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An Annotated MATHEMATICA Notebook for

a Comparison of Approximations to the
Exact Density of R

The following parts of code are annotated for better reproducibility of the re-
sults and potential adaptations where needed. The annotations are kept in
roman font type and should not be confused with the actual code presented
in typewriter font. The code reproduced is complete so that it can be tran-
scribed to instantly work with MATHEMATICA Version 4 or later. The actual
version used to produce the results reported in Section 7.5.2 was MATHEMAT-
ICA 4.0.1.0 on a windows platform but the code was also tested and works
with Version 3.0. For better comprehension, the code is sectioned in a general
part that comes first and then code pertaining to the single approximations.

General part. First, the degrees of freedom (as an example, 48 is used in the
code) and the value of ρ (as an example, ρ = .20 is used) for the comparisons
are fixed. Note that the degrees of freedom are df = n− 2 so that for a situation
with 50 persons, for example, a value of 48 has to be inserted. Also, in some
of the functions, the degrees of freedom appear as ν (or in typewriterfont as
nu). Of course, this symbol should not be confused with the standard error of
effect size estimators as introduced in the text.

As another preliminary step, the standard package for continuous statisti-
cal distributions is loaded and the density of the noncentral t distribution is
defined in the following code.



224 ANNOTATED MATHEMATICA NOTEBOOK

df = 48

ActualRho = .2

<< Statistics‘ContinuousDistributions‘

DensityStudentT[x_, nu_] := PDF[StudentTDistribution[nu], x]

DensityNoncentralT[x_, nu_, delta_] :=
PDF[NoncentralStudentTDistribution[nu,delta],x]

Hotelling’s exact density. First, the code to specify the density of r as given
by Hotelling (1953) is presented (see also Equation 3.1).

TheoreticalRDensityHotelling[r_,nu_,rho_]:=
nu/Sqrt[2 Pi]Beta[nu + 1, 1/2]/Gamma[1/2]
(1 - rho^2)^(1/2(nu + 1))(1 - r^2)^(1/2 nu - 1)
(1 - rho r)^(1/2 - (nu + 1))
Hypergeometric2F1[1/2, 1/2,nu + 3/2, (1 + rho r)/2]

As can be seen, this is the exact density. It should be noted that the hy-
pergeometric function is at some points numerically somewhat fragile, that is,
it leads in the region of the singularity to unreliable values. For the present
situations very high values for ρ (e.g., ρ ≥ .90) in combination with large
values for the degrees of freedom (e.g., df ≥ 250) may cause computational
problems. Nevertheless, except for these borderline cases the specified func-
tion for the theoretical density given above works perfectly well. However,
to avoid numerical problems the value of the hypergeometric function can be
approximated to a very high and estimable degree. First, the approximation is
computed as a truncation of the Taylor series expansion at the seventh term

Normal[Series[Hypergeometric2F1[a, b, c, x], {x, 0, 7}]]

The result is very large in expression and is subsequently defined as

Hgf[a_, b_, c_, x_] := 1 + (abx)/c +
(a(1 + a)b(1 + b)x^2)/(2 c (1 + c)) + ...

which is truncated as given, indicated by “...” The rest of the result from the
step before has to be inserted instead of “...”. One may now wish to estimate
the error caused by this truncation. The error caused by truncating the series
at any stage is less than 2/ (1− ρr) times the last term used (Hotelling, 1953,
p. 200). For the proposed truncation the error can therefore be estimated by

LastTerm[a_, b_, c_, x_] := (a (1 + a) (2 + a) (3 + a) (4 + a) (5 + a)
(6 + a) b (1 + b) (2 + b) (3 + b) (4 + b) (5 + b) (6 + b) x^7)/
(5040 c (1 + c) (2 + c) (3 + c) (4 + c) (5 + c) (6 + c))

UpperBoundForErrorCausedByTruncation[r_, nu_, rho_] :=
2/(1 - rho r) LastTerm[1/2, 1/2, nu + 3/2, (1 + rho r)/2]
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In the present case this error is approximately 1.4151−11 for a value of r = 1
which is also the maximum of error. This can be easily seen by inspecting a
plot of the error for varying r, which produces for the present case Figure B.1.

Plot[UpperBoundForErrorCausedByTruncation[x, df, ActualRho],
{x, -1, 1}, PlotRange -> All, AxesOrigin -> {-1.01, 0}]
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Figure B.1 Upper bounds of truncation error for the hypergeometric series used in
the computation of the exact density for varying r, df= 48, and ρ = .20.

The error is obviously very small for all values of r and has its maximum on
the interval [−1, 1] at 1 which is still very small in value. The truncation can
therefore safely be used. The modified density of r can now be defined as

RDensityHotelling[r_, nu_, rho_] :=
1/(Pi Sqrt[2])(1 - r^2)^((nu/2) - 1) nu
(1 - r rho)^(-nu - (1/2)) (1 - rho^2)^(1/2(nu + 1))
Beta[nu + 1, 1/2] Hgf[1/2, 1/2,nu + 3/2, (r rho + 1)/2]

where only the hypergeometric function is substituted by the truncated ver-
sion. Using this form for the density of r the expected values and variances
that are used as criteria values for all the following approximations are com-
puted by

ExpectationOfHotellingsR[nu_, rho_] :=
NIntegrate[x RDensityHotelling[x, nu, rho], {x, -0.99999, 0.99999}]

ExpectationOfHotellingsR[df, ActualRho]

SecondMomentOfHotellingsR[nu_, rho_] :=
NIntegrate[x^2 RDensityHotelling[x, nu, rho],
{x, -0.99999, 0.99999}]

VarOfHotellingsR[nu_, rho_] :=
SecondMomentOfHotellingsR[nu, rho] -
(ExpectationOfHotellingsR[nu, rho])^2

VarOfHotellingsR[df, ActualRho]

resulting in values of 0.198047 for the expected value and 0.0188894 for the
variance. Again, the density can be plotted for inspection by
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P2 = Plot[RDensityHotelling[x, df, ActualRho], {x, -1, 1},
PlotRange -> All, AxesOrigin -> {0, 0},
PlotStyle -> {RGBColor[0, 0, 0]}]

resulting in Figure B.2.
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Figure B.2 Density given by Hotelling for values of r = .40 and df = 48.

The Fisher approximation. Here and in the following parts the code begins
with the definition of the relationship between r and its transformation. In the
present case it is simply the Fisher-z transformation

FisherZFromR[r_] := 1/2Log[(1 + r)/(1 - r)]

Next, the derivative of Z with respect to r is computed with an additional
simplification of the expression for convenience. This step is presented here
for completeness and will be left out for the other approaches. The step is
helpful for the following change of variables.

FullSimplify[D[FisherZFromR[r], r]]

The above step results in 1
1−r2 which is inserted in the following expression

DerivativeOfFisherZFromR[r_] := 1/(1 - r^2)

Now the density of R that results from the application of the Fisher-z transfor-
mation is defined by a change of variables.

RDensityFisher[x_, nu_, rho_] :=
PDF[NormalDistribution[1/2Log[(1 + rho)/(1 - rho)],

1/(Sqrt[nu - 1])],FisherZFromR[x]]
DerivativeOfFisherZFromR[x]

Note, that the parameters of the normal distribution in MATHEMATICA are the
expected value and the standard deviation. To compute the expected value
and variance of this distribution, respectively, the following expressions are
used to integrate over the interval [-0.99999, 0.99999] using the density of R as
given above.
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ExpectationOfFishersR[nu_, rho_] :=
NIntegrate[x RDensityFisher[x, nu, rho], {x, -0.99999, 0.99999}]

With the following function call the expected value is computed for the values
defined in the general part.

ExpectationOfFishersR[df, ActualRho]

For the given example a value of 0.19607 will be returned. It is now interesting
to compare this value with the one resulting from using Hotelling’s density
for computation. The value for the latter distribution was 0.198047 so that
a simulation procedure employing the Fisher approximation will generate r
values that are too small in expected value!

Accordingly, the following two expressions can be used to compute the vari-
ance of the distribution.

SecondMomentOfFishersR[nu_, rho_] :=
NIntegrate[x^2 RDensityFisher[x, nu, rho], {x, -0.99999, 0.99999}]

VarOfFishersR[nu_, rho_] :=
SecondMomentOfFishersR[nu, rho] - (ExpectationOfFishersR[nu, rho])^2

The following function call returns a value of 0.0189376 for the variance of the
distribution which is larger than the value for Hotelling’s density which was
0.0188894.

VarOfFishersR[df, ActualRho]

The Harley approximation. The code for this and the following approxi-
mation is structurally identical to the Fisher approximation, so it will not be
annotated.

HarleysTFromR[r_, nu_, rho_] :=
(r Sqrt[-nu (-2 + rho^2)])/(Sqrt[2 - 2 r^2])

DerivativeOfHarleysTFromR[r_, nu_, rho_] :=
(Sqrt[nu - (nu rho^2)/ 2])/( (1 - r^2)^(3/2))

HarleyDelta[nu_, rho_] := Sqrt[(1 + 2 nu) rho^2/(2 - rho^2)]

RDensityHarley[x_, nu_, rho_] :=
DensityNoncentralT[HarleysTFromR[x, nu, rho], nu,
HarleyDelta[nu, rho]]DerivativeOfHarleysTFromR[x, nu, rho]

ExpectationOfHarleysR[nu_, rho_] :=
NIntegrate[x RDensityHarley[x, nu, rho], {x, -0.99999, 0.99999}]

ExpectationOfHarleysR[df, ActualRho]

SecondMomentOfHarleysR[nu_, rho_] :=
NIntegrate[x^2 RDensityHarley[x, nu, rho],
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{x, -0.99999, 0.99999}]

VarOfHarleysR[nu_, rho_] :=
SecondMomentOfHarleysR[nu, rho] -
(ExpectationOfHarleysR[nu, rho])^2

VarOfHarleysR[df, ActualRho]

The Samiuddin-Kraemer approximation.

KraemersTFromR[r_, nu_, rho_] :=
Sqrt[nu] (r - rho)/Sqrt[(1 - r^2) (1 - rho^2)]

DerivativeOfKraemersTFromR[r_, nu_, rho_] :=
(Sqrt[nu] (-1 + r rho) (-1 + rho^2))/
(((-1 + r^2) (-1 + rho^2))^(3/2))

RDensityKraemer[x_, nu_, rho_] :=
DensityStudentT[KraemersTFromR[x, nu, rho], nu]
DerivativeOfKraemersTFromR[x, nu, rho]

ExpectationOfKraemersR[nu_, rho_] :=
NIntegrate[x RDensityKraemer[x, nu, rho], {x, -0.99999, 0.99999}]

ExpectationOfKraemersR[df, ActualRho]

SecondMomentOfKraemersR[nu_, rho_] :=
NIntegrate[x^2 RDensityKraemer[x, nu, rho],
{x, -0.99999, 0.99999}]

VarOfKraemersR[nu_, rho_] :=
SecondMomentOfKraemersR[nu, rho] -
(ExpectationOfKraemersR[nu, rho])^2

VarOfKraemersR[df, ActualRho]


