analysis. For example, the re-
searchers may turn to one of several textbooks on meta-analysis and apply the
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computational procedures outlined in there before considering and answering
all the questions outlined above. Unfortunately, not all available textbook re-
sources are explicit with reference to the statistical models implied by the pro-
cedures described therein (e.g., Wolf, 1986; but see in contrast, Hedges & Olkin,
1985). Approaches are intimately tied to statistical models, so that the choice
of an approach is also the choice of a model. The present section is intended to
clarify the basic characteristics of models in meta-analysis. This will provide
the framework to classify the specific approaches presented in the subsequent
section.

It is important to recognize that definite answers to the questions presented
above cannot be given on the sole basis of any form of data analysis. The
choice of a model has to be made at a conceptual level (Hedges, 1994b; Hedges
& Vevea, 1998). This becomes most evident, for example, by considering the
second question: What kind of inference is intended? This question can only
be answered as a result of careful consideration of the object of inference. On
the other hand, there are data-analytical procedures providing some indication
of the tenability of a model by way of testing some of its assumptions. In the
following sections, such procedures will be presented and their performance
under different models will be evaluated on the basis of results of a Monte
Carlo study to be presented in Chapter 8.

With respect to the choice of a model, meta-analysis is not at all different
from other familiar statistical techniques. Estimation of the parameters of a
model is always done by assuming a certain model beforehand, implicitly or
explicitly. Structural equation modeling, which has become a very popular
statistical technique in practice in recent years, is a prototypical example where
one has to choose a model before estimation can be done. However, not all
data-analytical techniques force the user to specify or choose between models.
Meta-analysis as practised in the field of psychology seems to have become
one of these types of data-analytical tools, where decisions of a user are more
focused on the choice between sets of computational procedures rather than
models.

The question at this point is what kind of models there are available in
meta-analysis and which meta-analytical approach corresponds to what kind
of model. The following sections are intended to answer these questions. The
presentation will thereby be kept more general in comparison to the subse-
quent presentation of specific approaches (see also Shadish & Haddock, 1994).
Although presentation will be focused on the correlation coefficient as an ef-
fect size there is no need to restrict the treatment of the subject at this point.
Keeping the general perspective in mind, it will be much easier to recognize
the similarities and differences of the meta-analytical approaches, and their
statistical procedures in particular, to be presented in Chapter 5.
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4.1 FIXED EFFECTS MODEL

The fixed-effects model (FE) can still be regarded as the most frequently as-
sumed model in practice. An often stated basic assumption of the FE model is
represented in the first question to the researcher in the above list: Are there
good reasons to assume a universe effect size that is common to all studies? If
the answer to this question is “yes”, then the researcher assumes that all ob-
served effect sizes are estimates of a single parameter. The fixed effects model
is appropriate for this case.

Let θ denote the universe effect size measure of interest and suppose there
are k independent observed effect sizes. This may be the case when an exper-
iment is replicated 10 times (k = 10) and each experiment is conducted by a
different researcher, in a different place, and so forth, so that all results can be
considered as independent. The differences between studies (researcher, place,
measurement instruments, etc.) are considered to be minor or negligible in the
sense that they do not exert any systematic influence on the research results.
The experiments can also be called strict replications here. Though such strict
replications are only rarely or never conducted in the social sciences, they are
assumed for matters of convenience in the presentation at this point.

Furthermore, suppose there is one effect size θ giving rise to all effect size
estimates. This is a case where effect sizes are often called homogeneous, because
they all are assumed to represent the same parameter of interest.

However, in general each of the ten replications will report a different ob-
served effect size, so there is a nonzero variance of observed effect sizes. One
important question to be answered is how such differences may arise. In the
FE model, differences between reported effect sizes are ordinarily conceived as
resulting only from sampling error, and sampling error results from different
person sampling in the studies. The variance of the observed effect sizes, how-
ever, is assumed not to be caused by substantive differences between studies,
like differences in treatment nuances, validity of measurement instruments,
and so forth. This is a very strong assumption for which usage of the FE model
has been heavily criticized in recent years (Erez et al., 1996; Hunter & Schmidt,
2000; National Research Council, 1992). As a consequence of the assumptions,
one would expect the conduct of 10 more studies of the same type as the first
ten studies to result in different estimates of θ only because of varying samples
of participants.

The observed effect size measures will be denoted as Ti (i = 1, . . . , k). Usu-
ally, different studies also have a different number of participants so that the es-
timates vary in precision1 of estimating the parameter θ. The variance of each

1In a strict statistical sense estimates do not vary in precision but only estimators do. Hence,
one could also conceive each observed estimate as a realization from a different estimator
when n is different between studies and the precision of the estimator depends on n. How-
ever, in the present context it may be confusing to use the term estimator when all effect size
measures are of the same family. As a consequence, the term estimate will be used in what
follows.



36 General Frameworks

effect size estimate Ti will be denoted as νi and is a measure of this precision.
The crucial point is that the estimates might differ in their precision of estima-
tion though they all estimate the same constant θ (i.e., θ1 = θ2 = . . . = θk = θ).
In other words, the universe effect size is fixed for all studies.

In order to form a precise pooled estimate based on the observed effect sizes,
it seems natural to consider the so-called pooled estimator in the FE model

θ̂ =

k
∑

i=1
wiTi

k
∑

i=1
wi

. (4.1)

This is also often called the mean effect size (estimate). The connotation implied
by this label is that θ̂ is a weighted mean (with weights wi) of the observed
effect size estimates. When all observed effect size estimates are unbiased, then
θ̂ is also unbiased. As already shown in the previous chapter, not all measures
of effect size of interest are indeed unbiased.

The remaining question is what specific weights are to be inserted in Equa-
tion 4.1. From a statistical point of view, the optimal weights are the recipro-
cals of the variances of the estimates, because they minimize the variance of
the pooled estimate θ̂ (for a proof, see Böhning, 2000, pp. 96–97).2 Therefore,
the optimal weights are given by

wi =
1
νi

. (4.2)

Intuitively, these weights also make sense, since they give the largest weight
to the most precise estimate (i.e., with smallest νi). Since the meta-analytical
approaches to be presented in Chapter 5 differ with respect to the choice of
weights, a more detailed discussion is postponed to the presentation of the
approaches. Note, however, that variances used to compute the weights are
usually unknown and have to be estimated. Ordinarily, an estimate for this
variance ν̂i is available and plugged into Equation 4.2.

No distributional assumptions have been made up to this point. For the
next step of inference based on the estimates of θ, it is often assumed that the
Ti are normally distributed (e.g., Hedges & Vevea, 1998). However, this is not
a necessary assumption to show that

νθ̂ =
1

k
∑

i=1
wi

2It is noteworthy that a justification of the weights can also be given by the maximum likeli-
hood method (see Böhning, 2000, pp. 101-103).
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gives the variance of the pooled estimate (see Böhning, 2000), provided every
Ti is unbiased. Additionally drawing on the central limit theorem, it is possible
to construct confidence intervals via

θL = θ̂ − gα
√

νθ̂

θU = θ̂ + gα
√

νθ̂ ,

where gα denotes the critical value for a prespecified α-level from a standard
normal distribution to construct two-sided confidence intervals.3 The index
“L” designates the lower limit and “U” the upper limit of the interval, respec-
tively.

In addition to the construction of a confidence interval, the null hypothesis
θ = 0 can also be tested by using νθ̂, so that

g =
θ̂
√

νθ̂

provides a g-value to be compared with a critical value from the standard nor-
mal distribution for a prespecified level of α.

As a last step in the FE model, one can test the basic assumption of equal
universe effect sizes underlying all studies by computing the following statistic

Q =
k

∑
i=1

(
Ti − θ̂

)2

νi
.

Essentially, this is the sum of squared standard normal values, which fol-
lows a χ2-distribution with k− 1 degrees of freedom when the null hypothesis
of equal universe effect sizes for all k estimates is true. Hence, by compar-
ing the value of Q with the respective critical value from a χ2

k−1 distribution,
one tests whether the assumption of equal universe effect sizes for all studies
holds.4 This makes the computation of the Q-statistic a very important step
in the application of the FE model. When the test result is significant, one is
forced to reject the null hypothesis, and this amounts to rejecting the tenability
of the FE model. One of the consequences of such a result is that the mean
effect size estimate θ̂ has no simple interpretation anymore within the frame-
work of the FE model as presented up to this point.

Of course, it is still the weighted mean of observed effect sizes but the pa-
rameter to be estimated is not a single universe effect size constant for all stud-
ies. Instead, one is forced to switch to a different model which incorporates
differences in universe effect sizes between k studies.

3The unusual symbol gα is used here to avoid confusion with the values of Fisher-z which play
a prominent role in the present book.
4For convenience, such tests will be labeled as Q-tests.
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One possibility to deal with the result of a significant Q-statistic is to build
subgroups of studies that are assumed to be homogeneous in the sense of the
basic assumption of the FE model and compute as many estimates of mean
effect sizes as there are groups. Subgrouping in such a procedure can be based
on coded characteristics of the studies, for example. These characteristics may
be suggested by theoretical reflections or may also be methodological features
of the studies (e.g., experimental vs. quasi-experimental studies). In any case,
the pursued aim of subgrouping is to find groups that satisfy the assumption
of homogeneity in the FE model. A more efficient procedure than subgrouping
would be to fit a categorial or continuous (linear) model to the effect size mea-
sures as proposed by Hedges (1982a, 1982b, 1994a). In type, these procedures
are akin to familiar techniques such as the general linear model (e.g., ANOVA
and regression models). A very general framework for this type of analyses
is provided by hierarchical linear models, which will be introduced in Section
4.4.

As is well-known, there are also fixed effects models in ANOVA. Indeed,
fixed effects models in ANOVA and in meta-analysis are analogous in the
sense that the parameter to be estimated is conceived as fixed instead of be-
ing a random variable as in the model to be presented next (see, e.g., Scheffé,
1959/1999; for details on the analogy between ANOVA and meta-analysis, see
Hedges & Vevea, 1998). It is important to recognize at this point that although
the starting assumption of a universe effect size equal for all k studies is re-
jected, the fixed effects model can still apply.

Nevertheless, the analogy to ANOVA models suggests an interpretational
consequence pertaining to the pooled estimate θ̂. Just like in ANOVA, it now
has to be interpreted as an estimate of the grand mean of the observed effect
sizes. Against this background, the assumption of equal universe effect sizes
stated at the outset can be considered as a special case of ANOVA where a
factor study with k levels has no effect.

Interpretation of results from inferential procedures as outlined above also
have to be refined in this model. They now relate to the grand mean built on
the basis of a set of k studies which differ in universe effect sizes. The differ-
ences between universe effect sizes are now modeled and are considered to be
constant (fixed) over replications. If, for example, a meta-analysis is used to
aggregate results from ten studies with a certain grand mean, then another set
of ten studies must estimate the same grand mean. In this situation one can
think of replicating sets of studies with the same grand mean. Hence, inference
relates to a universe of studies that is characterized by the grand mean to be es-
timated. The term universe (of studies) is used here again, to underscore the
different level of sampling in comparison to primary studies (see also Chapter
2). To reiterate, a first level of sampling can be considered as sampling of per-
sons in the studies, so that there is a population of persons. The second level
is considered as sampling of studies form a universe of studies.

Another possibility to deal with the result of a significant test result for
the Q-statistic can be to completely give up the fixed effects assumptions and
switch to the random effects model to be presented next.
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4.2 RANDOM EFFECTS MODEL

The main difference between the FE model and the random effects model (RE)
in meta-analysis is the introduction of a random variable Θ instead of an ef-
fect in the universe of studies that is conceived as constant (Hedges, 1983b;
Raudenbush, 1994). The objects of main focus in RE meta-analyses are the ex-
pected value µΘ and the variance σ2

Θ of the random variable Θ. In comparison
to the FE model, the expected value of Θ replaces θ as the mean effect size. The
variance of Θ is a new object of interest that has no counterpart in FE models.
Hence, it is acknowledged in RE models at the outset that universe effect sizes
may vary between studies. It is easily seen from this conceptualization that
the FE model can also be viewed as a special case of the RE model where the
variance of the universe effect sizes is zero and the expected value of Θ and
the effect size θ in the FE model coincide.

As a consequence of the model assumption, the variance of observed effect
sizes is not only explained by sampling error of persons in studies as was the
case in the FE model, but also by true variability of studies in meta-analyses.
That is, variance of effect size measures is decomposed into two components

σ2
Ti

= σ2
Θ + νi,

where it is assumed that Θ and the error component are independent. The
sampling error νi of the studies is interpreted as is done in the FE model.

Although there is ordinarily no explicit sampling scheme implied by collect-
ing the studies, it is usually assumed to be a random sampling process. The
additional variance component σ2

Θ — also called heterogeneity variance — in-
troduces an additional source of uncertainty, because apart from sampling n
participants at a first level there is also a sampling of k studies with different
universe effect sizes at a second level.

The procedures applied in the RE model to estimate a mean effect size first
require an estimate of σ2

Θ. There are different estimators of this variance com-
ponent that will not be given here, however presentation of specific estimators
will be given in the introduction of the refined approaches in Section 5.4 of the
following chapter. Assume for the moment that a variance estimate σ̂2

Θ were
available. This estimate is used to compute new weights by

w∗
i =

(
1
νi

+ σ̂2
Θ

)−1

,

which are employed in the same way as in the FE model to estimate the mean
effect size in the RE model by

Θ̂ =

k
∑

i=1
w∗

i Ti

k
∑

i=1
w∗

i

.
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As can be seen from the weights, results for the mean effect size estimate in
the RE model will differ from those in the FE model when the variance esti-
mate σ̂2

Θ is different from zero, which will generally be the case. Note that σ̂2
Θ

is the same for all k studies so that the effect of the additional component in
the weights is to homogenize the weights between studies as compared to the
FE model. This also seems plausible since in a situation in which σ̂2

Θ is much
larger in comparison to the νi this gives a larger impact on the weight to uncer-
tainty due to sampling of studies. In extreme cases where there is practically
no estimation error in the individual studies, variability of effect sizes would
totally reflect uncertainty due to sampling of studies from the universe. Due
to the fact that all studies are ordinarily considered to be equal with respect
to sampling from the universe of studies, homogenization is desirable. How-
ever, this also makes the estimation of the mean effect size more uncertain and
widens the confidence intervals accordingly. This can be seen in the following
equations for the construction of confidence intervals

ΘL = Θ̂− gα
√

νΘ̂

ΘU = Θ̂ + gα
√

νΘ̂

where, again, gα is the critical value from a standard normal distribution. The
estimate of the variance of Θ̂ is denoted by νΘ̂ and given by the reciprocal of
the sum of weights

νΘ̂ =
1

k
∑

i=1
w∗

j

.

In the same fashion as in the FE model but with the new weights, a significance
test for the hypothesis Θ = 0 can also be performed by

g =
Θ̂
√

νΘ̂
.

As can easily be seen by considering computation of the weights in the RE
model, the tests are — ceteris paribus — generally less powerful than those of
the FE model. This is due to the additional component σ̂2

Θ which makes the
weights larger, and as a consequence, standard errors νΘ̂ also become larger.

The estimates Θ̂ are always clear to interpret in the RE model. They repre-
sent estimates of the expected value of the distribution of universe effect sizes.
This is an important point to note since the distribution of effect sizes in the
universe of studies represents the distribution of all possible studies. The uni-
verse comprises the k studies in a meta-analysis as a sample but also all other
studies that could not be retrieved (see Hedges & Vevea, 1998). This suggests
a very attractive interpretation of the mean effect size estimate in RE models,
namely that the effect size estimate may be generalized to an entire research
domain. This is one of the reasons why some authors have argued strongly in
favor of the application of the RE instead of FE models (e.g., Hunter & Schmidt,
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2000). In other methodological areas in psychology, like generalizability the-
ory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972), there is also an analogous
transition in models where the RE model is strongly favored.

However, there is always some ambiguity left in interpretation when the
sampling process is somewhat obscure as will mostly be the case in applica-
tions of meta-analysis. A random sampling process would require the spec-
ification of the whole universe of studies and a procedure that guarantees a
random sample of k studies from this universe. This is not feasible in practice
and may represent a critical point for the application of RE models. In a similar
vein, some authors have noted that the assessment or decision as to whether
study samples are indeed representative for an entire research domain is not
an easy task, if possible at all (Kavale, 1995). Yet this is not a problem specif-
ically pertaining to meta-analysis but also arises in ordinary research practice
in psychology or other fields where random samples are scarcely available. On
the other hand, random sampling is considered not to be a necessary prereq-
uisite in general for valid interpretations by some authors (e.g., Frick, 1998).
Furthermore, a Bayesian perspective on the research problem in meta-analysis
also does not necessitate a formal random sampling procedure for the justifi-
cation of random effects (Raudenbush, 1994).

In addition, when not many studies are available in a field of interest gen-
eralization to a whole domain of research may be unfounded or at least risky
because few studies are scarcely representative for a universe of studies. Fur-
thermore, problems arise also in the application of RE models to a set of only
few studies with respect to estimation of the heterogeneity variance σ2

Θ (Rau-
denbush, 1994; see also Hunter & Schmidt, 1990, who discuss such issues un-
der the heading of second-order sampling error). It may be more sensible in such
cases to restrict interpretation only to studies like those in the sample as is done
with the FE model. Therefore, it is of great interest how applications of the RE
model perform in situations with very few studies which is one of the aims
that will be pursued in the empirical part of this book.

Unfortunately, there seems to be considerable confusion as how to concep-
tualize and interpret the random effects model of meta-analysis. For example,
Erez et al. (1996) draw a distinction between the fixed and random effects
model in a way that the fixed effects model is interpreted as an intercept-only
regression model, whereas the random effects model is regarded as a regres-
sion where the heterogeneity of observed effect sizes is additionally accounted
for by covariates (Erez et al., 1996, p. 278). The difference between the FE and
RE model, however, is not one of differences in predictors in regression models
but whether universe effect sizes are conceived as random variables or not. In
both models it is possible to apply linear models for the explanation of vari-
ation in study findings with any desired set of predictors as long as the basic
assumptions of the models are met.

As already noted, the homogeneity test based on the Q-statistic in the FE
model is often used in practice to make a decision between the random and
the fixed effects model. Although this decision does not require such a test,
the decision is often made conditionally on the result of the test. Such a proce-
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dure is also called the conditionally random effects procedure. This hybrid proce-
dure has been reported to have properties in between FE and RE procedures
with respect to test results (Hedges & Vevea, 1998). As has been outlined in
this section, there are important differences in interpretation associated with
the choice of a model. Therefore, it seems reasonable to require the Q-test to
perform quite well as one of the most important decisions in meta-analysis
hinges on its results. The present study will also present an empirical evalua-
tion of the Q-test as used in various approaches to assess its quality (see also
Alexander, Scozarro, & Borodkin, 1989; Cornwell, 1993; Field, 2001; Hardy &
Thompson, 1998; Harwell, 1997; Hartung, Argaç, & Makambi, 2003; Sánchez-
Meca & Marín-Martínez, 1997).

4.3 MIXTURE MODELS

Mixture models provide a very general framework for the meta-analytic situ-
ation that embrace and extend the fixed and random effects models presented
in the previous two sections. Since mixture analyses are not part of the Monte
Carlo procedures to be presented in later chapters, only a brief sketch of the
main characteristics is given here. The concepts introduced in this section will
nevertheless be taken up in later sections because they provide a very concise
way to describe the meta-analytical situation in a well-founded statistical the-
ory. For an in-depth treatment of the subject with application to meta-analysis
the reader is referred to the work of Böhning (2000) and also to one of the
first applications of these methods to meta-analysis in psychology by Thomas
(1989a, 1989b, 1990b). Because the present study is mainly occupied with the
application of meta-analysis to correlational data, the following presentation
will be given with the correlation coefficient as effect size data.

Suppose again, there are k = 10 studies given and each of the ten studies
reports a correlation coefficient ri for two variables that are bivariate normal
in distribution. Now the following concepts and notation are introduced. Ob-
served correlations are regarded as realizations of random variables denoted
by Ri with a certain ni per study and universe correlation ρj. For matters of
convenience, it is assumed that all ni are equal5 and can be denoted by n. The
index j is used to indicate potentially different universe correlations for a set
of i correlations. That is, there may be subsets of the i studies with different
universe correlations, for example. In mixture models, such j universe param-
eters — universe correlations in the present case — are also called components.
The total number of components is denoted by c, so that j = 1, . . . , c.

What the meta-analyst wants to understand, explain, and model, is how
the distribution of observed correlation coefficients arises. If there is only one
ρj = ρ common to all studies, a homogeneous case is given. In mixture models

5It would not be difficult to conceive the number of participants also as a random variable.
However, this would not add much to understanding the concepts here and there is no loss in
generality by assuming equal n.
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this is also called a case with one component. The distributions of the Ri only
differ when the sample sizes ni of the studies are different. Otherwise, all
variables have the same distribution, characterized by a probability density
function f (r; ρ, n). In this case, knowledge of ρ and n suffices to characterize
the sampling distribution of the observed correlation coefficients.

Now suppose, two components with ρ1 6= ρ2 and therefore a heterogeneous
case is given. As mentioned in the previous sections, such a situation could be
modeled by procedures of the general linear model when it is known for each
of the k studies which of the two ρj is underlying each study. Assume such
knowledge is not available to the meta-analyst and membership of the ob-
served correlations to the different components can be said to be unobserved
or latent. In this situation, the distributions of the Ri differ only because of the
different ρj. The ρj can now themselves be considered as realizations of a ran-
dom variable P (large Greek Rho)6. The distribution of P is called the mixing
distribution in the present context and is not yet specified. For the present case
of only two different components ρ1 and ρ2, the distribution of P is character-
ized by the two components and the according weights λj. The weights give
the probability of belonging to the jth component and therefore conform to the
usual constraints λj ≥ 0 and ∑c

j=1 λj = 1 when there are c components (in the
present example, there are only two).

Under these conditions, the correlation coefficient Ri of interest in study i
can be said to have a conditional density denoted by f

(
ri|P = ρj, n

)
. That is,

given the universe effect size parameter ρj and the number of participants per
study n, the correlation coefficient has a density as given in Equation 3.1 (see
page 21). For purposes of illustration, assume that for the two components
in the example all studies have equal probability of belonging to one of the
components. That is, λ1 = λ2 = .50. For this example, the unconditional
density of R, the variable representing all observed correlation coefficients r, is
given by

f (r|n) = .50× f (r; P = ρ1, n) + .50× f (r; P = ρ2, n),

and for the more general case of c components the unconditional density is

f (r|n) =
c

∑
j=1

λj × f (r; P = ρj, n).

This is also the density of the so-called mixture distribution with kernel f (r; P =
ρj, n) for the present case. Of course, the kernel of the mixture distribution de-
pends on the effect size under investigation when mixture models are applied
in the context of meta-analysis.

6Not to be confused with the symbol for probability P used in the following. In any case, it
will also always be clear from the context which symbol is used.
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Figure 4.1 Example of a mixture distribution with four components, n = 50.

As a further example, consider a situation with n = 50 where the distri-
bution of P is uniform on the four points ρ1 = .10, ρ2 = .20, ρ3 = .30, and
ρ4 = .60. Then a situation like the one depicted in Figure 4.1 is given.

The four darkly shaded densities are the conditional densities for each of
the components, with a fixed n of 50. The resulting mixture distribution filled
in light grey is depicted in the front and illustrates the density of R in this
situation. In meta-analysis, a number of k correlation coefficients are given
which are considered as arising from the mixture density given in Figure 4.1.
That is, the mixture distribution is similar in shape to what one would expect
as a frequency distribution of k observed correlations in a meta-analysis (given
the four components and a fixed n of 50).

As already mentioned, the number of components is usually unknown so
that it has to be estimated along with the component weights. Conventionally,
this is done by maximum likelihood estimation but details on estimation and
algorithms will not be presented here (see Böhning, 2000).

The attractive options offered to the meta-analyst by an application of mix-
ture models are manifold. Mixture models provide a general and flexible
framework of conceptualizing as well as statistically modeling the object of
interest in meta-analysis, namely the distribution of observed effect size mea-
sures. Furthermore, procedures to estimate the number of components as well
as their weights are offered. This makes it possible to address the problem of
heterogeneity of effect sizes even after attempts to apply linear models with
observed variables have been undertaken. When the number of components
and their weights are estimated, it is also possible to classify the k studies un-
der investigation by posterior Bayes classification (see Böhning, 2000). The fit
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of the model applied to effect size data can also be assessed to give an impres-
sion of how well the estimated parameters serve to explain heterogeneity.

Of course, the application of mixture models to effect size data does not
guarantee that the user can easily interpret the composition of the components
suggested. Interpretation of results requires theorizing as well as speculation
about the nature of the latent variable. Replications and further research may
well be indicated to support or to question interpretation of results from mix-
ture analysis.

Evaluations of an early mixture approach to meta-analytic databases by
Thomas (1989b, 1990b) on the basis of Monte Carlo study results were quite
encouraging (see Law, 1992). In several situations of Law’s study, the proce-
dures proved to be quite accurate with respect to estimation of the weights and
the actual values of ρj. However, in identifying the proper number of compo-
nents there seemed to be room for enhancement of the procedures. Given that
improved algorithms and procedures have become available in recent years,
updated and more in-depth evaluations of the procedures seem to be desir-
able.

To conclude, as with many statistical techniques newly introduced to a field
of application, mixture models involve relatively complicated procedures and
estimation is by far not as easily done as with the procedures outlined for the
FE and RE models. However, in the case of mixture models there are easy-
to-use programs available so that estimation is feasible in practice and there-
fore not really much more complicated than with all other models (Böhning,
Schlattmann, & Lindzey, 1992; Schlattmann, Malzahn, & Böhning, 2003).

4.4 HIERARCHICAL LINEAR MODELS

In addition to the more standard FE and RE models and the more advanced
mixture distribution analysis presented in this chapter, there are other mod-
els available as well. These will not be treated in detail, but at least a rough
idea of their basics of conceptualization will certainly help in gaining a deeper
understanding of meta-analysis and potential modeling approaches. This sec-
tion describes the HLM approach. For a comprehensive overview of mod-
els, (estimation) methods, and issues in HLM that also includes meta-analysis
as a special case, the reader may consult the book by Raudenbush and Bryk
(2002). A more focused and succinct presentation on multilevel models for
meta-analysis is given by Hox and de Leeuw (2003), for example.

Hierarchical linear models (HLM) are a very general class of models that
may be applied not only in meta-analysis, but in a very large number of situa-
tions, all of which are characterized by different levels of data. The lowest level
of data in HLM is ordinarily the individual units level, that is, persons in an
observational or experimental study, for example (Level 0; see Figure 2.1). As
a result of primary analyses, some estimates for parameters of interest are ob-
tained and these are considered to constitute another level of data (Level 1). As
conceptually outlined in the previous sections, such estimates are the data for
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meta-analysis. If modeling of the study parameters (θi) is of interest, then we
have yet another level of data. This is the case, for example, in mixture model-
ing as presented in the previous section, where study parameters are thought
to arise from a mixing distribution. In sum, it is important to recognize and
differentiate levels of data as conceptualized in HLM.

Yet, the situation of meta-analysis is somewhat special from the perspective
of HLM. The data of individual units are not available and if they were, one
would most probably try to conduct secondary analyses or more specifically
a three-level analysis in HLM. The first level of interest in meta-analysis is
therefore at the study level and modeling takes place at a second level in order
to explain potential heterogeneity of effects (i.e., σ2

Θ 6= 0), for example.
To explain how the meta-analytical situation is modeled with HLM, con-

sider once more the situation a meta-analyst is confronted with. There are a
number of k study results, extracted from the literature on a certain research
question, and the task is to summarize them in a theoretically sound and —
for the research question — appropriate way. The following equation specifies
a model for the individual effect size data of the ith study, that is, a so-called
within-studies or Level 1 model by

Ti = θi + ei. (4.3)

The observed effect size is a realization of Ti for the ith study. It is conceived as
the sum of the corresponding universe parameter θi and an error component
denoted by ei. The error component represents random fluctuations, whereas
the universe parameter θi is a constant per study and hence specific for every
study i. As an alternative, one might as well assume θ1 = · · · = θk = θ as
is done in FE models. This additional assumption makes the FE model a spe-
cial case of HLM. The error component is ordinarily assumed to be normally
distributed with expected value of zero, that is, ei ∼ N (0, νi). The variance
of the error component νi can therefore be identified as error variance of the
estimator T and is assumed to be known in HLM of meta-analysis. This lat-
ter assumption results from the situation given in meta-analysis, where the
available data have to be gained from research reports and original data at the
individual level are not available.

For the case of correlational data, Equation 4.3 may be stated as ri = ρi + ei.
What is already known from the previous chapters is that for correlations as
effect sizes, the assumption of a normal distribution for the error component
is not tenable for sample sizes less than approximately 500. For this reason,
the correlation coefficient is ordinarily transformed into z-space by the Fisher-
z transformation for which the assumption of normally distributed errors may
be reasonable even for modest sample sizes. In addition, assuming the error
variance to be known is also well-founded in z-space since it only depends on
ni and no estimation is needed. Note, however, that νi would have to be esti-
mated for correlations and the error component variance involves the universe
parameter (see Equation 3.6 on page 26). Furthermore, correlations are biased
and the assumption E(ei) = 0 is not correct in a strict sense, though the bias
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may be negligible, especially for ρi close to zero (see Chapter 3). The same is
true for values resulting from the Fisher-z transformation. As will be shown in
later chapters, however, this transformation has some undesirable properties
making its use a problematic feature in HLM and meta-analysis in general.

In addition to the Level 1 model, the following Equation is of importance in
HLM. It specifies the Level 2 — or between studies — model as

θi = γ0 + γ1X1i + · · ·+ γLXLi + ui. (4.4)

The linear model stated in this equation includes a set of L regressors X all
of which are considered to be observed study characteristics in meta-analysis.
Examples for such variables include methodological quality scores and other
attributes coded in step 3 of a meta-analysis (see Chapter 2), like intensity
or duration of an experimental treatment, type of measurement instruments
used, and so forth, which are more of substantive interest. The parameters in
the equation are the intercept γ0 and the weights for the regressors γ1, . . . , γL.
These components of Equation 4.4 represent the explanatory part for the vari-
ability in θi. Additionally, there is a random effect component for each study
denoted by ui. This random effect represents each study’s universe parameter
θi deviation from the value predicted by the explanatory part of the model. The
random effect component is ordinarily assumed to be normally distributed as
U ∼ N (0, σ2

U) in HLM. This makes clear that the study parameters θi are con-
ceived as realizations of a random variable θ. Due to the fact that the model
includes fixed effects (the regressors) and a random effect (ui) the model is
referred to as a mixed model.

Substituting Equation 4.4 in Equation 4.3 results in

Ti = γ0 + ∑
l

γlXli + ui + ei. (4.5)

In this equation it becomes clear how variability of the observed effect size
measures Ti is decomposed in HLM. There is variance explained by the study
characteristics, there is residual variability due to a random effect, and also
variability due to sampling error. HLM is quite an attractive model for meta-
analysis that goes beyond the more standard models of fixed and random ef-
fects as outlined in Sections 4.1 and 4.2 by incorporating explanatory variables.
It includes, however, these more popular models as special cases. The gener-
ality of HLM is thus recognized by considering some special cases of Equation
4.5.

First, the FE model without explanatory variables was already shown to
be a special case. Second, consider Equation 4.5 without a random effect ui.
This basically is the fixed effects model in meta-analysis with regressors as
described by Hedges and Olkin (1985). Note that in such models there is, of
course, the supposition of variability in the Ti, but it is assumed to be explained
by the regressors so that only variability due to the error component remains.
Hence, σ2

U is assumed to be zero. One of the important features of HLM is that
such assumptions are testable. HLM therefore offers statistical tests in meta-
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analysis — in this specific case akin to the Q-test — to test critical assumptions.
Third, imagine there were no explanatory variables in Equation 4.5, so that

Ti = γ0 + ui + ei.

In this case, the model is equivalent to the RE model as presented in Section 4.2.
The intercept γ0 represents the mean effect size across all studies, the variabil-
ity of σ2

U would correspond to σ2
Θ, and the variability of ei is νi. As alluded to

before, tests and the construction of confidence intervals are possible by using
HLM to analyze a meta-analytic database.

However, HLM does not include all models presented in this chapter as spe-
cial cases. An important exception are mixture models. Although both models
aim at explaining potential heterogeneity of effect sizes, HLM incorporates ob-
served explanatory variables, whereas in mixture models such variables are
considered as latent. Hence, both models should be considered as comple-
mentary rather than competing.

Apart from their theoretical attractiveness, how well do HLM perform in
comparison to the more simple and much more popular standard FE and RE
models? Since different — likelihood-based — estimation algorithms are used
in HLM, it can not be taken for granted that they lead to the same or better
results as compared to standard models. Available Monte Carlo studies fo-
cusing on the standardized mean difference as an effect size show that HLM
methods compare quite favorably under some simulated conditions. Van den
Noortgate and Onghena (2003) have made such a comparison and showed that
HLM lead to very similar results vis-à-vis RE models for parameter estimates,
for example. Interestingly, they also pointed to some deficiencies in the testing
procedures, for instance, and concluded that HLM procedures do not unequiv-
ocally lead to better results in comparison to standard models. Nevertheless,
this does not belittle the virtue of model generality of HLM.

Finally, as important extensions of the basic HLM for meta-analysis, there
are multivariate models available which enable the meta-analyst to deal with
the otherwise difficult situation of multiple effect sizes per study, a case quite
often encountered in practice. Another important problem in meta-analysis,
namely missing data for regressor variables, can also be handled in a statisti-
cally sound way with HLM. All of these extensions are well beyond the scope
of interest in the present context. In addition to the book by Raudenbush and
Bryk (2002), the interested reader is referred to Kalaian and Raudenbush (1996)
for multivariate extensions.

4.5 CLASSES OF SITUATIONS FOR THE APPLICATION OF
META-ANALYSIS

The following presentation serves several purposes. It provides a taxonomy
of classes of situations that will more clearly elucidate potential forms of dis-
tributions in the universe of studies when correlation coefficients are used as
effect sizes. Furthermore, the conceptual distinctions to be introduced will also
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serve to concentrate the subsequent presentation on some of the members of
the classes of situations. Finally, the presentation specifies the distributions in
the universe of studies of concern in the third part of the book.

Against the background of the models introduced in the previous sections,
several distinct situations, henceforth denoted by S, can be identified. The
term situation is used throughout the present and the following chapters in a
generic sense to indicate distinct classes of universe effect size distributions.
In analogy to the presentation of mixture models in Section 4.3, the universe
effect sizes of the studies to be aggregated can be regarded as realizations ρ
of a random variable P. The expected value of this variable will be denoted
by E(P) = µρ and its variance by σ2

ρ . Suppose there is a total number of k
studies, so that we have ρ1, . . . , ρk. Then the situations to be described in the
following two paragraphs will be distinguished by the form and parameters
of the distribution of P, that is, the parent or mixing distribution. Two broad
types of classes can be differentiated here: discrete and continuous mixing
distributions.

Discrete Distributions. There is one important special case among the dis-
crete distributions that defines the first situation S1, namely a one-point dis-
tribution with probability mass 1 at the point of a single ρ0 in [−1, 1]. That
is,

P(ρ) =

{
1 if ρ = ρ0,
0 otherwise

This is the most simple distribution, where the universe of studies is charac-
terized by a single constant effect size ρ = ρ0 that gives rise to all observed
effect sizes. As a consequence, no variation of universe effect sizes is present
here (i.e., σ2

ρ = 0), a situation for which the FE model is appropriate. Since
all studies are identical with respect to ρ, a homogeneous situation is given. To
illustrate one instance of S1, assume ρ0 = .40. In this situation, the universe
parameter for all studies is .40 with probability 1 and the sampling distribution
of the observed correlation coefficients ri is exactly the same for all studies if
all studies have the same number of persons ni, that is, n1 = n2 = . . . = nk = n
(see Figure 4.2).

In the upper panel of Figure 4.2, a graph of the discrete density of the mixing
distribution is depicted. The probability mass is concentrated at the point ρ0 =
.40 and all other values of the interval from −1 to 1 have zero probability.
This universe parameter is underlying all studies so that the density of the
observed coefficients is the same for all studies. This density is depicted in the
lower panel of Figure 4.2. Here it is assumed that in all studies an n of 50 is
given. The conditional density f (r|P = ρ0) depicted in the lower panel is —
although it looks like a normal distribution at first glance — the exact density
given by Hotelling (1953) (see page 21). Accordingly, the distribution of the
random variable Ri for the observed effect sizes is fully determined by ρ0 and
the number of participants n in the k studies to be aggregated. In effect, one
can argue that there is nothing to differentiate on the level of the universe in



50 General Frameworks

-1.0 -0.6 -0.2 0.2 0.6 1.0-0.8 -0.4 0.0 0.4 0.8

0.1

0.3

0.5

0.7

0.9

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.6 -0.2 0.2 0.6 1.0-0.8 -0.4 0.0 0.4 0.8

0.5

1.5

2.5

3.5

0.0

1.0

2.0

3.0

4.0

gives rise to

P
ro

b
a

b
il

it
y

M
a

ss
D

en
si

ty

ρ

r

Figure 4.2 Example of S1, ρ0 = .40 and n = 50.

the upper panel and there is also no need to set sampling distributions apart
as long as all the studies have the same n. This is entirely true for a fixed
effects model and it will become evident that the differentiations were made
for conceptual reasons.

The situation depicted in Figure 4.2 is highly restricted with respect to the
distribution of the values in the universe and one might wonder whether S1
is relevant at all for the present study. However, as already noted it is ac-
tually the most often assumed model in published meta-analyses. Although
this assumption is rarely explicitly stated, it is implied by the application of
FE methods in meta-analysis as described in Chapter 5. Furthermore, albeit
not plausible as a model for most research situations in psychology, there may
be cases for which the FE model seems appropriate for theoretical reasons or
based on research experience. Even though strict replications — for which the
FE model would be a perfectly reasonable model — regrettably are exceptions
in the social sciences, there are at least some fields like personnel selection for
which a homogeneity “at the level of substantive population parameters” can
be assumed on the basis of research experience (Hunter & Schmidt, 2000, p.
276; see also Schmidt et al., 1993).

In the second class of situations with a discrete distribution S2, two subpop-
ulations are present at the the universe level. They are characterized by two
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Figure 4.3 Example of S2, ρ1 = .00, ρ2 = .40, and n = 32.

discrete and distinct values ρ1 and ρ2 in [−1, 1]. Specifically,

P(ρ) =


.50 if ρ = ρ1,
.50 if ρ = ρ2,
0 otherwise

(4.6)

The variance of P is different from zero in this situation but P can only take
on two values. This is clearly a heterogeneous case. The following presentation
will exclusively be restricted to instances in which P(P = ρ1) = P(P = ρ2) =
.50, so that P(P = ρ1) + P(P = ρ2) = 1, of course. Both values ρ1 and ρ2 are
therefore equally likely to occur. Hence, it is assumed that the k studies to be
aggregated are sampled with equal proportions from one of the two classes,
respectively. Of course, different cases of discrete two-point distributions with
unequal probability masses can easily be imagined but for convenience the
presentation will be restricted to the special case indicated. An example for S2
with values ρ1 = .00, ρ2 = .40 and n = 32 for the studies in both groups is
depicted in Figure 4.3.

The upper panel of Figure 4.3 again shows the distribution of the effect sizes
in the universe of studies, now with equal probabilities of .50 for both compo-
nents. The mixture distribution arising from this mixing distribution is de-
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picted in the lower panel of Figure 4.3. Here, it becomes evident how multiple
mode or extremely skewed empirical distributions of correlation coefficients
may arise in practice. Again, the mixture distribution is derived from the exact
density of the correlation coefficient given by Hotelling (1953). Drawing on the
notation introduced in Section 4.3, a variable P is given taking on two possible
values ρ1 and ρ2. It describes the membership of the subgroups in the universe
of studies as in Equation 4.6. As usual in mixture distribution analysis, the
unconditional density is given by

f (r|n) = P(ρ1)× f (r|ρ1, n) + P(ρ2)× f (r|ρ2, n)

This density is depicted in the lower panel of Figure 4.3 for n = 32 in the
studies of both classes.

As an interpretation from a substantive viewpoint, the heterogeneous case
of S2 can be interpreted as corresponding to research situations in which there
is an unobserved discrete variable P that moderates the research results. Of
course, if one knew about this variable — especially if it could be represented
or approximated by observed characteristics of the studies under investigation
— efforts to model effect size differences within the framework of HLM or
to identify the subgroups by mixture analyses would certainly be indicated.
However, it is not the aim of the present investigation to evaluate explanatory
models7 in meta-analysis (for a Monte Carlo study on this topic, see Overton,
1998). Instead, it will be assessed how the most often applied methods of meta-
analysis perform when data is collected in the heterogeneous situation S2. It
is argued that it is far from an uncommon situation that a moderator goes
unrecognized in a meta-analysis or that estimates of mean effect sizes using the
FE model are presented in heterogeneous situations (for a series of examples,
see Hunter & Schmidt, 2000).

The question arises in such cases whether an estimate of a mean effect size
is sensible at all and if so, how such reported mean effect sizes are to be in-
terpreted. This is not an easy question to answer because it depends on the
parameter one intends to estimate and the kind of inference to be made. The
presence of heterogeneity per se as in the given situation does not necessarily
preclude the reasonable application of fixed effects analysis (Hedges & Vevea,
1998) and the computation of a mean effect size. If one wishes to characterize
the study sample with the given characteristics and no further inference is in-
tended, then it is perfectly reasonable to apply fixed effects methods, but the
interpretation of test results has to be restricted to studies like those in the sam-
ple (see also Section 4.2). The mean effect size that results from applying these
procedures is intended to estimate the expected value of the effect size distri-
bution in the universe of studies, just like the grand mean in ANOVA analyses,
and has to be interpreted in a similar way in heterogeneous situations. Thus, it

7Such regression-type models are also known as “moderator analysis” in the social sciences
literature. Most often, such regression-type models do not include a random component (ui)
and can therefore be considered to be a special case of the more general HLM for meta-analysis.
These special cases are known as “meta-regression” in the medical literature.



CLASSES OF SITUATIONS FOR THE APPLICATION OF META-ANALYSIS 53

has to be conceived as a mean of potentially very different values of universe
effect sizes. Any of such mean effect sizes is therefore ambiguous in the sense
that vastly different ρ1 and ρ2 might yield the same mean effect size. Neverthe-
less, though ambiguous, a value of .45 for the relationship between attitudes
and behavior, for example, can be considered as informative when the addi-
tional assumption that the values in the universe of studies are not very dif-
ferent is tenable. Hence, the question whether such values make sense is not a
statistical one but has to be answered by the researcher who applies such pro-
cedures. Consider yet another example. If interest lies in the predictive valid-
ity of a personnel selection procedure in country A in comparison to country
B, then one would synthesize all results from applications in these countries
separately and make a comparison of estimated mean validities at this level of
aggregation. Of course, there may be differences in validities within countries,
but these are not of interest for the comparison as long as differences within
countries occur equally in both groups.

These remarks are definitely not intended to argue in favor of fixed effects
analyses or in any way against the application of explanatory models within
HLM, for example. Instead, they only illustrate that an estimate of a mean
effect size can indeed make sense in heterogeneous situations like S2 in the
way just described.

Continuous Distributions. The third class of situations S3 is characterized
by a continuous distribution of the correlation coefficients in the universe of
studies. The realizations of P do not take on any restricted or discrete set of
values in the universe but are spread over the entire interval from −1 to 1.
The kind of spread is described by a continuous density f . The form of this
distribution is ordinarily unknown but it is often assumed to be a normal dis-
tribution (Lau et al., 1998). There may be several reasons why the normal dis-
tribution is chosen. First, lack of prior knowledge about the exact composition
of a presumed myriad of influences that determine the effect sizes in a class
of research situations, and arguments in analogy to the central limit theorem
let the normal distribution appear as a good guess for the distribution at least.
Second, especially in situations where effect sizes that can be shown to have
a normal sampling distribution are of concern it seems reasonable, again by
way of analogy, to assume the same distribution for the universe effect sizes
as for its sampling counterpart. Finally, familiarity with and ease of statistical
tractability of the normal distribution also contribute to the fact that it is chosen
quite often as the distribution of universe effects sizes. Although none of these
reasons is essentially compelling there are no cogent alternatives available in
such a state of lack of knowledge.

However, for the present case of correlations as effect size data it would
be implausible to assume a normal distribution for the universe correlations,
due to the fact that the range of these coefficients is bounded by the values
−1 and 1. Especially when high absolute values are of particular interest, the
normal distribution would provide invalid values larger than 1 or less than
−1. The normal distribution has nevertheless been used in simulation studies
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of meta-analyses to generate values of the universe correlation coefficient (e.g.,
Overton, 1998).

The question arises which continuous distribution might be considered in-
stead of the normal distribution. Several such distributions were considered
as candidates which had to — as was the case with the normal distribution
— appear as reasonable for the distribution of the effect sizes in the universe.
They also had to conform to the requirement of being supported by the inter-
val [−1, 1]. The family of beta distributions was finally considered to be the
most sensible choice. It was chosen because its parameters can be adjusted to
yield a series of very different distributions on the desired interval. The great
flexibility of the beta distribution and the ease of its tractability also made it
particularly useful for the present purpose (see also Hedges, 1989). Moreover,
the parameters of the beta distribution can be chosen so that the distribution is
symmetrical at ρ = 0 with an increasing skew for larger values of ρ (in absolute
terms). Such distributions resemble the sampling distribution of the correla-
tion coefficients ri (see Section 7.3). To illustrate, Figure 4.4 depicts a series of
beta distributions which show the properties just mentioned.
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Figure 4.4 Beta-Distributions in S3 with varying µρ from µρ = −.80 to µρ = .80 in
increments of .20, σρ = .15 for all distributions.

The parameters of the beta distributions shown in Figure 4.4 were chosen to
have different expected values µρ from−.80 to .80 in increments of .20 but with
a constant standard deviation of σρ = .15. As is evident from the distributions
given, their forms do at least seem plausible for the given range of ρs.

In the Monte Carlo study to be presented, the family of beta distributions
will be considered as the distribution of effect sizes in the universe of studies
in S3. The following theoretical examinations will often abstract from the spe-
cific distributional form but sometimes the beta distribution will be used for
illustration purposes.


