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3
Effect Sizes

In the following sections the type of data used for meta-analysis, the so-called
effect sizes, and their statistical characteristics are introduced. The focus here
will be laid on measures of effect sizes that are typical research outcomes in
the social and behavioral sciences, especially in the field of psychology. Other
measures will only be treated in passing. The statistical models to be applied to
this form of data will then be presented in detail followed by sections on spe-
cific statistical approaches to meta-analysis that can count as the most common
applied in research up to date.

The study of a series of research articles in any field of psychology still
leaves the impression that the main goal of applying statistical methods is pre-
dominantly testing of null hypotheses (Vacha-Haase, Nilsson, Reetz, Lance,
& Thompson, 2000). This seems surprising given the high information value
ordinarily attached to effect sizes (but see Chow, 1988), and policies articu-
lated by large psychological organizations — like the American Psychological
Association — are clearly in favor of reporting effect sizes in research articles
(American Psychological Association, 2001; Wilkinson & Task Force on Sta-
tistical Inference, 1999). However, a recent study on the editorial policies of
the reporting practices has revealed that these policies still have not been fully
adopted by editors of major research journals in psychology (Vacha-Haase et
al., 2000). Hence, encouragement to report effect sizes is not translated into ac-
tion. Yet there are also reasons to believe that simple calls for the reporting of
effect sizes in publications may not be sufficient to eliminate bias of published
results (Lane & Dunlap, 1978).

The lack of reporting effect sizes poses a problem for the meta-analyst be-
cause the data to be analyzed are often not readily available from study reports.
As a result, effect sizes have to be extracted from research reports when suffi-
cient information is available. There is a host of publications which illustrate
that this aim may not always easily be achieved (see, e.g., Olejnik & Algina,
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2000; Rosnow & Rosenthal, 1996; Seifert, 1991). Furthermore, design charac-
teristics also have to be taken into account when extracting an effect size, oth-
erwise wrong measures may result (Dunlap, Cortina, Vaslow, & Burke, 1996;
Morris & DeShon, 1997). In a reanalysis of 140 studies on psychosocial treat-
ments or prevention studies in psychology Ray and Shadish (1996) have shown
that different techniques to extract effect size information, proposed in the lit-
erature, lead to different magnitudes of effect sizes. Moreover, Matt (1989) has
shown that judgmental factors in extracting effect sizes also play an important
role for the establishment of a database for meta-analysis. In sum, there re-
main several problems in extracting the relevant information for effect sizes in
some areas of research. The techniques for aggregation of effect sizes, to be
introduced, presume that there is a database of effect sizes already available
and problems of the form just described are not of relevance.

The next section provides an overview of certain families of effect size mea-
sures that are most common in psychology. The focus here will be laid on
the correlation coefficient as an effect size. A second common measure, the
standardized mean difference, will also be considered. These two effect size
measures are by far not the only available to researchers, but they are those
of highest importance for the present purpose of evaluating meta-analytical
approaches in psychology.

The effect sizes of interest in the present context belong to two families, the
r and the d family (Rosenthal, 1994). In short, they are comprised of correlation
coefficients on the one hand and standardized mean differences on the other.
They can both be characterized by one of the main features of effect sizes, the
provision of a standardized measure for an effect of interest. First, focus will
be on the correlation coefficient.

3.1 CORRELATION COEFFICIENTS AS EFFECT SIZES

The sample correlation coefficient r, usually designated as the Pearson product
moment correlation, is based on n pairs (xo, yo), o = 1, . . . , n, of observations
and is given by

r =

n
∑

o=1
(xo − x) (yo − y)√

n
∑

o=1
(xo − x)2

√
n
∑

o=1
(yo − y)2

.

The corresponding pair of random variables for (xo, yo) is (X, Y). Here, and
in what follows, it should be noted that the correlation coefficient can also be
considered as a random variable based on the variates X and Y. This will occa-
sionally be highlighted in the following by the symbol R, although the symbol
r will predominantly be used. It will be clear from the context when r should
be understood as a random variable and when it should only be considered as
a sample statistic.
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The corresponding population correlation coefficient ρ is given by

ρ =
E ((X − E[X]) (Y − E[Y]))

σXσY
.

As is easily seen from these equations, the correlation coefficient can also be
regarded as the covariance of standardized variables. Hence, it is extremely
useful for measurement at the interval scale level because it is invariant with
respect to — not necessarily the same — positive linear transformations of the
variables. This is exactly what is most frequently intended by the computation
of effect sizes in psychology, to express an effect free from the influence of
specific standard deviations of measurement instruments. What is commonly
viewed in the behavioral sciences as an advantage of effect sizes, namely to
represent the size of an effect irrespective of the scale it is measured on, has
also raised questions about the meaning of the resulting scale-free measures
(Feinstein, 1995).

The question arises how the variate r may be distributed. Fortunately, it is
well-known that r is approximately normally distributed with large samples.
However, convergence of the distribution is very slow and it is said to be un-
wise to assume it for n < 500 (Stuart, Ord, & Arnold, 1999, p. 481), a case most
frequently encountered in practice. The distribution of r is a very complicated
statistical topic that cannot be fully dealt with here (for overviews, see Johnson,
Kotz, & Balakrishnan, 1995; Stuart & Ord, 1994). The focus of the following
presentation will therefore be on aspects of importance to meta-analysis. That
is, first, the distribution of r when the pair (X, Y) follows a bivariate normal
distribution, and second, point estimation of ρ.

The exact probability density function (PDF) of the distribution of R for r in
the interval [−1, 1] is given in the seminal paper by Hotelling (1953, p. 200) as1

pR(r) =
df

π
√

2
(1− r2)

df
2 −1(1− rρ)−df−1

2 (1− ρ2)
df +1

2

× B(df +1, 1
2) 2F1(1

2 , 1
2 ; df +3

2 ; 1
2(rρ + 1))

(3.1)

where B denotes the complete Beta function, df = n − 2, and 2F1 is the Gaus-
sian hypergeometric function:

2F1(a1, a2; a3; a4) =
∞

∑
v=0

Γ(a1 + v)Γ(a2 + v)Γ(a3)
Γ(a1)Γ(a2)Γ(a3 + v)

av
4

v!
.

In this formula, Γ represents the Euler Γ function. There are also some different
forms of the density to be found in the literature based on different derivations

1Note that the exact form given by Hotelling differs somewhat from the form given here which
better fits in the notation already introduced. The equivalence between both forms is seen by
noting that n is in Hotelling’s paper the symbol for the degrees of freedom and by noticing the
following equivalencies: B(a, b) = Γ(a)Γ(b)

Γ(a+b) , Γ(0.5) =
√

π, and Γ(a + 1) = aΓ(a).
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(see Johnson, Kotz, & Balakrishnan, 1995), but the presentation here will focus
on the one provided in Equation 3.1.

Obviously, using this distribution for tests of correlation coefficients is not
feasible when ρ 6= 0. Only for ρ = 0 is r distributed as t with n− 2 degrees of
freedom, and hence tractable. However, interest in the present context also lies
on the nonnull distribution of r. For testing purposes, various approximations
to the distribution of the correlation coefficient have been proposed. A series
of these approximations will be presented as well as evaluated. Results are
reported in Subsection 7.5.1 of Chapter 7, so that a discussion of most of these
approximations is postponed. Nevertheless, one of these approximations will
be introduced at this point because of its high relevance for the approaches of
meta-analysis to be presented in Chapter 5.

The most popular approximation was given by Fisher (1921)2 who also de-
rived the distribution in the bivariate normal case (Fisher, 1915). He suggested
the following transformation to be applied to the correlation coefficient

z = tanh−1 r =
1
2

ln
1 + r
1− r

. (3.2)

In analogy to the case of the correlation coefficient, z can be considered as a
random variable Z, but it will be denoted by a lowercase z in most of what
follows. The corresponding transformation for the population correlation ρ is

ζ = tanh−1 ρ =
1
2

ln
1 + ρ

1− ρ
.

As an inverse transformation

r = tanh z =
exp (2z)− 1
exp (2z) + 1

(3.3)

is specified for the correlation coefficient, and, again, a corresponding trans-
formation for the population correlation given by

ρ = tanh ζ =
exp (2ζ)− 1
exp (2ζ) + 1

.

What happens to the correlation coefficients when the Fisher-z transforma-
tion is applied? In Figure 3.1, the transformation provided by Fisher is illus-
trated. As can be seen, the transformation stretches the values in the boundary
regions. Furthermore, the possible values of z are not bounded by −1 and 1, as
is the case for the correlation coefficient. Instead, they span the whole interval
[−∞, +∞].

What are the main virtues of applying the Fisher-z transformation to corre-
lation coefficients? First, the transformed correlation coefficient (z) is approxi-
mately normally distributed. That is, the result from stretching the values is to

2See also Konishi (1978, 1981) for a more concise derivation.
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Figure 3.1 The r to Fisher-z transformation.

achieve an approximate normal distribution. In contrast to the distribution of
r, the distribution of z converges to normality very much faster.

A second benefit of applying the transformation is stabilization of the vari-
ance. This can be seen from Equation 3.4 which gives the approximate variance
of Z

σ2
Z ≈

1
n− 3

. (3.4)

The variance of z is stable in the sense that it does not depend on the parameter
ζ but only on the sample size n. As will be seen, this highly desirable feature
stands in contrast to the variance of r, which does depend on the population
parameter.

The approximate variance of z can easily be computed in practical applica-
tions and used for tests as well as for the construction of approximate confi-
dence intervals for ζ, a third beneficial aspect of the transformation. Construc-
tion of confidence intervals is easy because it is possible to draw on the normal
distribution to find the interval limits. Having found the confidence limits for
ζ, it is also possible to transform them to limits for ρ, a procedure that will
be outlined in the context of presenting the various statistical approaches to
meta-analysis in Chapter 5. The possibility to conduct a statistical test as well
as to construct confidence intervals is the main reason why this approximation
is so popular in practice.

In sum, by applying the transformation to the correlation coefficient it can
be said that one changes spaces. That is, the examination of the linear rela-
tionship between two variables starts in the space of r with random variable
R and population parameter ρ. The transformation leads to an examination in
the space of z with random variable Z and population parameter ζ. The whole
purpose of applying the transformation is to make inferences about the pop-
ulation parameter ρ by exploiting desirable properties in the space of z, and
thereby avoiding to deal with the complicated PDF.

Apart from examining the distribution of r and its approximation, the ques-
tion arises whether the Pearson product moment correlation constitutes an un-
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biased estimator of the effect. That is, whether the equality E(r) = ρ holds for
all ρ. This is not the case, and r is therefore a biased estimator of ρ. Hotelling
(1953) provided the moments of r about ρ of which the first moment (Ξ1 =
E(r− ρ)) is given as

Ξ1 =
(

1− ρ2
)(

− ρ

2(n− 1)
+

ρ− 9ρ3

8(n− 1)2 +
ρ + 42ρ3 − 75ρ5

16(n− 1)3 + . . .
)

(Hotelling, 1953, p. 212). The bias is usually approximated by truncation of the
series, resulting in

Ξ1 = −ρ(1− ρ2)
2(n− 1)

.

This is the well known formula for the negative bias of r as an estimator of
positive ρ. To compensate for this bias in r one could apply the following
correction

r∗ = r +
r(1− r2)
2(n− 1)

,

which is almost identical to an approximation to the unique minimum vari-
ance unbiased (UMVU) estimator by Olkin and Pratt (1958) to be presented
below (page 26).

Hotelling (1953) also provided the moments of z about ζ, of which, again,
only the first moment is given here

κ1 =
ρ

2(n− 1)
+

5ρ + 9ρ3

8(n− 1)2 +
11ρ + 2ρ3 + 3ρ5

16(n− 1)3 + . . .

As is obvious, a positive bias of Fisher-z for positive ρ is present here. A ques-
tion that was discussed in the literature of meta-analysis with correlations as
effect sizes is which of the biases is smaller in absolute value. Whereas Hunter
and Schmidt (1990) claimed to have shown a smaller absolute bias of r in com-
parison to z, Corey, Dunlap, and Burke (1998) reported results of a Monte
Carlo study in which they found the opposite result. Using the formulae given
by Hotelling and truncating the series, the biases of the two estimators can be
evaluated. For a direct comparison, the biases resulting from the formula for
κ1 were transformed into the space of r by the inverse Fisher-z transformation
given in Equation 3.3 and plugging in κ1 for z. In Figure 3.2 the resulting biases
are illustrated.

The bias of both r and z for ρ is shown across different values for ρ as well
as sample sizes n in the left panel of Figure 3.2. As can be seen, the bias of
both estimators vanishes at ρ = 0. The light surface in this graph depicts the
the biases of r and the shaded surface those of z. With higher values of ρ the
bias continuously increases for z, whereas the bias of r attains its maximum
at ρ ≈ .583 for positive ρ and at ρ ≈ −.583 for negative ρ. The right panel
provides absolute differences in biases with positive values indicating higher
biases for z. All values of the difference surface indicate higher bias for z,
except for ρ = 0, thus z has a larger approximate bias in comparison to r.
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Figure 3.2 Bias of r and z in comparison. The left panel shows the bias for r (light
surface) and z (shaded surface). The right panel shows the absolute difference surface
for the biases.

In the methodological literature on meta-analysis based on correlational
data, the use of Fisher-z versus r as estimators of ρ has attracted consider-
able attention, especially in the validity generalization literature (e.g., Corey
et al., 1998; Law, 1995; Schmidt, Hunter, & Raju, 1988; Silver & Dunlap, 1987),
and the bias of these statistics has been quite a controversial issue (see Hunter
& Schmidt, 1990; James, Demaree, & Mulaik, 1986). As shown here, it is ex-
pected that Fisher-z will exhibit a larger bias from a theoretical point of view.
In the Monte Carlo study to be presented in Chapter 7 and 8, it will be exam-
ined whether these expectations hold under the conditions of the simulation
procedure.

Hotelling proposed several improvements of the Fisher-z transformation.
First, he suggested the substraction of r/(2n − 3) from z when ρ is unknown
to correct for its positive bias (Hotelling, 1953, p. 219). This correction was
evaluated in a Monte Carlo study by Paul (1988), who concluded that for the
estimation of ρ < .50 the modification of Hotelling performed best amongst
the estimators he considered, and for ρ > .50 Fisher-z performed best. Alexan-
der, Hanges, and Alliger (1985), in contrast, found no substantial differences
between these estimators in their Monte Carlo study.

A further improvement was proposed by Hotelling (1953, p. 224) as

z∗∗ = z− 3z + r
4(n− 1)

− 23z + 33r− 5r3

96(n− 1)2 ,

however the quality of this modification has not been sufficiently evaluated to
date.

In contrast to these procedures, some authors in the methodological litera-
ture of meta-analysis, for example, Erez, Bloom, and Wells (1996, p. 288), and
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Overton (1998, p. 358) used the correction

r# = r− r(1− r2)
2n

to compensate for the positive bias in z. This correction was followed by an
application of the Fisher-z transformation in both authors’ work. Although
this procedure obviously lowers the positive bias of z, it is of unclear origin and
lacks a clear rationale from a statistical viewpoint. Because at least Erez et al.
(1996) attributed the correction to Hotelling (1953), it may be speculated that
(a variant of) Ξ1 was used to correct the bias in z. How this flaw in procedure
affects their results is however unclear.

As an important contribution to the statistical literature of estimators of ρ,
the UMVU estimator was presented as

G = r×2 F1

(
1
2 , 1

2 ; n−2
2 ; 1− r2

)
(3.5)

by Olkin and Pratt (1958, p. 202). The following formula gives an approxima-
tion of G

G = r
(

1 +
1− r2

2 (n− 1− 3)

)
(Olkin & Pratt, 1958, p. 203). G has the same range and asymptotic distribution
as r, but larger variance and smaller mean-squared error in general (Hedges &
Olkin, 1985, p. 226). Surprisingly, although this estimator has very desirable
properties from a statistical viewpoint, it is not widely used in the literature.
This may be due to unawareness or due to statements in the literature that not
much can be gained from an application of the correction of r (Hedges, 1989).
It is expected from the statistical properties of this estimator that its usage will
lead to a minimum bias among the estimators in the Monte Carlo study to be
presented.

In addition to the bias of an estimator, its variance is also of great importance
for meta-analysis. The variance of r is usually approximated in practice as

σ2
R ≈

(
1− ρ2)2

n− 1
(3.6)

which is Ξ2, the second moment about ρ presented by Hotelling (1953, p. 212)
truncated after the first term in the series. In practice, this approximation is
used by plugging in r for ρ in order to estimate the variance. This may, how-
ever, not be a good approximation. The reason for this is not only truncation,
but most importantly the very slow convergence of the distribution of r to the
normal distribution. As will be noticed, ρ (or in practical applications r) itself
is involved in the variance approximation. In Figure 3.3 the dependency of σ2

R
on ρ is illustrated. As can easily be seen in this figure, the variance is at max-
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Figure 3.3 Variance of r across different values of ρ and n.

imum when ρ = 0, across all values of n. The variance changes maximally at
ρ ≈ .577 for positive values3 of ρ.

The variance of G, in contrast, can be estimated by

σ̂2
G = G2 − 1 +

(n− 3)(1− r2)2F1
(
1, 1; n

2 ; 1− r2)
n− 2

(3.7)

(Hedges, 1988, p. 198; see also Hedges, 1989, p. 477). Again, the variance of
the estimator is dependent on the parameter, though not as apparent as in the
previous case. Figure 3.4 illustrates the relationship.
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Figure 3.4 Variance of G across different values of ρ and n.

By way of comparison of Figures 3.3 and 3.4 it becomes clear that although
the relationships are similar in form they are actually quite different with a
stronger change in variance for G. The largest change in variance occurs at
ρ = .347.

3This value results from taking the partial derivative of the variance and finding its minimum.
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Up to this point, only the Pearson correlation coefficient has been examined,
but there are several other correlation coefficients in the r family available (see
Rosenthal, 1994; Rosenthal, Rosnow, & Rubin, 2000). The properties of other
indices, like the point-biserial, biserial or rank correlation coefficient, for exam-
ple, are not of concern here as only the correlation coefficient for the bivariate
normal case is under scrutiny. For the distribution theory and examinations of
the robustness of the coefficients reported in this book the reader is referred to
Johnson, Kotz, and Balakrishnan (1995).

3.2 STANDARDIZED MEAN DIFFERENCES AS EFFECT
SIZES

As previously mentioned, a second common effect size measure in the psy-
chological literature is the standardized mean difference. It is mostly used in
a situation when two groups of participants are examined and differences of
means are of interest. More succinctly,

Xo1 ∼ N (µ1, σ2) o1 = 1, . . . , n1,

and
Yo2 ∼ N (µ2, σ2) o2 = 1, . . . , n2.

That is, both random variables are assumed to be normally distributed with
common standard deviation σ but not necessarily with the same number of
observations n. For this case, the effect size — also known as Cohen’s d (Cohen,
1988) — is defined as

δ =
µ1 − µ2

σ
.

The estimators proposed in this family are different with respect to the
choice of the standard deviation (S). They are all computed by the generic
form

X −Y
S

and therefore represent a standardized measure of the effect. There are three
popular coefficients that are presented here. The first will be denoted by d
and results from inserting the pooled estimate of the standard deviation in the
denominator of Equation 3.8. The pooled estimate Spool is given by

Spool =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
,

where S1 and S2 are the sample standard deviations for X and Y, respectively.
Therefore,

d =
X −Y
Spool

. (3.8)
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Another estimator was proposed by Glass (1976; see also Glass et al., 1981)
and will be denoted by d′. It is given by inserting Scon in the denominator of
Equation 3.8, where Scon represents the standard deviation of a control group.
The control group is ordinarily chosen as the reference group in a two-group
experimental setting.

Both d and d′ have a distribution related to the noncentral t distribution (see
Hedges, 1981; Hedges & Olkin, 1985). Let

ñ =
n1n2

n1 + n2
,

then
√

ñd and
√

ñd′ follow a noncentral t distribution with noncentrality pa-
rameter τ =

√
ñδ. Bias as well as variance of d are smaller than those of d′

(Hedges & Olkin, 1985). The focus will therefore be on d.
The expected value of d is given by Hedges (1981) as

E(d) =
δ

f (m)
,

where m = n1 + n2 − 2 and

f (m) =
Γ
(m

2

)√
m
2 Γ
(

m−1
2

) .

Hedges (1981) also derived an unbiased estimator d′′ of δ by drawing on this
result. It is given as an approximation in the following equation

d′′ = d×
(

1− 3
4(n1 + n2)− 9

)
.

This is also the UMVU estimator when n1 = n2 (Hedges, 1981). Further prop-
erties of this estimator are not given here as the focus is on the more common
estimator d.

The asymptotic distribution of d is normal with expected value δ. The
asymptotic variance of the random variable d is given by

σ2
D =

n1 + n2

n1n2
+

δ2

2 (n1 + n2)
(3.9)

(Hedges & Olkin, 1985, p. 86, Equation 15). Customarily, the variance is esti-
mated by plugging in d for δ in practical applications. For an equal number of
persons in both groups, this variance estimate based on Equation 3.9 reduces
to

σ̂2
D =

4 + d2

n
, (3.10)
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Figure 3.5 Variance of d across different values of δ and n.

where n1 + n2 = n. As can easily be seen from these equations, the variance
(estimate) depends on the population parameter (or d) itself as was the case
for the correlation coefficient. To provide an impression of this dependency,
consider Figure 3.5.

As can be seen, the relationship between δ and the variance of the estimator
is quite strong for large absolute values of δ and different in shape in compari-
son to the relationships previously examined for correlation coefficients. Since
these variances play a central role in meta-analyses using d as an effect size,
this may have unwanted effects on the results.

The details on the r and d families of effect sizes necessary for the present
purposes are outlined at this point. Discussion will now turn to the question
of the relation between r and d measures.

3.3 CONVERSION OF EFFECT SIZES

The conversion of effect sizes is one of the central features of meta-analysis.
Effect sizes have always to be converted when the database does not provide
coefficients from the same family. For example, it may be the case that one
half of available studies reports the results from experiments and therefore d
values4, whereas the other half has observed the bivariate linear relationship
between variables of interest and reports r values. The question arises in such
cases how different effect size measures may be analyzed in a single meta-
analysis.

Conversions of effect sizes are intended to homogenize the database to one
single effect size (family). A host of conversion formulae for the various spe-
cific effect sizes has been presented to date, that will not be repeated here (see,
e.g., Olejnik & Algina, 2000; Rosenthal, 1994). Instead, only the following for-
mulae for the conversion of the Pearson correlation coefficient and the stan-

4Depending on the design, other indices than the d as introduced here may be appropriate.
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Figure 3.6 The r to d transformation.

dardized effects size measure d will be presented. They are given in various
resources for the case of equal group sizes (i.e., n1 = n2) as

r =

√
d2

d2 + 4
(3.11)

and
d =

2r√
(1− r2)

(3.12)

(e.g., Cohen, 1988; Hedges & Olkin, 1985; Lipsey & Wilson, 2001; Rosenthal,
1991). The conversion with Equation 3.12 is illustrated in Figure 3.6.

In Figure 3.6 it can be seen that the conversion of r to d has a similar shape in
comparison to the Fisher-z transformation presented in Figure 3.1 but is much
steeper in the tails. This suggests a normalizing transformation of the corre-
lation coefficient as was the case for the Fisher-z transformation but may not
result in an equally good normal approximation. Conversely, a transformation
of d to r leads to relatively large differences in the space of r for values near
zero being relatively close to each other, but large differences far from zero
translate into small differences in absolute values of r.

Aaron, Kromrey, and Ferron (1998) provided a derivation of the conversion
for equal n that slightly differs from Equation 3.11

r =

√
d2

d2 + 4− 8
n

,

where n = n1 + n2. For the case of unequal n they proposed

r =

√√√√ d2

d2 + (n1+n2)2−2(n1+n2)
n1n2

.
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The authors also showed that discrepancies exist between their corrected for-
mulae and results from Equation 3.11. The reported differences were consid-
ered as negligible for the balanced case when n > 50.

However, it is not clear from Aaron et al.’s (1998) presentation whether their
corrected formulae provide more accurate procedures for estimating the corre-
lation coefficient by way of d. As is the case for the standard formula in Equa-
tion 3.11, their derivation also draws on the null distribution of both effect sizes
that is approximately t with n − 2 degrees of freedom. Assuming both effect
sizes to have an equal distribution seems to be only justified in this case. Yet,
for the nonnull case (i.e., ρ 6= 0 and δ 6= 0), neither the distribution of r nor
the distribution of d is exactly (noncentral) t. As a consequence, there is no
statistical derivation available for the conversion of r to d or vice versa for the
nonnull case. Hence, when there is a lack of a standard for comparison, there
is no way to theoretically evaluate the quality of the conversion formulae.

One possibility for evaluation, that is pursued in the following Monte Carlo
study, is to apply the conversion proposed in Equation 3.11 to simulated data
and study the behavior of converted statistics. This will enable the exami-
nation of the implicit assumption, by the widespread application of Equation
3.11, that the conversion itself does not have any influence on the results in
meta-analysis.


