Nomenclature

В	Complete Beta function, page 21
С	Number of components in mixture analysis, page 43
d	Standardized mean difference, page 29
δ	Population standardized mean difference, page 28
Δho	Difference between ρ_1 and ρ_2 in \mathfrak{S}_2 , page 125
DSL	Approach proposed by DerSimonian and Laird (1986), page 71
$_{2}F_{1}$	Gaussian hypergeometric function, page 21
FE	Fixed effects (model), page 35
G	Unique minimum variance unbiased estimator of ρ , page 26
8	Standard normal deviate, page 58
gα	Critical value for a prespecified α -level from a standard normal distribution to construct two-sided confidence intervals, page 37
Г	Euler Gamma function, page 21
HLM	Hierarchical linear models, page 45
HOd	Approach proposed by Hedges and Olkin (1985) based on d as resulting from an r to d transformation, page 59
HOr	Approach proposed by Hedges and Olkin (1985) based on Fisher-z trans- formed correlations, page 57
HOT	Approach proposed by Hedges and Olkin (1985) based on a corrected average <i>z</i> as suggested by Hotelling (1953), page 58
HS	Approach proposed by Hunter and Schmidt (1990), page 62
HS1	HS approach employing version 1 of the estimator for the sampling vari- ance of the mean effect size, page 65
HS2	HS approach employing version 2 of the estimator for the sampling vari- ance of the mean effect size, page 65
HS3	HS approach employing version 3 of the estimator for the sampling vari- ance of the mean effect size, page 66
HS4	HS approach employing version 4 of the estimator for the standard error of the mean effect size, page 66
k	Number of studies, page 35
λ_j	Weight of the <i>j</i> th component in mixture analysis, page 43
MSE	Mean squared error, page 134
$\mu_{ ho}$	Expected value of the distribution in the universe of studies (in the space of r), page 49

NOMENCLATURE

$\mu_{ ho d}$	Expected value of the distribution in the universe of studies (in the space of r) that results from the d to r transformation as given in Equation 3.11, page 79
$\mu_{ ho z}$	Expected value of the distribution in the universe of studies (in the space of <i>r</i>) that results from the inverse Fisher- <i>z</i> transformation $\mu_{\rho z} = \tanh \mu_{\zeta}$, page 76
μ_{Θ}	Expected value of the random variable Θ , page 39
μ_{ζ}	Expected value of the distribution in the universe of studies (in the space of <i>z</i>), page 130
Ν	$N = \sum_{i=1}^{k} n_i$, page 58
п	Number of observations per study, page 9
ν_i	Variance of the effect size estimate T_i , page 36
$\nu_{\hat{\Theta}}$	Variance of $\hat{\Theta}$, page 40
OP	Approach based on the UMVU estimator proposed by Olkin and Pratt (1958) with n as weights, page 73
OP-FE	Approach based on the UMVU estimator proposed by Olkin and Pratt (1958) with FE model weights, page 73
OP-RE	Approach based on the UMVU estimator proposed by Olkin and Pratt (1958) with RE model weights, page 74
\mathcal{P}	Probability, page 43
PDF	Probability density function, page 21
Q	Q-statistic, used in homogeneity tests, page 37
r	Correlation coefficient, page 20
RE	Random effects (model), page 39
Р	Correlation coefficient as a random variable in the universe of studies, page 43
ρ	Population correlation coefficient, page 21
RR	Approach proposed by Rosenthal and Rubin (1979), page 61
\mathfrak{S}_1	Class of discrete distributions in the universe of studies: one single ρ with probability mass one, page 49
\mathfrak{S}_2	Class of discrete distributions in the universe of studies: $\rho_1 \neq \rho_2$ both with equal probability mass, page 50
\mathfrak{S}_3	Class of continuous distributions in the universe of studies: Almost ex- clusively considered to be the family of beta distributions in this book, page 53
σ_R^2	Variance of <i>R</i> , page 26
$\sigma_{ ho}^2$	Variance of the distribution in the universe of studies (in the space of r), also called heterogeneity variance, page 49
σ_{Θ}^2	Variance of Θ , also called heterogeneity variance, page 39
σ_Z^2	Variance of Z (Fisher-z transformed correlation), page 23
σ_{ζ}^2	Variance of the distribution in the universe of studies (in the space of z), also called heterogeneity variance, page 71

Θ	Random variable Θ used in the RE model to designate the effect size of interest in the universe of studies, page 39
θ	Effect size in the universe of studies, page 35
Ô	Mean effect size estimate in the RE model, page 39
$\hat{ heta}$	Mean effect size estimate in the FE model, page 36
T_i	Effect size measure of the <i>i</i> th study, page 35
UMVU	Unique minimum variance unbiased, page 26
w_i	Weights applied to the <i>i</i> th study in the FE model, page 36
w_i^*	Weights applied to the <i>i</i> th study in the RE model, page 39
Z	Fisher-z transformed correlation coefficient, page 22
ζ	Fisher-z transformed population correlation coefficient, page 22