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Preface

Meta-analysis is a method for systematic literature reviews on a certain sub-
stantive question of interest. In contrast to the more traditional narrative re-
view it explicitly includes elaborate methods for an evaluation of a correspond-
ing research database. Meta-analysis is one of the more recent additions to the
researchers’ methods toolbox. It enjoys a growing interest in many research
domains beyond subdisciplines of psychology as well as in methodology and
statistics. The increasing number of research articles, using and further devel-
oping this method, are indicative of its perceived high value for researchers.
Yet, there are also controversies still surrounding this method, parts of which
are concerned with the implications of meta-analysis for the entire research
endeavor, that is, how we should conduct research and how to interpret sin-
gle study outcomes. Notwithstanding such controversies, meta-analysis has
become a standard in the methods canon, at least in psychology but also in
other disciplines like medicine as well. Hence, when considering these facts,
one might easily think that there must be a consensus on an exactly specified
single best way to conduct a meta-analysis, because it appears as such a well-
established method in widespread use.

At least for correlation coefficients as effect sizes — on which the present
book focuses — this is not the case. There are several specific sets of procedures
available, so-called approaches to meta-analysis, and the research consumer of
meta-analyses is confronted with their application in various contexts. In such
a situation one may presume that differences in procedures are inconsequential
for the substantive results, or alternatively wonder whether the application of
different procedures may lead to differences in results. The meta-analyst who
wants to conduct a review of the literature also faces the situation of many
available approaches and has to make an informed choice between them.

This book provides an in-depth analysis and evaluation of extant meta-
analytic approaches for correlation coefficients as effect sizes. The approaches
are described and compared from a theoretical-statistical viewpoint as well as
on the basis of the results of a Monte Carlo study. Under which circumstances
the approaches produce comparable results and when they differ substantially
is evaluated. The adequacy of the specific procedures for the application to a
series of potential true situations in a universe of studies is assessed and a
comparative evaluation of the approaches is thus provided.

The book is divided into four parts. In Part I, the basics of meta-analysis
are introduced. The development and growth of the method is described from
a bird’s eye view. The basic steps of meta-analysis are explicated and briefly
summarized with respect to their function for a review of the literature. In
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this first part, the fact is highlighted that several author groups from different
research domains in psychology have more or less independently established
sets of procedures for meta-analysis. The emergence of these approaches is
described to have eventuated partly for historical reasons and also because
of the strong interest of the approaches’ proponents in certain substantive re-
search problems from the areas of industrial and organizational (I/O) and clin-
ical psychology, respectively. It is shown that most of the basic steps of meta-
analysis — from problem formulation to public presentation of results — are
in fact common to all approaches, but several differences in procedural details
at the analysis stage prevail. The analysis step of meta-analysis is the main
subject of the second part.

In Part II, statistical methods of meta-analysis are specified. This part of
the book begins with a chapter on effect sizes, the data used in meta-analysis.
The properties of the most famous families of effect sizes, correlation coeffi-
cients r and standardized mean differences d, are described from a theoretical
viewpoint. A clear emphasis is, however, placed on the properties of corre-
lations. Beyond such a description, several characteristics of the effect sizes,
supposedly of relevance for the comparison of approaches, are analyzed and
the conversion of effect sizes from both families is specified.

After the presentation of effect sizes, general frameworks of meta-analysis
are presented. The general frameworks are fixed versus random effects mod-
els, mixture models, and hierarchical linear models. These frameworks are
very helpful to look at the approaches of interest from a very general perspec-
tive to recognize their particularities and limitations. Furthermore, the models
are introduced to enable a classification of the subsequently outlined specific
approaches to meta-analysis of correlations. The most well-known approaches
are specified in detail in this part of the book. Moreover, several refinements
of the approaches are presented, some of which can be classified as fixed and
some as random effects model approaches.

Furthermore, the series of models leads to certain classes of situations for
the application of meta-analysis. The framework of mixture models is used
to conceptualize the research situation of meta-analysis and the specific situa-
tions under investigation in the Monte Carlo study in Part III. The situations
of relevance are the homogeneous case with only one constant effect size in
a universe of studies and heterogeneous cases. The first heterogeneous case
is specified as a uniform two-point distribution of different universe param-
eters to be estimated, and the second case is a continuous distribution in the
universe of studies.

After having presented and examined the approaches in detail, some con-
sequences of choosing between approaches are pointed out from a theoretical
viewpoint. It is shown that such a choice is not inconsequential in general,
as is often implicitly assumed. The approaches are finally compared and sta-
tistical methods are summarized. The classification and comparison of the ap-
proaches is done with respect to the following characteristics: fixed versus ran-
dom effects models, use of effect size measure (correlation coefficient, Fisher-z
transformed correlations, corrected versions of correlations, and transforma-
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tion of r to d), and weighting scheme used. All of these characteristics are
proposed to be relevant for the outcomes of meta-analysis and approaches are
differentiated along these lines.

In another major part of the book, Part III, the results of an empirical com-
parison between the approaches by using Monte Carlo methods are presented
and differences in results are investigated. The very common assumption of
researchers that the choice of an approach is merely a matter of taste and that
results from applying different approaches to the same data are not different is
once more scrutinized in this part of the book. The refined approaches consid-
ered in Part II are also part of the Monte Carlo study so that their quality can
be assessed in comparison to more well-known approaches.

The theoretical analyses and results of the Monte Carlo study are summa-
rized and discussed in Part IV. Recommendations for the application of meta-
analytic methods to a database of correlations are provided and the implica-
tions of using suboptimal methods is discussed.

It is hoped that the presented analyses and results will help to further un-
derstanding and evaluation of the methods of meta-analysis. In addition, it
is hoped that the present book will be instrumental for the interested meta-
analyst and research consumer in making an informed choice and evaluation
of the approaches and the corresponding results.

I am much obliged to the following individuals whose support have made
this book possible or helped make it better than it otherwise would have been:
Dankmar Böhning, Michaela Brocke, Vanessa Danthiir, Heinz Holling, An-
dreas Jütting, Malte Persike, Bernd Schäfer, and Oliver Wilhelm.

Of all the individuals who were supportive in a scientific sense in writing
this book, I am most grateful to my colleague Heiko Großmann. The many
day- and nighttime discussions with him will be a lasting pleasant memory.
His suggestions were helpful at all times and his criticisms always a chal-
lenge. They have changed the way I think not only about the methods of
meta-analysis, but also in a wider sense about my work.

Last but not least, I would like to thank my wife Claudia, whose incredible
patience with me and enduring will to support my work in all conceivable
ways continues to amaze me.

RALF SCHULZE

MARCH 2004, MÜNSTER
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Part I

Introduction





1
The Growth of Meta-Analysis and

Implications for Methodological
Controversies

The research literature in most fields of science is steadily growing at a seem-
ingly ever increasing rate. Nowadays, it appears to be virtually impossible for
a researcher even in a relatively restricted field of study to keep track of all rel-
evant published articles. Hence, there is a strong need for summaries of recent
theoretical and empirical results in all scientific areas. Traditionally, there are
reviews published in periodicals like the Annual Reviews, for example, where
experts of the field are invited to present the current state of a field of study.
Besides the function to inform interested researchers about the recent develop-
ments and findings such reviews are also relevant for an evaluation of the state
of knowledge of a scientific area and even to guide decisions of policymakers
to find scientifically well-founded solutions for everyday problems. However,
clear-cut summaries of a research field are only easily established with a fairly
consistent empirical basis, which is rather an exception than the rule, at least
in the social sciences.

As Hunter and Schmidt (1996) have described for the field of psychology,
making sense of heterogeneous results can be rather frustrating not only for
researchers but also for policymakers. This may have the adverse effect of
a negative appraisal of a whole scientific area potentially leading to cuts in
funds and bad reputation. This kind of situation characterized the state of af-
fairs in psychology in the early 1970s in the United States, with the negative
consequences just described. It was in this climate when researchers became
more occupied with the way summaries and reviews were actually carried
out. Although the problem of summarizing the state of knowledge was not
an entirely new one, the scientific examination of the review process itself was
immensely intensified from this time on and ideas on the methods for a syn-
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thesis of research began to appear in publications (e.g., Light & Smith, 1971).
Yet it was not until Gene Glass coined the term meta-analysis (Glass, 1976) that
the ways to conduct literature reviews and the synthesis of empirical evidence
in a field of study became a research area of its own. From this point of time on
increasing research activity was devoted to the development of guidelines and
techniques for the conduct of systematic reviews now having its own name
meta-analysis. However, meta-analysis was not associated with the invention
of a new research problem, as Olkin (1990) has highlighted (see also Hunt,
1997), but with calls for more procedural and statistical rigor in the prepara-
tion of literature reviews. It is this rigor that still most prototypically marks
the difference between traditional reviews and meta-analysis.

However, this was not the only attribute which appealed to members of the
scientific community. The introduction of meta-analysis to the statistical tool-
box was not totally detached from substantive problems. The motivation for
its development was sparked by the interest to find answers to two very im-
portant problems in psychology, namely the comparison of the effectiveness
of psychotherapies on the one hand, and the situational specificity of predic-
tive validities of personnel selection procedures in occupational settings on
the other. The former problem motivated Glass and co-workers to develop
their methods of meta-analysis (see Glass, McGaw, & Smith, 1981). They sub-
sequently published the first meta-analysis in clinical psychology (Smith &
Glass, 1977) which provoked great interest1 as well as harsh criticism of the
method (Eysenck, 1978). The latter problem was addressed — coincidentally
at the same time — by Schmidt and Hunter, and resulted in the development
o6f their methods (Schmidt & Hunter, 1977), followed by applications in the
area of personnel selection (for a recent overview, see Schmidt & Hunter, 1998).
Thus, meta-analysis forcefully caught the attention by the early 1980s via two
routes, methodological rigor and the potential to provide an elegant solution
to substantive research problems.

After the inauguration of the term, presentation of procedural details, and
publication of the first applications, meta-analysis was quickly adopted in the
scientific field, and psychology in particular. This growth of meta-analysis in
the past 30 years can be illustrated, for example, by the frequencies of pub-
lished articles related to meta-analyses.

Figure 1.1 depicts the number of publications up to 2003 that matched the
query “meta-analy* or metaanaly* or ’integrative review’ ” in two of the main
databases of psychological research literature: PsycINFO (mainly English lit-
erature) and Psyndex (mainly German literature). The “hits” in this literature
search represent articles concerning the development and evaluation of the
statistical methods as well as applications of meta-analysis in psychology. It
is clearly evident that the new field of research is still growing and tends to
produce itself an enormous amount of research articles. As a caveat, however,
it must be added in this context that the number of articles per year includ-

1At the time of writing, this article reached a citation count of 749 in the ISI Web of Knowledge.
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Figure 1.1 Number of publications in the research databases PsycINFO and Psyndex
from 1974 to 2003.

ing these search terms may partly reflect expanded journal coverage of the
databases. Nevertheless, along with this rising interest in the development and
applications of meta-analysis the technique also seems to have been adopted
in the canon of research tools in psychology. This is evidenced, for example,
by the fact that general introductions to meta-analysis have found their way
into general methodological handbooks (Cooper & Lindsay, 1998) as well as
treatments of methods in more specific areas like social and personality psy-
chology (e.g., Johnson & Eagly, 2000), organizational psychology (e.g., Holling
& Schulze, in press), and clinical psychology (e.g., Durlak, 2003).

In some areas of research in psychology, there is now even a need to summa-
rize applications of meta-analyses to keep track of the main empirical results
in a field of study. There are, for example, mainly narrative reviews of meta-
analyses for entire subdisciplines of psychology (e.g., Hunter & Hirsh, 1987;
Tett, Meyer, & Roese, 1994) as well as more focused and even quantitative re-
views (i.e., “meta-analyses of meta-analyses”), for instance on the relationship
between personality measures and performance (Barrick & Mount, 2003) and
personnel selection (Hermelin & Robertson, 2001). Moreover, the integration
of meta-analytical findings can also be used to assess methodological effects
in scientific research (e.g., Wilson & Lipsey, 2001). There are even reviews of
meta-analyses for psychology as a whole discipline (Lipsey & Wilson, 1993)
which are generally favorable in results as far as the effectiveness of psycho-
logical treatments is concerned. This fact may also have contributed to the
popularity of meta-analysis as a new research tool, because it was associated
with the promise of revealing “true” effects of psychological treatments which
are otherwise buried in an enormous morass of contradictory study findings.

Interestingly, with respect to the seemingly inconsistent and highly variable
results in psychology and related fields already mentioned, the application of
meta-analysis also lead to the conclusion that the results in psychology are ac-
tually no more variable than results in some quarters in the physical sciences,
which often are taken as the standard of so-called hard sciences (Hedges, 1987;
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but see also Sohn, 1997, for a contrarian view). This possibly added to the
evolving positive attitude towards meta-analysis, at least for those social sci-
ence researchers somewhat envying their colleagues in the natural sciences for
their hard facts.

Moreover, supplementing the expectations of unravelled research contro-
versies by applying meta-analytic methods, meta-analysis was also proposed
to even be a useful tool for theory development and testing (Miller & Pollock,
1995; Viswesvaran & Ones, 1995). Hence, in addition to serving an expedient
function for the synthesis of extant empirical evidence, meta-analysis may also
have the promise to generate new knowledge in a field of study and help in
developing and testing new theories. Furthermore, its results may also be used
to focus new research efforts and designs on interesting effects emerging from
its application (see Czienskowski, 2003).

In addition to these results now rather indicating the successful application
of psychological interventions, meta-analysis has also been connected with
more far-reaching implications within the realm of epistemological questions
of scientific research in the social sciences. The related discussion in method-
ological quarters of the social sciences centered around the notion of science
as an endeavor of the accumulation of knowledge and the way current em-
pirical practices may have to be changed with the methods of meta-analysis
at hand, especially the use of significance tests in the social sciences. Whether
science in its entirety, and social science in particular, is cumulative in nature
is a controversial issue that has its supporters (e.g., Hunter & Schmidt, 1990,
1996; Schmidt, 1992; Schmidt & Hunter, 1995) as well as critics (e.g., Meehl,
1978, 1990; Sohn, 1997). Meta-analysis as a research tool touches upon this
issue for it is applied to synthesize current knowledge and its results are sup-
posed to “reveal” or even prove the cumulation of knowledge by “cleaning up
and making sense of research literature” (Schmidt, 1992, p. 1179). This con-
veys the notion of psychology as a research discipline that produces reliable
and useful results, a highly welcomed point of view for scientists and the re-
search consumer with a positive attitude towards the social sciences. Further-
more, it has been claimed that meta-analysis is a valid tool to fundamentally
change current research practices by replacing significance tests, which have
been identified as retarding cumulation of scientific knowledge (Rossi, 1997;
Schmidt, 1996; Schmidt & Hunter, 1997). Along with this position comes a
devaluation of the impact of individual studies and the view to regard them
only as data points for a subsequent meta-analysis. Again, there are also crit-
ics of meta-analysis that raise serious doubts about the notion of accumula-
tion of knowledge in (social) sciences and support significance testing as a tool
in a theory-corroborating scientific approach (e.g., Chow, 1988; Mulaik, Raju,
& Harshman, 1997). Although the notion of devaluing individual studies as
merely providing data points for a meta-analysis has also been heavily crit-
icized (Harris, 1997; Landy, 2003; Sohn, 1995, 1997). A discussion of these
issues can be found, for example, in the volume edited by Harlow, Mulaik,
and Steiger (1997) devoted to the significance test controversy in psychology.



GROWTH OF META-ANALYSIS AND IMPLICATIONS 7

However, critics did not only address philosophy of science issues. Appli-
cations of meta-analysis were also criticized for various other reasons mostly
on substantive grounds (e.g., Eysenck, 1978). Objections were raised, for ex-
ample, under such headings as “mixing of apples and oranges” to point out
potential problems in meta-analyses combining results from studies in which
very different characteristics were measured (see also Cortina, 2003), exper-
imental manipulations were different, and so forth. Moreover, the so-called
“garbage-in, garbage-out” objection addresses the problem of pooling studies
of very different quality, an issue that may, however, be dealt with within the
framework of meta-analysis (Wortman, 1994).

In sum, meta-analysis is not only regarded as a new data-analytical tool,
but it is also associated with more far-reaching consequences, though the role
of meta-analysis in the ongoing significance test controversy in the method-
ological literature is not yet entirely fixed (Andersson, 1999; Chow, 1996), and
the replacement of significance testing by meta-analysis has not taken place
to date (Hubbard, Parsa, & Luthy, 1997). This replacement will presumably
also not happen in the future since the excessive promises associated with the
method are still opposed by challenges of the usefulness of meta-analysis as
a method to synthesize the research literature (e.g., Bobko & Stone-Romero,
1998; Chow, 1988). General reviews of meta-analysis as a method also dis-
cussing various problems that may be associated with it can be found in detail
elsewhere (Beelmann & Bliesener, 1994; Bailar, 1995; Sharpe, 1997).

Finally, it is interesting to note that meta-analysis is now also widely rec-
ognized in other sciences like medicine (Dickersin & Berlin, 1992; Normand,
1999; Sutton, Abrams, Jones, Sheldon, & Song, 2000) with positive appraisal in
majority (Lau, Ioannidis, & Schmid, 1998; but see also Bailar, 1995; Feinstein,
1995). Controversies like the one described above do not seem to have taken
place but other methodological issues are more intensively debated. For ex-
ample, the value of meta-analysis is challenged on the grounds that it is more
of an observational study type and may therefore not lead to reliable causal
claims (see e.g., Sauerbrei & Blettner, 2003). This controversy, in turn, is not an
issue in psychology where meta-analyses are classified as quasi-experimental
(e.g., Farley, Lehmann, & Ryan, 1981). Furthermore, even when considering
the same issues researchers in different fields seem to come to different con-
clusions. For example, whereas in psychology single studies are not given
very high value in deciding upon controversial research issues (for reasons, see
Gadenne, 1984), single (large) clinical trials are taken as a standard of compari-
son for the results of meta-analyses. They are even used to judge the validity of
claims made on the basis of meta-analytical results. Hence, different research
traditions lead researchers to focus on different issues and potential problems
of meta-analysis and may fruitfully complement each other in advancing the
development of the techniques (for an overview of recent developments in
medical and social sciences, see Schulze, Holling, & Böhning, 2003).





2
Basic Steps of Meta-Analysis and the

Emergence of Approaches

Up to this point it has not been clearly stated how the stronger procedural and
statistical rigor of meta-analysis in comparison to traditional reviews manifests
itself. In this chapter, the basic steps of meta-analysis will be outlined. Meta-
analysis is conceived as a process comprising several steps of which one —
methods of statistically aggregating study results — is the main focus of this
book. Before the statistical details will be presented in the next chapter, meta-
analysis will be presented from a bird’s eye view. The emergence of meta-
analytical approaches is outlined subsequently.

2.1 BASIC STEPS OF META-ANALYSIS

It is useful to commence with the introduction of terminology. Most researchers
are familiar with methods to analyze original data from an individual study.
Such analyses will be called primary analyses in the present context. Another
form would be secondary analysis which designates a reanalysis of existing data
to apply different and supposedly better analytical methods and/or to answer
new research questions (Glass, 1976). This latter form of data analysis will not
be of concern in what follows.

Normally, the data in primary analyses results from measurements of per-
son characteristics (individual units), like abilities, attitudes, and the like. A
primary analysis is mostly conducted to describe these characteristics and/or
relate them to or explain them by other variables. Thus, in a study on the
predictive validity of an intelligence test for job performance, for example, a
number of n persons participates in a study and provides a number of n pairs
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of observations for the two variables.1 As a result of a primary analysis, the
typical outcomes are a correlation coefficient for the two variables and a test
statistic to make inferences to a population. In this case, the correlation coeffi-
cient is a measure of effect size, because it expresses the strength of the (linear)
relationship.

Now consider that after publication of the results of the first study a second
one on the same relationship is conducted. In the second study a new sample
is drawn with a different number of n individuals, and the correlation is again
computed in a primary analysis. Additionally suppose that the effect size in
the second study is different from the first one. The question — typical for all
literature reviews — arises what a good summary of both studies’ results is in
the given case. Further assume that the second study could be considered to be
a replication of the first one. That is, the same measures were used, the sample
was drawn from the same population, and so forth. Under these circumstances
it would be reasonable to pool the data of both studies, if available, to arrive
at a single effect size based on the total sample of both studies. Unfortunately,
this is rarely the case and the task then still is to somehow summarize the effect
sizes.

Taking this idea of additional study results on the same research question
further, a situation is given that calls for an integrative review of empirical
studies. Such a situation is illustrated in the lower and middle part of Figure
2.1 (Level 0). Here, different individual units are sampled in a number of k
different studies on a common research question.2 At this zero level, primary
analyses result in empirical reports to be summarized, which include a number
of (at least) k effect sizes. Figure 2.1 provides an illustration with correlations
(r1, . . . , rk) as effect sizes — the main focus of the present book. Of course, it
is not necessary to always collect pairs of observations at Level 0, nor is this
process only applicable to correlations as effect sizes.

In a broad sense, meta-analysis is a systematic process of quantitatively
combining empirical reports to arrive at a summary and an evaluation of re-
search findings. This “analysis of analysis”, as Glass (1976, p. 3) has defined it,
can be located in the upper part of Figure 2.1 (Level 1). In analogy to primary
analysis, it includes the statistical aggregation of individual units. In contrast
to primary analysis, however, the individual units are aggregate measures re-
sulting from Level 0 analyses. The result of a meta-analysis is symbolized only
by θ in Figure 2.1. Much more will be said about such a pooled estimate of an
effect size in the following chapters. Here, it suffices to say that one of the aims
of most meta-analyses is to arrive at such a single summary measure.

Nevertheless, meta-analysis is characterized by many more attributes than
simply a step of statistical aggregation. One of the other important attributes
of meta-analysis is the more general call for a stronger procedural system-

1That is, a total of n pairs (x1, y1), . . . , (xn, yn) are observed, where x1 denotes the intelligence
score of Person 1 and y1 his/her job performance score in the example.
2Of course, sample sizes need not be the same in such studies, a fact that is not necessarily
clear when inspecting Figure 2.1.
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Figure 2.1 Different levels of analysis: Primary analysis and meta-analysis.

atic reviewing of the literature. Correspondingly, several guidelines for meta-
analysis have been published. Some focus more on the whole process (e.g.,
Jackson, 1980), others rather give methodological guidelines (e.g., Cook, Sack-
ett, & Spitzer, 1995). One widely accepted specification of the stages or conduct
of a meta-analysis was presented by Cooper (1982; Cooper & Hedges, 1994a),
which is formulated in close analogy to the stages of primary analysis:

1. Problem formulation

2. Data collection

3. Data evaluation

4. Analysis and interpretation

5. Public presentation

For each of these stages, attempts were made to clarify the questions to be
answered and the methods to arrive at the respective solutions to problems
posed. At every stage there is a demand of the meta-analyst for a maximum of
explicitness. The whole process of reviewing has to be structured, and it has
to be made reconstructible to the research consumer as to how the reviewer ar-
rived at his conclusions. Thus, one of the main criticisms of traditional reviews
is addressed by this requirement.

The first stage not only includes the tasks of clearly specifying the research
question to be answered by a review and laying the foundations of exclu-
sion and inclusion criteria for the studies to be synthesized, but also covers
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questions about what statistical model is to be assumed in a meta-analysis.
The problems and corresponding solutions for the formulation of the research
question to be answered are presented by Hall, Tickle-Degnen, Rosenthal, and
Mosteller (1994) in detail and need not be repeated here. What is of much
greater concern for the present study are the statistical models available for
research synthesis. The available models will be presented and discussed in
considerable detail in Chapters 4 and 5. It is important to note that first, statis-
tical matters are not only questions about the proper formulae to use, they are
also conceptual questions that cannot be answered on the sole basis of empirical
results (Hedges, 1994b). Much of the theoretical as well as empirical parts of
the present book are devoted to the explication of models and evaluating the
performance of statistical procedures associated with different models when
their assumptions are met or violated.

The second and third stages of the process concern data retrieval and its
evaluation. Tasks and potential problems arising in connection with the for-
mer step are presented by White (1994) as well as Reed and Baxter (1994). Data
evaluation is the task to judge the quality of the retrieved literature and (op-
tional) assignment of quality scores to the studies under review that can be
used in subsequent steps to weight the studies in the process of aggregation
(Wortman, 1994). Of course, catalogues of quality criteria are essential at this
stage and are available for research in medicine (Chalmers et al., 1981) and
psychology (Shadish, Cook, & Campbell, 2002), for example. The idea guiding
these two steps is to disclose procedures and criteria for data collection, se-
lection, and weighting in the process of synthesizing. Traditional reviews are
often criticized for not being explicit enough at these stages in particular.

Before collected data is actually aggregated, it has to be extracted from the
available empirical reports. What is meant by the extraction of data will be
detailed in Chapter 3 on effect sizes. The task to be dealt with here is to quan-
tify the results of interest in a measure of effect size common to all studies
under investigation. The quantification to be carried out aims at making the
results of the studies amenable to statistical aggregation. This represents an
essential part of a meta-analysis on the one hand, and another important dif-
ference to the narrative review on the other. Hence, meta-analyses are in gen-
eral also more precise in results as compared to traditional reviews and enable
the meta-analyst to make statements about the size of an aggregate effect and
its significance. This goes beyond more vague summary statements ordinarily
made in narrative reviews. For the last stage of presenting results of a meta-
analysis there are also rather precise guidelines. Special forms of reporting
meta-analytical results have also been developed. More information on this
topic can be found in the works of Halvorsen (1994) as well as Light, Singer,
and Willet (1994).

In sum, all these stages of meta-analysis can be characterized as an effort
to more precisely structure the whole process of reviewing the literature, ex-
plicitly state the goals, and give guidance as to how to tackle with potential
problems of each stage. Comparisons with traditional reviews, for example
by Cook and Leviton (1980), are therefore strongly in favor of meta-analysis
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as the method of choice. An empirical comparison between meta-analysis and
traditional reviews has been conducted by Beaman (1991) who also concludes
that meta-analysis seems to be the preferable method.

What is quite clear from the preceding account is that meta-analysis is not
yet another arcane set of statistical formulae a scientist has to deal with but a
method to successfully treat the whole complicated process of synthesizing the
scientific literature. There surely are a lot of steps in this endeavor that can be
classified as qualitative rather than quantitative and these very aspects have
mainly been the focus of critics of the method (e.g., Eysenck, 1978). Although
the statistical methods of meta-analysis have also been the subject of several
controversies (e.g., see Chapter 4) they were not the main target of fundamen-
tal critics.

In comparing primary analysis and meta-analysis, several similarities can
be noticed. Of course, this is due to the process of meta-analysis being spec-
ified in analogy to primary analysis, as outlined above. This makes it quite
easy to understand what meta-analysis actually is about and what its basic
aims are. Taking a closer look at statistical aspects (Stage 1 and 4), things get
more complicated because a higher level of abstraction from the original data
is introduced. The statistical foundations of meta-analysis have been presented
in various articles in a more concise form (e.g., Hedges, 1983a), introductory
books (e.g., Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Lipsey & Wil-
son, 2001; Rosenthal, 1991) as well as handbooks (Cooper & Hedges, 1994b).
What makes an acquisition of the techniques somewhat difficult for the unini-
tiated is the unfamiliar statistical data to deal with. Ordinarily, a researcher in
the behavioral sciences applies data-analytical techniques to the results of an
experiment or observational study (Level 0 in Figure 2.1). A number of indi-
vidual units provide measurements on a set of variables of interest, with mea-
surement instruments chosen to represent the true scores of the persons on the
variables as reliably and validly as possible. If a researcher aims at testing cer-
tain theoretical propositions, the size of prespecified relationships between the
(observed) set of variables is estimated and tested by using data resulting from
the measurement process. Estimation and tests in this context are conducted to
arrive at statistically well-founded propositions about the relationships of in-
terest in a population of persons. These outcomes, the estimate and test results,
constitute the data basis of meta-analysis. The meta-analyst therefore does not
directly deal with measurement of persons but results from studies which can
be viewed as aggregated measurements. As a result, the objects of examina-
tion are studies and not persons, and the inference the meta-analyst aims at is
not from a group of persons to a population of persons but from a group of
studies to a universe of studies. Analogously to the situation in primary anal-
ysis, the empirical reports collected at Stage 2 are conceptualized as a sample
of studies from a larger universe of studies. Inference in meta-analysis refers
to such a universe, and one of the most difficult questions to be answered in
meta-analysis is how this universe can be conceptualized or characterized —
though it might be noted that a specification of the population in primary anal-
ysis is not an easy to answer question either (Frick, 1998). Variants of universe
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characterizations will be presented in Chapter 4 in detail, so their discussion is
postponed till then.

To summarize, the principles of applying statistical techniques almost re-
main the same for meta-analysis, but an additional level of abstraction is in-
troduced. The transfer of questions arising in the context of primary analysis
to meta-analysis is helpful for understanding the method and raising critical
questions in its application.

2.2 ON THE EMERGENCE OF APPROACHES

At least in the field of psychology there are some obvious peculiarities stem-
ming from the history of meta-analysis in this field (for an interesting and com-
prehensive overview, see Hunt, 1997). In the early 1980s several proponents of
meta-analysis presented comprehensive treatments of the subject (e.g. Glass
et al., 1981; Hunter, Schmidt, & Jackson, 1982). As mentioned in Chapter 1,
these collateral specifications of meta-analysis were concerned with develop-
ing methodological solutions for vastly different substantive problems. On the
one hand, Glass and colleagues dealt with (quasi-)experimental designs on the
comparison of psychotherapies, and Hunter and Schmidt were concerned with
the problem of predictive validity in personnel selection. Hence, the former fo-
cused on methods to aggregate mean differences and the latter on correlations.
Furthermore, there have been specific features in these areas of application that
have caused different accentuations. For example, in the area of personnel se-
lection it is customary to apply corrections to the correlation coefficient for
range restriction in the sample. This is due to the fact that at least for one of
the two variables to be correlated (job performance, for example) only scores
of a subsample of the total applicant pool are available. Hence, the treatment
by Schmidt and Hunter considers such corrections as being of utmost impor-
tance, and a large part of their methodological contributions to meta-analysis
is concerned with them, whereas those of others are not.

These two groups of authors are not the only ones who have presented com-
prehensive treatments of meta-analysis in the psychological literature. Again,
additional presentations have a somewhat different focus. Rosenthal (1978)
presented methods for the combination of probabilities as study results and
was the first to consider the so-called file-drawer problem in meta-analysis in
depth (Rosenthal, 1979). The file-drawer problem refers to the suspicion that
in the behavioral sciences the publication of significant results is favored by
editorial policies and journal reviewers’ evaluations, thereby causing a biased
sample of study results to be available to the meta-analyst. Another major
effort — if not the most detailed and statistically elaborate in the behavioral
sciences to date — to specify the (statistical) methods of meta-analysis was
presented by Hedges and Olkin (for a comprehensive overview, see Hedges &
Olkin, 1985). Here, the main focus was not a substantive problem, but a precise
statistical formulation of the models in meta-analysis and the presentation of
corresponding proofs for the situations given in meta-analyses.
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In sum, different groups of authors with different substantive and techni-
cal focus have dealt with the methods of meta-analysis — many of them si-
multaneously — to arrive at a pre-packaged comprehensive treatment of the
topic. Such packages, associated with different author names, focus, and pro-
cedures, will be called approaches in the following. The publications corre-
sponding to the approaches soon became standard references in certain subdis-
ciplines in psychology. For example, the work of Hunter et al. (1982) became
a quasi-standard in the field of industrial and organizational (I/O) psychol-
ogy, whereas the work of Glass et al. (1981) was the main reference for meta-
analytic research in educational psychology. It quickly became accustomed to
researchers from different areas to rely on these different approaches. They
also became deeply entrenched in research habits in certain subdisciplines.
Thus, many researchers either thought that the application of the approach
most pertinent in their field of study was the only (correct) option (e.g., Huf-
fcutt, 2002), or the choice of an approach would be inconsequential for the
results, or even that differences between the approaches in recommendations,
treated effect sizes, and formulae were perhaps simply another mystery of sta-
tistical methods in the social sciences.

Several different approaches are identified in the psychological literature.
As might be suspected, classifications of proposed techniques into approaches
do not always fully agree. For example, a trio of meta-analytical approaches
is identified by Andersson (1999) as well as Johnson, Mullen, and Salas (1995),
but other categorizations have also been made (Bangert-Drowns, 1986). What
is important in the present context is that different approaches still coexist in
the psychological literature and their differences are at least partly due to his-
torical reasons, specifics of the substantive research question, and only rarely
on diverging mathematical-statistical derivations.

It is interesting to note that in a field like medicine, where scientists adopted
the methods of meta-analysis considerably later and with more reservations as
compared to psychology, such differences in approaches hardly exist. When
inspecting overviews in medical research (e.g., Sutton et al., 2000), nothing
comparable to the situation in psychology can be recognized, and the focus is
more on statistical models rather than substantive questions.

To summarize, developments of the methods of meta-analysis are different
in diverse fields, they were influenced by historical and substantive aspects,
and specific approaches are almost tied to different subdisciplines in psychol-
ogy. Finally, it should be added however, that the differences between ap-
proaches concentrate on their procedural recommendations. That is, study
retrieval methods (Stage 1), data evaluation (Stage 3), and public presentation
format (Stage 5) are highly similar. The differences can be located at Stage 1 in
the formulation of the statistical model and Stage 4, the analysis procedures.
The following presentation therefore focuses on these aspects in comparing
the approaches. A detailed theoretical comparison is given in Chapter 5, and
the comparative quality of results is assessed in a Monte-Carlo study to be
presented in Chapters 7 and 8.
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Statistical Methods of Meta-Analysis





3
Effect Sizes

In the following sections the type of data used for meta-analysis, the so-called
effect sizes, and their statistical characteristics are introduced. The focus here
will be laid on measures of effect sizes that are typical research outcomes in
the social and behavioral sciences, especially in the field of psychology. Other
measures will only be treated in passing. The statistical models to be applied to
this form of data will then be presented in detail followed by sections on spe-
cific statistical approaches to meta-analysis that can count as the most common
applied in research up to date.

The study of a series of research articles in any field of psychology still
leaves the impression that the main goal of applying statistical methods is pre-
dominantly testing of null hypotheses (Vacha-Haase, Nilsson, Reetz, Lance,
& Thompson, 2000). This seems surprising given the high information value
ordinarily attached to effect sizes (but see Chow, 1988), and policies articu-
lated by large psychological organizations — like the American Psychological
Association — are clearly in favor of reporting effect sizes in research articles
(American Psychological Association, 2001; Wilkinson & Task Force on Sta-
tistical Inference, 1999). However, a recent study on the editorial policies of
the reporting practices has revealed that these policies still have not been fully
adopted by editors of major research journals in psychology (Vacha-Haase et
al., 2000). Hence, encouragement to report effect sizes is not translated into ac-
tion. Yet there are also reasons to believe that simple calls for the reporting of
effect sizes in publications may not be sufficient to eliminate bias of published
results (Lane & Dunlap, 1978).

The lack of reporting effect sizes poses a problem for the meta-analyst be-
cause the data to be analyzed are often not readily available from study reports.
As a result, effect sizes have to be extracted from research reports when suffi-
cient information is available. There is a host of publications which illustrate
that this aim may not always easily be achieved (see, e.g., Olejnik & Algina,
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2000; Rosnow & Rosenthal, 1996; Seifert, 1991). Furthermore, design charac-
teristics also have to be taken into account when extracting an effect size, oth-
erwise wrong measures may result (Dunlap, Cortina, Vaslow, & Burke, 1996;
Morris & DeShon, 1997). In a reanalysis of 140 studies on psychosocial treat-
ments or prevention studies in psychology Ray and Shadish (1996) have shown
that different techniques to extract effect size information, proposed in the lit-
erature, lead to different magnitudes of effect sizes. Moreover, Matt (1989) has
shown that judgmental factors in extracting effect sizes also play an important
role for the establishment of a database for meta-analysis. In sum, there re-
main several problems in extracting the relevant information for effect sizes in
some areas of research. The techniques for aggregation of effect sizes, to be
introduced, presume that there is a database of effect sizes already available
and problems of the form just described are not of relevance.

The next section provides an overview of certain families of effect size mea-
sures that are most common in psychology. The focus here will be laid on
the correlation coefficient as an effect size. A second common measure, the
standardized mean difference, will also be considered. These two effect size
measures are by far not the only available to researchers, but they are those
of highest importance for the present purpose of evaluating meta-analytical
approaches in psychology.

The effect sizes of interest in the present context belong to two families, the
r and the d family (Rosenthal, 1994). In short, they are comprised of correlation
coefficients on the one hand and standardized mean differences on the other.
They can both be characterized by one of the main features of effect sizes, the
provision of a standardized measure for an effect of interest. First, focus will
be on the correlation coefficient.

3.1 CORRELATION COEFFICIENTS AS EFFECT SIZES

The sample correlation coefficient r, usually designated as the Pearson product
moment correlation, is based on n pairs (xo, yo), o = 1, . . . , n, of observations
and is given by

r =

n
∑

o=1
(xo − x) (yo − y)√

n
∑

o=1
(xo − x)2

√
n
∑

o=1
(yo − y)2

.

The corresponding pair of random variables for (xo, yo) is (X, Y). Here, and
in what follows, it should be noted that the correlation coefficient can also be
considered as a random variable based on the variates X and Y. This will occa-
sionally be highlighted in the following by the symbol R, although the symbol
r will predominantly be used. It will be clear from the context when r should
be understood as a random variable and when it should only be considered as
a sample statistic.



CORRELATION COEFFICIENTS AS EFFECT SIZES 21

The corresponding population correlation coefficient ρ is given by

ρ =
E ((X − E[X]) (Y − E[Y]))

σXσY
.

As is easily seen from these equations, the correlation coefficient can also be
regarded as the covariance of standardized variables. Hence, it is extremely
useful for measurement at the interval scale level because it is invariant with
respect to — not necessarily the same — positive linear transformations of the
variables. This is exactly what is most frequently intended by the computation
of effect sizes in psychology, to express an effect free from the influence of
specific standard deviations of measurement instruments. What is commonly
viewed in the behavioral sciences as an advantage of effect sizes, namely to
represent the size of an effect irrespective of the scale it is measured on, has
also raised questions about the meaning of the resulting scale-free measures
(Feinstein, 1995).

The question arises how the variate r may be distributed. Fortunately, it is
well-known that r is approximately normally distributed with large samples.
However, convergence of the distribution is very slow and it is said to be un-
wise to assume it for n < 500 (Stuart, Ord, & Arnold, 1999, p. 481), a case most
frequently encountered in practice. The distribution of r is a very complicated
statistical topic that cannot be fully dealt with here (for overviews, see Johnson,
Kotz, & Balakrishnan, 1995; Stuart & Ord, 1994). The focus of the following
presentation will therefore be on aspects of importance to meta-analysis. That
is, first, the distribution of r when the pair (X, Y) follows a bivariate normal
distribution, and second, point estimation of ρ.

The exact probability density function (PDF) of the distribution of R for r in
the interval [−1, 1] is given in the seminal paper by Hotelling (1953, p. 200) as1

pR(r) =
df

π
√

2
(1− r2)

df
2 −1(1− rρ)−df−1

2 (1− ρ2)
df +1

2

× B(df +1, 1
2) 2F1(1

2 , 1
2 ; df +3

2 ; 1
2(rρ + 1))

(3.1)

where B denotes the complete Beta function, df = n − 2, and 2F1 is the Gaus-
sian hypergeometric function:

2F1(a1, a2; a3; a4) =
∞

∑
v=0

Γ(a1 + v)Γ(a2 + v)Γ(a3)
Γ(a1)Γ(a2)Γ(a3 + v)

av
4

v!
.

In this formula, Γ represents the Euler Γ function. There are also some different
forms of the density to be found in the literature based on different derivations

1Note that the exact form given by Hotelling differs somewhat from the form given here which
better fits in the notation already introduced. The equivalence between both forms is seen by
noting that n is in Hotelling’s paper the symbol for the degrees of freedom and by noticing the
following equivalencies: B(a, b) = Γ(a)Γ(b)

Γ(a+b) , Γ(0.5) =
√

π, and Γ(a + 1) = aΓ(a).
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(see Johnson, Kotz, & Balakrishnan, 1995), but the presentation here will focus
on the one provided in Equation 3.1.

Obviously, using this distribution for tests of correlation coefficients is not
feasible when ρ 6= 0. Only for ρ = 0 is r distributed as t with n− 2 degrees of
freedom, and hence tractable. However, interest in the present context also lies
on the nonnull distribution of r. For testing purposes, various approximations
to the distribution of the correlation coefficient have been proposed. A series
of these approximations will be presented as well as evaluated. Results are
reported in Subsection 7.5.1 of Chapter 7, so that a discussion of most of these
approximations is postponed. Nevertheless, one of these approximations will
be introduced at this point because of its high relevance for the approaches of
meta-analysis to be presented in Chapter 5.

The most popular approximation was given by Fisher (1921)2 who also de-
rived the distribution in the bivariate normal case (Fisher, 1915). He suggested
the following transformation to be applied to the correlation coefficient

z = tanh−1 r =
1
2

ln
1 + r
1− r

. (3.2)

In analogy to the case of the correlation coefficient, z can be considered as a
random variable Z, but it will be denoted by a lowercase z in most of what
follows. The corresponding transformation for the population correlation ρ is

ζ = tanh−1 ρ =
1
2

ln
1 + ρ

1− ρ
.

As an inverse transformation

r = tanh z =
exp (2z)− 1
exp (2z) + 1

(3.3)

is specified for the correlation coefficient, and, again, a corresponding trans-
formation for the population correlation given by

ρ = tanh ζ =
exp (2ζ)− 1
exp (2ζ) + 1

.

What happens to the correlation coefficients when the Fisher-z transforma-
tion is applied? In Figure 3.1, the transformation provided by Fisher is illus-
trated. As can be seen, the transformation stretches the values in the boundary
regions. Furthermore, the possible values of z are not bounded by −1 and 1, as
is the case for the correlation coefficient. Instead, they span the whole interval
[−∞, +∞].

What are the main virtues of applying the Fisher-z transformation to corre-
lation coefficients? First, the transformed correlation coefficient (z) is approxi-
mately normally distributed. That is, the result from stretching the values is to

2See also Konishi (1978, 1981) for a more concise derivation.
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Figure 3.1 The r to Fisher-z transformation.

achieve an approximate normal distribution. In contrast to the distribution of
r, the distribution of z converges to normality very much faster.

A second benefit of applying the transformation is stabilization of the vari-
ance. This can be seen from Equation 3.4 which gives the approximate variance
of Z

σ2
Z ≈

1
n− 3

. (3.4)

The variance of z is stable in the sense that it does not depend on the parameter
ζ but only on the sample size n. As will be seen, this highly desirable feature
stands in contrast to the variance of r, which does depend on the population
parameter.

The approximate variance of z can easily be computed in practical applica-
tions and used for tests as well as for the construction of approximate confi-
dence intervals for ζ, a third beneficial aspect of the transformation. Construc-
tion of confidence intervals is easy because it is possible to draw on the normal
distribution to find the interval limits. Having found the confidence limits for
ζ, it is also possible to transform them to limits for ρ, a procedure that will
be outlined in the context of presenting the various statistical approaches to
meta-analysis in Chapter 5. The possibility to conduct a statistical test as well
as to construct confidence intervals is the main reason why this approximation
is so popular in practice.

In sum, by applying the transformation to the correlation coefficient it can
be said that one changes spaces. That is, the examination of the linear rela-
tionship between two variables starts in the space of r with random variable
R and population parameter ρ. The transformation leads to an examination in
the space of z with random variable Z and population parameter ζ. The whole
purpose of applying the transformation is to make inferences about the pop-
ulation parameter ρ by exploiting desirable properties in the space of z, and
thereby avoiding to deal with the complicated PDF.

Apart from examining the distribution of r and its approximation, the ques-
tion arises whether the Pearson product moment correlation constitutes an un-
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biased estimator of the effect. That is, whether the equality E(r) = ρ holds for
all ρ. This is not the case, and r is therefore a biased estimator of ρ. Hotelling
(1953) provided the moments of r about ρ of which the first moment (Ξ1 =
E(r− ρ)) is given as

Ξ1 =
(

1− ρ2
)(

− ρ

2(n− 1)
+

ρ− 9ρ3

8(n− 1)2 +
ρ + 42ρ3 − 75ρ5

16(n− 1)3 + . . .
)

(Hotelling, 1953, p. 212). The bias is usually approximated by truncation of the
series, resulting in

Ξ1 = −ρ(1− ρ2)
2(n− 1)

.

This is the well known formula for the negative bias of r as an estimator of
positive ρ. To compensate for this bias in r one could apply the following
correction

r∗ = r +
r(1− r2)
2(n− 1)

,

which is almost identical to an approximation to the unique minimum vari-
ance unbiased (UMVU) estimator by Olkin and Pratt (1958) to be presented
below (page 26).

Hotelling (1953) also provided the moments of z about ζ, of which, again,
only the first moment is given here

κ1 =
ρ

2(n− 1)
+

5ρ + 9ρ3

8(n− 1)2 +
11ρ + 2ρ3 + 3ρ5

16(n− 1)3 + . . .

As is obvious, a positive bias of Fisher-z for positive ρ is present here. A ques-
tion that was discussed in the literature of meta-analysis with correlations as
effect sizes is which of the biases is smaller in absolute value. Whereas Hunter
and Schmidt (1990) claimed to have shown a smaller absolute bias of r in com-
parison to z, Corey, Dunlap, and Burke (1998) reported results of a Monte
Carlo study in which they found the opposite result. Using the formulae given
by Hotelling and truncating the series, the biases of the two estimators can be
evaluated. For a direct comparison, the biases resulting from the formula for
κ1 were transformed into the space of r by the inverse Fisher-z transformation
given in Equation 3.3 and plugging in κ1 for z. In Figure 3.2 the resulting biases
are illustrated.

The bias of both r and z for ρ is shown across different values for ρ as well
as sample sizes n in the left panel of Figure 3.2. As can be seen, the bias of
both estimators vanishes at ρ = 0. The light surface in this graph depicts the
the biases of r and the shaded surface those of z. With higher values of ρ the
bias continuously increases for z, whereas the bias of r attains its maximum
at ρ ≈ .583 for positive ρ and at ρ ≈ −.583 for negative ρ. The right panel
provides absolute differences in biases with positive values indicating higher
biases for z. All values of the difference surface indicate higher bias for z,
except for ρ = 0, thus z has a larger approximate bias in comparison to r.
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Figure 3.2 Bias of r and z in comparison. The left panel shows the bias for r (light
surface) and z (shaded surface). The right panel shows the absolute difference surface
for the biases.

In the methodological literature on meta-analysis based on correlational
data, the use of Fisher-z versus r as estimators of ρ has attracted consider-
able attention, especially in the validity generalization literature (e.g., Corey
et al., 1998; Law, 1995; Schmidt, Hunter, & Raju, 1988; Silver & Dunlap, 1987),
and the bias of these statistics has been quite a controversial issue (see Hunter
& Schmidt, 1990; James, Demaree, & Mulaik, 1986). As shown here, it is ex-
pected that Fisher-z will exhibit a larger bias from a theoretical point of view.
In the Monte Carlo study to be presented in Chapter 7 and 8, it will be exam-
ined whether these expectations hold under the conditions of the simulation
procedure.

Hotelling proposed several improvements of the Fisher-z transformation.
First, he suggested the substraction of r/(2n − 3) from z when ρ is unknown
to correct for its positive bias (Hotelling, 1953, p. 219). This correction was
evaluated in a Monte Carlo study by Paul (1988), who concluded that for the
estimation of ρ < .50 the modification of Hotelling performed best amongst
the estimators he considered, and for ρ > .50 Fisher-z performed best. Alexan-
der, Hanges, and Alliger (1985), in contrast, found no substantial differences
between these estimators in their Monte Carlo study.

A further improvement was proposed by Hotelling (1953, p. 224) as

z∗∗ = z− 3z + r
4(n− 1)

− 23z + 33r− 5r3

96(n− 1)2 ,

however the quality of this modification has not been sufficiently evaluated to
date.

In contrast to these procedures, some authors in the methodological litera-
ture of meta-analysis, for example, Erez, Bloom, and Wells (1996, p. 288), and
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Overton (1998, p. 358) used the correction

r# = r− r(1− r2)
2n

to compensate for the positive bias in z. This correction was followed by an
application of the Fisher-z transformation in both authors’ work. Although
this procedure obviously lowers the positive bias of z, it is of unclear origin and
lacks a clear rationale from a statistical viewpoint. Because at least Erez et al.
(1996) attributed the correction to Hotelling (1953), it may be speculated that
(a variant of) Ξ1 was used to correct the bias in z. How this flaw in procedure
affects their results is however unclear.

As an important contribution to the statistical literature of estimators of ρ,
the UMVU estimator was presented as

G = r×2 F1

(
1
2 , 1

2 ; n−2
2 ; 1− r2

)
(3.5)

by Olkin and Pratt (1958, p. 202). The following formula gives an approxima-
tion of G

G = r
(

1 +
1− r2

2 (n− 1− 3)

)
(Olkin & Pratt, 1958, p. 203). G has the same range and asymptotic distribution
as r, but larger variance and smaller mean-squared error in general (Hedges &
Olkin, 1985, p. 226). Surprisingly, although this estimator has very desirable
properties from a statistical viewpoint, it is not widely used in the literature.
This may be due to unawareness or due to statements in the literature that not
much can be gained from an application of the correction of r (Hedges, 1989).
It is expected from the statistical properties of this estimator that its usage will
lead to a minimum bias among the estimators in the Monte Carlo study to be
presented.

In addition to the bias of an estimator, its variance is also of great importance
for meta-analysis. The variance of r is usually approximated in practice as

σ2
R ≈

(
1− ρ2)2

n− 1
(3.6)

which is Ξ2, the second moment about ρ presented by Hotelling (1953, p. 212)
truncated after the first term in the series. In practice, this approximation is
used by plugging in r for ρ in order to estimate the variance. This may, how-
ever, not be a good approximation. The reason for this is not only truncation,
but most importantly the very slow convergence of the distribution of r to the
normal distribution. As will be noticed, ρ (or in practical applications r) itself
is involved in the variance approximation. In Figure 3.3 the dependency of σ2

R
on ρ is illustrated. As can easily be seen in this figure, the variance is at max-
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Figure 3.3 Variance of r across different values of ρ and n.

imum when ρ = 0, across all values of n. The variance changes maximally at
ρ ≈ .577 for positive values3 of ρ.

The variance of G, in contrast, can be estimated by

σ̂2
G = G2 − 1 +

(n− 3)(1− r2)2F1
(
1, 1; n

2 ; 1− r2)
n− 2

(3.7)

(Hedges, 1988, p. 198; see also Hedges, 1989, p. 477). Again, the variance of
the estimator is dependent on the parameter, though not as apparent as in the
previous case. Figure 3.4 illustrates the relationship.
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Figure 3.4 Variance of G across different values of ρ and n.

By way of comparison of Figures 3.3 and 3.4 it becomes clear that although
the relationships are similar in form they are actually quite different with a
stronger change in variance for G. The largest change in variance occurs at
ρ = .347.

3This value results from taking the partial derivative of the variance and finding its minimum.
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Up to this point, only the Pearson correlation coefficient has been examined,
but there are several other correlation coefficients in the r family available (see
Rosenthal, 1994; Rosenthal, Rosnow, & Rubin, 2000). The properties of other
indices, like the point-biserial, biserial or rank correlation coefficient, for exam-
ple, are not of concern here as only the correlation coefficient for the bivariate
normal case is under scrutiny. For the distribution theory and examinations of
the robustness of the coefficients reported in this book the reader is referred to
Johnson, Kotz, and Balakrishnan (1995).

3.2 STANDARDIZED MEAN DIFFERENCES AS EFFECT
SIZES

As previously mentioned, a second common effect size measure in the psy-
chological literature is the standardized mean difference. It is mostly used in
a situation when two groups of participants are examined and differences of
means are of interest. More succinctly,

Xo1 ∼ N (µ1, σ2) o1 = 1, . . . , n1,

and
Yo2 ∼ N (µ2, σ2) o2 = 1, . . . , n2.

That is, both random variables are assumed to be normally distributed with
common standard deviation σ but not necessarily with the same number of
observations n. For this case, the effect size — also known as Cohen’s d (Cohen,
1988) — is defined as

δ =
µ1 − µ2

σ
.

The estimators proposed in this family are different with respect to the
choice of the standard deviation (S). They are all computed by the generic
form

X −Y
S

and therefore represent a standardized measure of the effect. There are three
popular coefficients that are presented here. The first will be denoted by d
and results from inserting the pooled estimate of the standard deviation in the
denominator of Equation 3.8. The pooled estimate Spool is given by

Spool =

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
,

where S1 and S2 are the sample standard deviations for X and Y, respectively.
Therefore,

d =
X −Y
Spool

. (3.8)
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Another estimator was proposed by Glass (1976; see also Glass et al., 1981)
and will be denoted by d′. It is given by inserting Scon in the denominator of
Equation 3.8, where Scon represents the standard deviation of a control group.
The control group is ordinarily chosen as the reference group in a two-group
experimental setting.

Both d and d′ have a distribution related to the noncentral t distribution (see
Hedges, 1981; Hedges & Olkin, 1985). Let

ñ =
n1n2

n1 + n2
,

then
√

ñd and
√

ñd′ follow a noncentral t distribution with noncentrality pa-
rameter τ =

√
ñδ. Bias as well as variance of d are smaller than those of d′

(Hedges & Olkin, 1985). The focus will therefore be on d.
The expected value of d is given by Hedges (1981) as

E(d) =
δ

f (m)
,

where m = n1 + n2 − 2 and

f (m) =
Γ
(m

2

)√
m
2 Γ
(

m−1
2

) .

Hedges (1981) also derived an unbiased estimator d′′ of δ by drawing on this
result. It is given as an approximation in the following equation

d′′ = d×
(

1− 3
4(n1 + n2)− 9

)
.

This is also the UMVU estimator when n1 = n2 (Hedges, 1981). Further prop-
erties of this estimator are not given here as the focus is on the more common
estimator d.

The asymptotic distribution of d is normal with expected value δ. The
asymptotic variance of the random variable d is given by

σ2
D =

n1 + n2

n1n2
+

δ2

2 (n1 + n2)
(3.9)

(Hedges & Olkin, 1985, p. 86, Equation 15). Customarily, the variance is esti-
mated by plugging in d for δ in practical applications. For an equal number of
persons in both groups, this variance estimate based on Equation 3.9 reduces
to

σ̂2
D =

4 + d2

n
, (3.10)
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Figure 3.5 Variance of d across different values of δ and n.

where n1 + n2 = n. As can easily be seen from these equations, the variance
(estimate) depends on the population parameter (or d) itself as was the case
for the correlation coefficient. To provide an impression of this dependency,
consider Figure 3.5.

As can be seen, the relationship between δ and the variance of the estimator
is quite strong for large absolute values of δ and different in shape in compari-
son to the relationships previously examined for correlation coefficients. Since
these variances play a central role in meta-analyses using d as an effect size,
this may have unwanted effects on the results.

The details on the r and d families of effect sizes necessary for the present
purposes are outlined at this point. Discussion will now turn to the question
of the relation between r and d measures.

3.3 CONVERSION OF EFFECT SIZES

The conversion of effect sizes is one of the central features of meta-analysis.
Effect sizes have always to be converted when the database does not provide
coefficients from the same family. For example, it may be the case that one
half of available studies reports the results from experiments and therefore d
values4, whereas the other half has observed the bivariate linear relationship
between variables of interest and reports r values. The question arises in such
cases how different effect size measures may be analyzed in a single meta-
analysis.

Conversions of effect sizes are intended to homogenize the database to one
single effect size (family). A host of conversion formulae for the various spe-
cific effect sizes has been presented to date, that will not be repeated here (see,
e.g., Olejnik & Algina, 2000; Rosenthal, 1994). Instead, only the following for-
mulae for the conversion of the Pearson correlation coefficient and the stan-

4Depending on the design, other indices than the d as introduced here may be appropriate.
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dardized effects size measure d will be presented. They are given in various
resources for the case of equal group sizes (i.e., n1 = n2) as

r =

√
d2

d2 + 4
(3.11)

and
d =

2r√
(1− r2)

(3.12)

(e.g., Cohen, 1988; Hedges & Olkin, 1985; Lipsey & Wilson, 2001; Rosenthal,
1991). The conversion with Equation 3.12 is illustrated in Figure 3.6.

In Figure 3.6 it can be seen that the conversion of r to d has a similar shape in
comparison to the Fisher-z transformation presented in Figure 3.1 but is much
steeper in the tails. This suggests a normalizing transformation of the corre-
lation coefficient as was the case for the Fisher-z transformation but may not
result in an equally good normal approximation. Conversely, a transformation
of d to r leads to relatively large differences in the space of r for values near
zero being relatively close to each other, but large differences far from zero
translate into small differences in absolute values of r.

Aaron, Kromrey, and Ferron (1998) provided a derivation of the conversion
for equal n that slightly differs from Equation 3.11

r =

√
d2

d2 + 4− 8
n

,

where n = n1 + n2. For the case of unequal n they proposed

r =

√√√√ d2

d2 + (n1+n2)2−2(n1+n2)
n1n2

.
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The authors also showed that discrepancies exist between their corrected for-
mulae and results from Equation 3.11. The reported differences were consid-
ered as negligible for the balanced case when n > 50.

However, it is not clear from Aaron et al.’s (1998) presentation whether their
corrected formulae provide more accurate procedures for estimating the corre-
lation coefficient by way of d. As is the case for the standard formula in Equa-
tion 3.11, their derivation also draws on the null distribution of both effect sizes
that is approximately t with n − 2 degrees of freedom. Assuming both effect
sizes to have an equal distribution seems to be only justified in this case. Yet,
for the nonnull case (i.e., ρ 6= 0 and δ 6= 0), neither the distribution of r nor
the distribution of d is exactly (noncentral) t. As a consequence, there is no
statistical derivation available for the conversion of r to d or vice versa for the
nonnull case. Hence, when there is a lack of a standard for comparison, there
is no way to theoretically evaluate the quality of the conversion formulae.

One possibility for evaluation, that is pursued in the following Monte Carlo
study, is to apply the conversion proposed in Equation 3.11 to simulated data
and study the behavior of converted statistics. This will enable the exami-
nation of the implicit assumption, by the widespread application of Equation
3.11, that the conversion itself does not have any influence on the results in
meta-analysis.



4
General Frameworks of Meta-Analysis

As an example, suppose a group of researchers has succeeded in collecting all
empirical studies judged as relevant in a field they are interested in. Recogniz-
ing the shortcomings of narratively summing up the collected evidence and
confronted with a large amount of empirical evidence, they are interested in
statistical methods to quantitatively aggregate the effect sizes extracted from
the study reports. Before the researchers turn to specific computational proce-
dures of conducting a meta-analysis, to be described in Chapter 5, they might
first consider the following questions:

1. Are there good reasons, theoretically or based on previous evidence, to
assume that only one universe effect size is underlying all studies? That
is, do all studies estimate exactly the same effect?

2. What kind of inference is intended? Should generalization from the re-
sults pertain to all potential studies in a field of interest, or should inter-
pretations be restricted to the kind of studies in the collected sample?

3. If studies are not all assumed to estimate the same effect size,

• are there any theoretically assumed predictors which correspond to
observed characteristics of the collected studies to explicitly model
potential effect size differences and/or

• are there potential differences in universe effect sizes that are due to
unobserved (latent) variables?

In essence, by answering these questions, the researchers are making a de-
cision between models to be applied to the observed effect size data. Such
decisions and arguments to substantiate them have not always been made ex-
plicit in published meta-analyses. Often, the choice of a model has been made
implicitly by the choice of an approach to meta-analysis. For example, the re-
searchers may turn to one of several textbooks on meta-analysis and apply the
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computational procedures outlined in there before considering and answering
all the questions outlined above. Unfortunately, not all available textbook re-
sources are explicit with reference to the statistical models implied by the pro-
cedures described therein (e.g., Wolf, 1986; but see in contrast, Hedges & Olkin,
1985). Approaches are intimately tied to statistical models, so that the choice
of an approach is also the choice of a model. The present section is intended to
clarify the basic characteristics of models in meta-analysis. This will provide
the framework to classify the specific approaches presented in the subsequent
section.

It is important to recognize that definite answers to the questions presented
above cannot be given on the sole basis of any form of data analysis. The
choice of a model has to be made at a conceptual level (Hedges, 1994b; Hedges
& Vevea, 1998). This becomes most evident, for example, by considering the
second question: What kind of inference is intended? This question can only
be answered as a result of careful consideration of the object of inference. On
the other hand, there are data-analytical procedures providing some indication
of the tenability of a model by way of testing some of its assumptions. In the
following sections, such procedures will be presented and their performance
under different models will be evaluated on the basis of results of a Monte
Carlo study to be presented in Chapter 8.

With respect to the choice of a model, meta-analysis is not at all different
from other familiar statistical techniques. Estimation of the parameters of a
model is always done by assuming a certain model beforehand, implicitly or
explicitly. Structural equation modeling, which has become a very popular
statistical technique in practice in recent years, is a prototypical example where
one has to choose a model before estimation can be done. However, not all
data-analytical techniques force the user to specify or choose between models.
Meta-analysis as practised in the field of psychology seems to have become
one of these types of data-analytical tools, where decisions of a user are more
focused on the choice between sets of computational procedures rather than
models.

The question at this point is what kind of models there are available in
meta-analysis and which meta-analytical approach corresponds to what kind
of model. The following sections are intended to answer these questions. The
presentation will thereby be kept more general in comparison to the subse-
quent presentation of specific approaches (see also Shadish & Haddock, 1994).
Although presentation will be focused on the correlation coefficient as an ef-
fect size there is no need to restrict the treatment of the subject at this point.
Keeping the general perspective in mind, it will be much easier to recognize
the similarities and differences of the meta-analytical approaches, and their
statistical procedures in particular, to be presented in Chapter 5.
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4.1 FIXED EFFECTS MODEL

The fixed-effects model (FE) can still be regarded as the most frequently as-
sumed model in practice. An often stated basic assumption of the FE model is
represented in the first question to the researcher in the above list: Are there
good reasons to assume a universe effect size that is common to all studies? If
the answer to this question is “yes”, then the researcher assumes that all ob-
served effect sizes are estimates of a single parameter. The fixed effects model
is appropriate for this case.

Let θ denote the universe effect size measure of interest and suppose there
are k independent observed effect sizes. This may be the case when an exper-
iment is replicated 10 times (k = 10) and each experiment is conducted by a
different researcher, in a different place, and so forth, so that all results can be
considered as independent. The differences between studies (researcher, place,
measurement instruments, etc.) are considered to be minor or negligible in the
sense that they do not exert any systematic influence on the research results.
The experiments can also be called strict replications here. Though such strict
replications are only rarely or never conducted in the social sciences, they are
assumed for matters of convenience in the presentation at this point.

Furthermore, suppose there is one effect size θ giving rise to all effect size
estimates. This is a case where effect sizes are often called homogeneous, because
they all are assumed to represent the same parameter of interest.

However, in general each of the ten replications will report a different ob-
served effect size, so there is a nonzero variance of observed effect sizes. One
important question to be answered is how such differences may arise. In the
FE model, differences between reported effect sizes are ordinarily conceived as
resulting only from sampling error, and sampling error results from different
person sampling in the studies. The variance of the observed effect sizes, how-
ever, is assumed not to be caused by substantive differences between studies,
like differences in treatment nuances, validity of measurement instruments,
and so forth. This is a very strong assumption for which usage of the FE model
has been heavily criticized in recent years (Erez et al., 1996; Hunter & Schmidt,
2000; National Research Council, 1992). As a consequence of the assumptions,
one would expect the conduct of 10 more studies of the same type as the first
ten studies to result in different estimates of θ only because of varying samples
of participants.

The observed effect size measures will be denoted as Ti (i = 1, . . . , k). Usu-
ally, different studies also have a different number of participants so that the es-
timates vary in precision1 of estimating the parameter θ. The variance of each

1In a strict statistical sense estimates do not vary in precision but only estimators do. Hence,
one could also conceive each observed estimate as a realization from a different estimator
when n is different between studies and the precision of the estimator depends on n. How-
ever, in the present context it may be confusing to use the term estimator when all effect size
measures are of the same family. As a consequence, the term estimate will be used in what
follows.
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effect size estimate Ti will be denoted as νi and is a measure of this precision.
The crucial point is that the estimates might differ in their precision of estima-
tion though they all estimate the same constant θ (i.e., θ1 = θ2 = . . . = θk = θ).
In other words, the universe effect size is fixed for all studies.

In order to form a precise pooled estimate based on the observed effect sizes,
it seems natural to consider the so-called pooled estimator in the FE model

θ̂ =

k
∑

i=1
wiTi

k
∑

i=1
wi

. (4.1)

This is also often called the mean effect size (estimate). The connotation implied
by this label is that θ̂ is a weighted mean (with weights wi) of the observed
effect size estimates. When all observed effect size estimates are unbiased, then
θ̂ is also unbiased. As already shown in the previous chapter, not all measures
of effect size of interest are indeed unbiased.

The remaining question is what specific weights are to be inserted in Equa-
tion 4.1. From a statistical point of view, the optimal weights are the recipro-
cals of the variances of the estimates, because they minimize the variance of
the pooled estimate θ̂ (for a proof, see Böhning, 2000, pp. 96–97).2 Therefore,
the optimal weights are given by

wi =
1
νi

. (4.2)

Intuitively, these weights also make sense, since they give the largest weight
to the most precise estimate (i.e., with smallest νi). Since the meta-analytical
approaches to be presented in Chapter 5 differ with respect to the choice of
weights, a more detailed discussion is postponed to the presentation of the
approaches. Note, however, that variances used to compute the weights are
usually unknown and have to be estimated. Ordinarily, an estimate for this
variance ν̂i is available and plugged into Equation 4.2.

No distributional assumptions have been made up to this point. For the
next step of inference based on the estimates of θ, it is often assumed that the
Ti are normally distributed (e.g., Hedges & Vevea, 1998). However, this is not
a necessary assumption to show that

νθ̂ =
1

k
∑

i=1
wi

2It is noteworthy that a justification of the weights can also be given by the maximum likeli-
hood method (see Böhning, 2000, pp. 101-103).
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gives the variance of the pooled estimate (see Böhning, 2000), provided every
Ti is unbiased. Additionally drawing on the central limit theorem, it is possible
to construct confidence intervals via

θL = θ̂ − gα
√

νθ̂

θU = θ̂ + gα
√

νθ̂ ,

where gα denotes the critical value for a prespecified α-level from a standard
normal distribution to construct two-sided confidence intervals.3 The index
“L” designates the lower limit and “U” the upper limit of the interval, respec-
tively.

In addition to the construction of a confidence interval, the null hypothesis
θ = 0 can also be tested by using νθ̂, so that

g =
θ̂
√

νθ̂

provides a g-value to be compared with a critical value from the standard nor-
mal distribution for a prespecified level of α.

As a last step in the FE model, one can test the basic assumption of equal
universe effect sizes underlying all studies by computing the following statistic

Q =
k

∑
i=1

(
Ti − θ̂

)2

νi
.

Essentially, this is the sum of squared standard normal values, which fol-
lows a χ2-distribution with k− 1 degrees of freedom when the null hypothesis
of equal universe effect sizes for all k estimates is true. Hence, by compar-
ing the value of Q with the respective critical value from a χ2

k−1 distribution,
one tests whether the assumption of equal universe effect sizes for all studies
holds.4 This makes the computation of the Q-statistic a very important step
in the application of the FE model. When the test result is significant, one is
forced to reject the null hypothesis, and this amounts to rejecting the tenability
of the FE model. One of the consequences of such a result is that the mean
effect size estimate θ̂ has no simple interpretation anymore within the frame-
work of the FE model as presented up to this point.

Of course, it is still the weighted mean of observed effect sizes but the pa-
rameter to be estimated is not a single universe effect size constant for all stud-
ies. Instead, one is forced to switch to a different model which incorporates
differences in universe effect sizes between k studies.

3The unusual symbol gα is used here to avoid confusion with the values of Fisher-z which play
a prominent role in the present book.
4For convenience, such tests will be labeled as Q-tests.
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One possibility to deal with the result of a significant Q-statistic is to build
subgroups of studies that are assumed to be homogeneous in the sense of the
basic assumption of the FE model and compute as many estimates of mean
effect sizes as there are groups. Subgrouping in such a procedure can be based
on coded characteristics of the studies, for example. These characteristics may
be suggested by theoretical reflections or may also be methodological features
of the studies (e.g., experimental vs. quasi-experimental studies). In any case,
the pursued aim of subgrouping is to find groups that satisfy the assumption
of homogeneity in the FE model. A more efficient procedure than subgrouping
would be to fit a categorial or continuous (linear) model to the effect size mea-
sures as proposed by Hedges (1982a, 1982b, 1994a). In type, these procedures
are akin to familiar techniques such as the general linear model (e.g., ANOVA
and regression models). A very general framework for this type of analyses
is provided by hierarchical linear models, which will be introduced in Section
4.4.

As is well-known, there are also fixed effects models in ANOVA. Indeed,
fixed effects models in ANOVA and in meta-analysis are analogous in the
sense that the parameter to be estimated is conceived as fixed instead of be-
ing a random variable as in the model to be presented next (see, e.g., Scheffé,
1959/1999; for details on the analogy between ANOVA and meta-analysis, see
Hedges & Vevea, 1998). It is important to recognize at this point that although
the starting assumption of a universe effect size equal for all k studies is re-
jected, the fixed effects model can still apply.

Nevertheless, the analogy to ANOVA models suggests an interpretational
consequence pertaining to the pooled estimate θ̂. Just like in ANOVA, it now
has to be interpreted as an estimate of the grand mean of the observed effect
sizes. Against this background, the assumption of equal universe effect sizes
stated at the outset can be considered as a special case of ANOVA where a
factor study with k levels has no effect.

Interpretation of results from inferential procedures as outlined above also
have to be refined in this model. They now relate to the grand mean built on
the basis of a set of k studies which differ in universe effect sizes. The differ-
ences between universe effect sizes are now modeled and are considered to be
constant (fixed) over replications. If, for example, a meta-analysis is used to
aggregate results from ten studies with a certain grand mean, then another set
of ten studies must estimate the same grand mean. In this situation one can
think of replicating sets of studies with the same grand mean. Hence, inference
relates to a universe of studies that is characterized by the grand mean to be es-
timated. The term universe (of studies) is used here again, to underscore the
different level of sampling in comparison to primary studies (see also Chapter
2). To reiterate, a first level of sampling can be considered as sampling of per-
sons in the studies, so that there is a population of persons. The second level
is considered as sampling of studies form a universe of studies.

Another possibility to deal with the result of a significant test result for
the Q-statistic can be to completely give up the fixed effects assumptions and
switch to the random effects model to be presented next.
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4.2 RANDOM EFFECTS MODEL

The main difference between the FE model and the random effects model (RE)
in meta-analysis is the introduction of a random variable Θ instead of an ef-
fect in the universe of studies that is conceived as constant (Hedges, 1983b;
Raudenbush, 1994). The objects of main focus in RE meta-analyses are the ex-
pected value µΘ and the variance σ2

Θ of the random variable Θ. In comparison
to the FE model, the expected value of Θ replaces θ as the mean effect size. The
variance of Θ is a new object of interest that has no counterpart in FE models.
Hence, it is acknowledged in RE models at the outset that universe effect sizes
may vary between studies. It is easily seen from this conceptualization that
the FE model can also be viewed as a special case of the RE model where the
variance of the universe effect sizes is zero and the expected value of Θ and
the effect size θ in the FE model coincide.

As a consequence of the model assumption, the variance of observed effect
sizes is not only explained by sampling error of persons in studies as was the
case in the FE model, but also by true variability of studies in meta-analyses.
That is, variance of effect size measures is decomposed into two components

σ2
Ti

= σ2
Θ + νi,

where it is assumed that Θ and the error component are independent. The
sampling error νi of the studies is interpreted as is done in the FE model.

Although there is ordinarily no explicit sampling scheme implied by collect-
ing the studies, it is usually assumed to be a random sampling process. The
additional variance component σ2

Θ — also called heterogeneity variance — in-
troduces an additional source of uncertainty, because apart from sampling n
participants at a first level there is also a sampling of k studies with different
universe effect sizes at a second level.

The procedures applied in the RE model to estimate a mean effect size first
require an estimate of σ2

Θ. There are different estimators of this variance com-
ponent that will not be given here, however presentation of specific estimators
will be given in the introduction of the refined approaches in Section 5.4 of the
following chapter. Assume for the moment that a variance estimate σ̂2

Θ were
available. This estimate is used to compute new weights by

w∗
i =

(
1
νi

+ σ̂2
Θ

)−1

,

which are employed in the same way as in the FE model to estimate the mean
effect size in the RE model by

Θ̂ =

k
∑

i=1
w∗

i Ti

k
∑

i=1
w∗

i

.
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As can be seen from the weights, results for the mean effect size estimate in
the RE model will differ from those in the FE model when the variance esti-
mate σ̂2

Θ is different from zero, which will generally be the case. Note that σ̂2
Θ

is the same for all k studies so that the effect of the additional component in
the weights is to homogenize the weights between studies as compared to the
FE model. This also seems plausible since in a situation in which σ̂2

Θ is much
larger in comparison to the νi this gives a larger impact on the weight to uncer-
tainty due to sampling of studies. In extreme cases where there is practically
no estimation error in the individual studies, variability of effect sizes would
totally reflect uncertainty due to sampling of studies from the universe. Due
to the fact that all studies are ordinarily considered to be equal with respect
to sampling from the universe of studies, homogenization is desirable. How-
ever, this also makes the estimation of the mean effect size more uncertain and
widens the confidence intervals accordingly. This can be seen in the following
equations for the construction of confidence intervals

ΘL = Θ̂− gα
√

νΘ̂

ΘU = Θ̂ + gα
√

νΘ̂

where, again, gα is the critical value from a standard normal distribution. The
estimate of the variance of Θ̂ is denoted by νΘ̂ and given by the reciprocal of
the sum of weights

νΘ̂ =
1

k
∑

i=1
w∗

j

.

In the same fashion as in the FE model but with the new weights, a significance
test for the hypothesis Θ = 0 can also be performed by

g =
Θ̂
√

νΘ̂
.

As can easily be seen by considering computation of the weights in the RE
model, the tests are — ceteris paribus — generally less powerful than those of
the FE model. This is due to the additional component σ̂2

Θ which makes the
weights larger, and as a consequence, standard errors νΘ̂ also become larger.

The estimates Θ̂ are always clear to interpret in the RE model. They repre-
sent estimates of the expected value of the distribution of universe effect sizes.
This is an important point to note since the distribution of effect sizes in the
universe of studies represents the distribution of all possible studies. The uni-
verse comprises the k studies in a meta-analysis as a sample but also all other
studies that could not be retrieved (see Hedges & Vevea, 1998). This suggests
a very attractive interpretation of the mean effect size estimate in RE models,
namely that the effect size estimate may be generalized to an entire research
domain. This is one of the reasons why some authors have argued strongly in
favor of the application of the RE instead of FE models (e.g., Hunter & Schmidt,
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2000). In other methodological areas in psychology, like generalizability the-
ory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972), there is also an analogous
transition in models where the RE model is strongly favored.

However, there is always some ambiguity left in interpretation when the
sampling process is somewhat obscure as will mostly be the case in applica-
tions of meta-analysis. A random sampling process would require the spec-
ification of the whole universe of studies and a procedure that guarantees a
random sample of k studies from this universe. This is not feasible in practice
and may represent a critical point for the application of RE models. In a similar
vein, some authors have noted that the assessment or decision as to whether
study samples are indeed representative for an entire research domain is not
an easy task, if possible at all (Kavale, 1995). Yet this is not a problem specif-
ically pertaining to meta-analysis but also arises in ordinary research practice
in psychology or other fields where random samples are scarcely available. On
the other hand, random sampling is considered not to be a necessary prereq-
uisite in general for valid interpretations by some authors (e.g., Frick, 1998).
Furthermore, a Bayesian perspective on the research problem in meta-analysis
also does not necessitate a formal random sampling procedure for the justifi-
cation of random effects (Raudenbush, 1994).

In addition, when not many studies are available in a field of interest gen-
eralization to a whole domain of research may be unfounded or at least risky
because few studies are scarcely representative for a universe of studies. Fur-
thermore, problems arise also in the application of RE models to a set of only
few studies with respect to estimation of the heterogeneity variance σ2

Θ (Rau-
denbush, 1994; see also Hunter & Schmidt, 1990, who discuss such issues un-
der the heading of second-order sampling error). It may be more sensible in such
cases to restrict interpretation only to studies like those in the sample as is done
with the FE model. Therefore, it is of great interest how applications of the RE
model perform in situations with very few studies which is one of the aims
that will be pursued in the empirical part of this book.

Unfortunately, there seems to be considerable confusion as how to concep-
tualize and interpret the random effects model of meta-analysis. For example,
Erez et al. (1996) draw a distinction between the fixed and random effects
model in a way that the fixed effects model is interpreted as an intercept-only
regression model, whereas the random effects model is regarded as a regres-
sion where the heterogeneity of observed effect sizes is additionally accounted
for by covariates (Erez et al., 1996, p. 278). The difference between the FE and
RE model, however, is not one of differences in predictors in regression models
but whether universe effect sizes are conceived as random variables or not. In
both models it is possible to apply linear models for the explanation of vari-
ation in study findings with any desired set of predictors as long as the basic
assumptions of the models are met.

As already noted, the homogeneity test based on the Q-statistic in the FE
model is often used in practice to make a decision between the random and
the fixed effects model. Although this decision does not require such a test,
the decision is often made conditionally on the result of the test. Such a proce-
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dure is also called the conditionally random effects procedure. This hybrid proce-
dure has been reported to have properties in between FE and RE procedures
with respect to test results (Hedges & Vevea, 1998). As has been outlined in
this section, there are important differences in interpretation associated with
the choice of a model. Therefore, it seems reasonable to require the Q-test to
perform quite well as one of the most important decisions in meta-analysis
hinges on its results. The present study will also present an empirical evalua-
tion of the Q-test as used in various approaches to assess its quality (see also
Alexander, Scozarro, & Borodkin, 1989; Cornwell, 1993; Field, 2001; Hardy &
Thompson, 1998; Harwell, 1997; Hartung, Argaç, & Makambi, 2003; Sánchez-
Meca & Marín-Martínez, 1997).

4.3 MIXTURE MODELS

Mixture models provide a very general framework for the meta-analytic situ-
ation that embrace and extend the fixed and random effects models presented
in the previous two sections. Since mixture analyses are not part of the Monte
Carlo procedures to be presented in later chapters, only a brief sketch of the
main characteristics is given here. The concepts introduced in this section will
nevertheless be taken up in later sections because they provide a very concise
way to describe the meta-analytical situation in a well-founded statistical the-
ory. For an in-depth treatment of the subject with application to meta-analysis
the reader is referred to the work of Böhning (2000) and also to one of the
first applications of these methods to meta-analysis in psychology by Thomas
(1989a, 1989b, 1990b). Because the present study is mainly occupied with the
application of meta-analysis to correlational data, the following presentation
will be given with the correlation coefficient as effect size data.

Suppose again, there are k = 10 studies given and each of the ten studies
reports a correlation coefficient ri for two variables that are bivariate normal
in distribution. Now the following concepts and notation are introduced. Ob-
served correlations are regarded as realizations of random variables denoted
by Ri with a certain ni per study and universe correlation ρj. For matters of
convenience, it is assumed that all ni are equal5 and can be denoted by n. The
index j is used to indicate potentially different universe correlations for a set
of i correlations. That is, there may be subsets of the i studies with different
universe correlations, for example. In mixture models, such j universe param-
eters — universe correlations in the present case — are also called components.
The total number of components is denoted by c, so that j = 1, . . . , c.

What the meta-analyst wants to understand, explain, and model, is how
the distribution of observed correlation coefficients arises. If there is only one
ρj = ρ common to all studies, a homogeneous case is given. In mixture models

5It would not be difficult to conceive the number of participants also as a random variable.
However, this would not add much to understanding the concepts here and there is no loss in
generality by assuming equal n.
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this is also called a case with one component. The distributions of the Ri only
differ when the sample sizes ni of the studies are different. Otherwise, all
variables have the same distribution, characterized by a probability density
function f (r; ρ, n). In this case, knowledge of ρ and n suffices to characterize
the sampling distribution of the observed correlation coefficients.

Now suppose, two components with ρ1 6= ρ2 and therefore a heterogeneous
case is given. As mentioned in the previous sections, such a situation could be
modeled by procedures of the general linear model when it is known for each
of the k studies which of the two ρj is underlying each study. Assume such
knowledge is not available to the meta-analyst and membership of the ob-
served correlations to the different components can be said to be unobserved
or latent. In this situation, the distributions of the Ri differ only because of the
different ρj. The ρj can now themselves be considered as realizations of a ran-
dom variable P (large Greek Rho)6. The distribution of P is called the mixing
distribution in the present context and is not yet specified. For the present case
of only two different components ρ1 and ρ2, the distribution of P is character-
ized by the two components and the according weights λj. The weights give
the probability of belonging to the jth component and therefore conform to the
usual constraints λj ≥ 0 and ∑c

j=1 λj = 1 when there are c components (in the
present example, there are only two).

Under these conditions, the correlation coefficient Ri of interest in study i
can be said to have a conditional density denoted by f

(
ri|P = ρj, n

)
. That is,

given the universe effect size parameter ρj and the number of participants per
study n, the correlation coefficient has a density as given in Equation 3.1 (see
page 21). For purposes of illustration, assume that for the two components
in the example all studies have equal probability of belonging to one of the
components. That is, λ1 = λ2 = .50. For this example, the unconditional
density of R, the variable representing all observed correlation coefficients r, is
given by

f (r|n) = .50× f (r; P = ρ1, n) + .50× f (r; P = ρ2, n),

and for the more general case of c components the unconditional density is

f (r|n) =
c

∑
j=1

λj × f (r; P = ρj, n).

This is also the density of the so-called mixture distribution with kernel f (r; P =
ρj, n) for the present case. Of course, the kernel of the mixture distribution de-
pends on the effect size under investigation when mixture models are applied
in the context of meta-analysis.

6Not to be confused with the symbol for probability P used in the following. In any case, it
will also always be clear from the context which symbol is used.
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Figure 4.1 Example of a mixture distribution with four components, n = 50.

As a further example, consider a situation with n = 50 where the distri-
bution of P is uniform on the four points ρ1 = .10, ρ2 = .20, ρ3 = .30, and
ρ4 = .60. Then a situation like the one depicted in Figure 4.1 is given.

The four darkly shaded densities are the conditional densities for each of
the components, with a fixed n of 50. The resulting mixture distribution filled
in light grey is depicted in the front and illustrates the density of R in this
situation. In meta-analysis, a number of k correlation coefficients are given
which are considered as arising from the mixture density given in Figure 4.1.
That is, the mixture distribution is similar in shape to what one would expect
as a frequency distribution of k observed correlations in a meta-analysis (given
the four components and a fixed n of 50).

As already mentioned, the number of components is usually unknown so
that it has to be estimated along with the component weights. Conventionally,
this is done by maximum likelihood estimation but details on estimation and
algorithms will not be presented here (see Böhning, 2000).

The attractive options offered to the meta-analyst by an application of mix-
ture models are manifold. Mixture models provide a general and flexible
framework of conceptualizing as well as statistically modeling the object of
interest in meta-analysis, namely the distribution of observed effect size mea-
sures. Furthermore, procedures to estimate the number of components as well
as their weights are offered. This makes it possible to address the problem of
heterogeneity of effect sizes even after attempts to apply linear models with
observed variables have been undertaken. When the number of components
and their weights are estimated, it is also possible to classify the k studies un-
der investigation by posterior Bayes classification (see Böhning, 2000). The fit
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of the model applied to effect size data can also be assessed to give an impres-
sion of how well the estimated parameters serve to explain heterogeneity.

Of course, the application of mixture models to effect size data does not
guarantee that the user can easily interpret the composition of the components
suggested. Interpretation of results requires theorizing as well as speculation
about the nature of the latent variable. Replications and further research may
well be indicated to support or to question interpretation of results from mix-
ture analysis.

Evaluations of an early mixture approach to meta-analytic databases by
Thomas (1989b, 1990b) on the basis of Monte Carlo study results were quite
encouraging (see Law, 1992). In several situations of Law’s study, the proce-
dures proved to be quite accurate with respect to estimation of the weights and
the actual values of ρj. However, in identifying the proper number of compo-
nents there seemed to be room for enhancement of the procedures. Given that
improved algorithms and procedures have become available in recent years,
updated and more in-depth evaluations of the procedures seem to be desir-
able.

To conclude, as with many statistical techniques newly introduced to a field
of application, mixture models involve relatively complicated procedures and
estimation is by far not as easily done as with the procedures outlined for the
FE and RE models. However, in the case of mixture models there are easy-
to-use programs available so that estimation is feasible in practice and there-
fore not really much more complicated than with all other models (Böhning,
Schlattmann, & Lindzey, 1992; Schlattmann, Malzahn, & Böhning, 2003).

4.4 HIERARCHICAL LINEAR MODELS

In addition to the more standard FE and RE models and the more advanced
mixture distribution analysis presented in this chapter, there are other mod-
els available as well. These will not be treated in detail, but at least a rough
idea of their basics of conceptualization will certainly help in gaining a deeper
understanding of meta-analysis and potential modeling approaches. This sec-
tion describes the HLM approach. For a comprehensive overview of mod-
els, (estimation) methods, and issues in HLM that also includes meta-analysis
as a special case, the reader may consult the book by Raudenbush and Bryk
(2002). A more focused and succinct presentation on multilevel models for
meta-analysis is given by Hox and de Leeuw (2003), for example.

Hierarchical linear models (HLM) are a very general class of models that
may be applied not only in meta-analysis, but in a very large number of situa-
tions, all of which are characterized by different levels of data. The lowest level
of data in HLM is ordinarily the individual units level, that is, persons in an
observational or experimental study, for example (Level 0; see Figure 2.1). As
a result of primary analyses, some estimates for parameters of interest are ob-
tained and these are considered to constitute another level of data (Level 1). As
conceptually outlined in the previous sections, such estimates are the data for
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meta-analysis. If modeling of the study parameters (θi) is of interest, then we
have yet another level of data. This is the case, for example, in mixture model-
ing as presented in the previous section, where study parameters are thought
to arise from a mixing distribution. In sum, it is important to recognize and
differentiate levels of data as conceptualized in HLM.

Yet, the situation of meta-analysis is somewhat special from the perspective
of HLM. The data of individual units are not available and if they were, one
would most probably try to conduct secondary analyses or more specifically
a three-level analysis in HLM. The first level of interest in meta-analysis is
therefore at the study level and modeling takes place at a second level in order
to explain potential heterogeneity of effects (i.e., σ2

Θ 6= 0), for example.
To explain how the meta-analytical situation is modeled with HLM, con-

sider once more the situation a meta-analyst is confronted with. There are a
number of k study results, extracted from the literature on a certain research
question, and the task is to summarize them in a theoretically sound and —
for the research question — appropriate way. The following equation specifies
a model for the individual effect size data of the ith study, that is, a so-called
within-studies or Level 1 model by

Ti = θi + ei. (4.3)

The observed effect size is a realization of Ti for the ith study. It is conceived as
the sum of the corresponding universe parameter θi and an error component
denoted by ei. The error component represents random fluctuations, whereas
the universe parameter θi is a constant per study and hence specific for every
study i. As an alternative, one might as well assume θ1 = · · · = θk = θ as
is done in FE models. This additional assumption makes the FE model a spe-
cial case of HLM. The error component is ordinarily assumed to be normally
distributed with expected value of zero, that is, ei ∼ N (0, νi). The variance
of the error component νi can therefore be identified as error variance of the
estimator T and is assumed to be known in HLM of meta-analysis. This lat-
ter assumption results from the situation given in meta-analysis, where the
available data have to be gained from research reports and original data at the
individual level are not available.

For the case of correlational data, Equation 4.3 may be stated as ri = ρi + ei.
What is already known from the previous chapters is that for correlations as
effect sizes, the assumption of a normal distribution for the error component
is not tenable for sample sizes less than approximately 500. For this reason,
the correlation coefficient is ordinarily transformed into z-space by the Fisher-
z transformation for which the assumption of normally distributed errors may
be reasonable even for modest sample sizes. In addition, assuming the error
variance to be known is also well-founded in z-space since it only depends on
ni and no estimation is needed. Note, however, that νi would have to be esti-
mated for correlations and the error component variance involves the universe
parameter (see Equation 3.6 on page 26). Furthermore, correlations are biased
and the assumption E(ei) = 0 is not correct in a strict sense, though the bias
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may be negligible, especially for ρi close to zero (see Chapter 3). The same is
true for values resulting from the Fisher-z transformation. As will be shown in
later chapters, however, this transformation has some undesirable properties
making its use a problematic feature in HLM and meta-analysis in general.

In addition to the Level 1 model, the following Equation is of importance in
HLM. It specifies the Level 2 — or between studies — model as

θi = γ0 + γ1X1i + · · ·+ γLXLi + ui. (4.4)

The linear model stated in this equation includes a set of L regressors X all
of which are considered to be observed study characteristics in meta-analysis.
Examples for such variables include methodological quality scores and other
attributes coded in step 3 of a meta-analysis (see Chapter 2), like intensity
or duration of an experimental treatment, type of measurement instruments
used, and so forth, which are more of substantive interest. The parameters in
the equation are the intercept γ0 and the weights for the regressors γ1, . . . , γL.
These components of Equation 4.4 represent the explanatory part for the vari-
ability in θi. Additionally, there is a random effect component for each study
denoted by ui. This random effect represents each study’s universe parameter
θi deviation from the value predicted by the explanatory part of the model. The
random effect component is ordinarily assumed to be normally distributed as
U ∼ N (0, σ2

U) in HLM. This makes clear that the study parameters θi are con-
ceived as realizations of a random variable θ. Due to the fact that the model
includes fixed effects (the regressors) and a random effect (ui) the model is
referred to as a mixed model.

Substituting Equation 4.4 in Equation 4.3 results in

Ti = γ0 + ∑
l

γlXli + ui + ei. (4.5)

In this equation it becomes clear how variability of the observed effect size
measures Ti is decomposed in HLM. There is variance explained by the study
characteristics, there is residual variability due to a random effect, and also
variability due to sampling error. HLM is quite an attractive model for meta-
analysis that goes beyond the more standard models of fixed and random ef-
fects as outlined in Sections 4.1 and 4.2 by incorporating explanatory variables.
It includes, however, these more popular models as special cases. The gener-
ality of HLM is thus recognized by considering some special cases of Equation
4.5.

First, the FE model without explanatory variables was already shown to
be a special case. Second, consider Equation 4.5 without a random effect ui.
This basically is the fixed effects model in meta-analysis with regressors as
described by Hedges and Olkin (1985). Note that in such models there is, of
course, the supposition of variability in the Ti, but it is assumed to be explained
by the regressors so that only variability due to the error component remains.
Hence, σ2

U is assumed to be zero. One of the important features of HLM is that
such assumptions are testable. HLM therefore offers statistical tests in meta-
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analysis — in this specific case akin to the Q-test — to test critical assumptions.
Third, imagine there were no explanatory variables in Equation 4.5, so that

Ti = γ0 + ui + ei.

In this case, the model is equivalent to the RE model as presented in Section 4.2.
The intercept γ0 represents the mean effect size across all studies, the variabil-
ity of σ2

U would correspond to σ2
Θ, and the variability of ei is νi. As alluded to

before, tests and the construction of confidence intervals are possible by using
HLM to analyze a meta-analytic database.

However, HLM does not include all models presented in this chapter as spe-
cial cases. An important exception are mixture models. Although both models
aim at explaining potential heterogeneity of effect sizes, HLM incorporates ob-
served explanatory variables, whereas in mixture models such variables are
considered as latent. Hence, both models should be considered as comple-
mentary rather than competing.

Apart from their theoretical attractiveness, how well do HLM perform in
comparison to the more simple and much more popular standard FE and RE
models? Since different — likelihood-based — estimation algorithms are used
in HLM, it can not be taken for granted that they lead to the same or better
results as compared to standard models. Available Monte Carlo studies fo-
cusing on the standardized mean difference as an effect size show that HLM
methods compare quite favorably under some simulated conditions. Van den
Noortgate and Onghena (2003) have made such a comparison and showed that
HLM lead to very similar results vis-à-vis RE models for parameter estimates,
for example. Interestingly, they also pointed to some deficiencies in the testing
procedures, for instance, and concluded that HLM procedures do not unequiv-
ocally lead to better results in comparison to standard models. Nevertheless,
this does not belittle the virtue of model generality of HLM.

Finally, as important extensions of the basic HLM for meta-analysis, there
are multivariate models available which enable the meta-analyst to deal with
the otherwise difficult situation of multiple effect sizes per study, a case quite
often encountered in practice. Another important problem in meta-analysis,
namely missing data for regressor variables, can also be handled in a statisti-
cally sound way with HLM. All of these extensions are well beyond the scope
of interest in the present context. In addition to the book by Raudenbush and
Bryk (2002), the interested reader is referred to Kalaian and Raudenbush (1996)
for multivariate extensions.

4.5 CLASSES OF SITUATIONS FOR THE APPLICATION OF
META-ANALYSIS

The following presentation serves several purposes. It provides a taxonomy
of classes of situations that will more clearly elucidate potential forms of dis-
tributions in the universe of studies when correlation coefficients are used as
effect sizes. Furthermore, the conceptual distinctions to be introduced will also
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serve to concentrate the subsequent presentation on some of the members of
the classes of situations. Finally, the presentation specifies the distributions in
the universe of studies of concern in the third part of the book.

Against the background of the models introduced in the previous sections,
several distinct situations, henceforth denoted by S, can be identified. The
term situation is used throughout the present and the following chapters in a
generic sense to indicate distinct classes of universe effect size distributions.
In analogy to the presentation of mixture models in Section 4.3, the universe
effect sizes of the studies to be aggregated can be regarded as realizations ρ
of a random variable P. The expected value of this variable will be denoted
by E(P) = µρ and its variance by σ2

ρ . Suppose there is a total number of k
studies, so that we have ρ1, . . . , ρk. Then the situations to be described in the
following two paragraphs will be distinguished by the form and parameters
of the distribution of P, that is, the parent or mixing distribution. Two broad
types of classes can be differentiated here: discrete and continuous mixing
distributions.

Discrete Distributions. There is one important special case among the dis-
crete distributions that defines the first situation S1, namely a one-point dis-
tribution with probability mass 1 at the point of a single ρ0 in [−1, 1]. That
is,

P(ρ) =

{
1 if ρ = ρ0,
0 otherwise

This is the most simple distribution, where the universe of studies is charac-
terized by a single constant effect size ρ = ρ0 that gives rise to all observed
effect sizes. As a consequence, no variation of universe effect sizes is present
here (i.e., σ2

ρ = 0), a situation for which the FE model is appropriate. Since
all studies are identical with respect to ρ, a homogeneous situation is given. To
illustrate one instance of S1, assume ρ0 = .40. In this situation, the universe
parameter for all studies is .40 with probability 1 and the sampling distribution
of the observed correlation coefficients ri is exactly the same for all studies if
all studies have the same number of persons ni, that is, n1 = n2 = . . . = nk = n
(see Figure 4.2).

In the upper panel of Figure 4.2, a graph of the discrete density of the mixing
distribution is depicted. The probability mass is concentrated at the point ρ0 =
.40 and all other values of the interval from −1 to 1 have zero probability.
This universe parameter is underlying all studies so that the density of the
observed coefficients is the same for all studies. This density is depicted in the
lower panel of Figure 4.2. Here it is assumed that in all studies an n of 50 is
given. The conditional density f (r|P = ρ0) depicted in the lower panel is —
although it looks like a normal distribution at first glance — the exact density
given by Hotelling (1953) (see page 21). Accordingly, the distribution of the
random variable Ri for the observed effect sizes is fully determined by ρ0 and
the number of participants n in the k studies to be aggregated. In effect, one
can argue that there is nothing to differentiate on the level of the universe in
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Figure 4.2 Example of S1, ρ0 = .40 and n = 50.

the upper panel and there is also no need to set sampling distributions apart
as long as all the studies have the same n. This is entirely true for a fixed
effects model and it will become evident that the differentiations were made
for conceptual reasons.

The situation depicted in Figure 4.2 is highly restricted with respect to the
distribution of the values in the universe and one might wonder whether S1
is relevant at all for the present study. However, as already noted it is ac-
tually the most often assumed model in published meta-analyses. Although
this assumption is rarely explicitly stated, it is implied by the application of
FE methods in meta-analysis as described in Chapter 5. Furthermore, albeit
not plausible as a model for most research situations in psychology, there may
be cases for which the FE model seems appropriate for theoretical reasons or
based on research experience. Even though strict replications — for which the
FE model would be a perfectly reasonable model — regrettably are exceptions
in the social sciences, there are at least some fields like personnel selection for
which a homogeneity “at the level of substantive population parameters” can
be assumed on the basis of research experience (Hunter & Schmidt, 2000, p.
276; see also Schmidt et al., 1993).

In the second class of situations with a discrete distribution S2, two subpop-
ulations are present at the the universe level. They are characterized by two
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Figure 4.3 Example of S2, ρ1 = .00, ρ2 = .40, and n = 32.

discrete and distinct values ρ1 and ρ2 in [−1, 1]. Specifically,

P(ρ) =


.50 if ρ = ρ1,
.50 if ρ = ρ2,
0 otherwise

(4.6)

The variance of P is different from zero in this situation but P can only take
on two values. This is clearly a heterogeneous case. The following presentation
will exclusively be restricted to instances in which P(P = ρ1) = P(P = ρ2) =
.50, so that P(P = ρ1) + P(P = ρ2) = 1, of course. Both values ρ1 and ρ2 are
therefore equally likely to occur. Hence, it is assumed that the k studies to be
aggregated are sampled with equal proportions from one of the two classes,
respectively. Of course, different cases of discrete two-point distributions with
unequal probability masses can easily be imagined but for convenience the
presentation will be restricted to the special case indicated. An example for S2
with values ρ1 = .00, ρ2 = .40 and n = 32 for the studies in both groups is
depicted in Figure 4.3.

The upper panel of Figure 4.3 again shows the distribution of the effect sizes
in the universe of studies, now with equal probabilities of .50 for both compo-
nents. The mixture distribution arising from this mixing distribution is de-
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picted in the lower panel of Figure 4.3. Here, it becomes evident how multiple
mode or extremely skewed empirical distributions of correlation coefficients
may arise in practice. Again, the mixture distribution is derived from the exact
density of the correlation coefficient given by Hotelling (1953). Drawing on the
notation introduced in Section 4.3, a variable P is given taking on two possible
values ρ1 and ρ2. It describes the membership of the subgroups in the universe
of studies as in Equation 4.6. As usual in mixture distribution analysis, the
unconditional density is given by

f (r|n) = P(ρ1)× f (r|ρ1, n) + P(ρ2)× f (r|ρ2, n)

This density is depicted in the lower panel of Figure 4.3 for n = 32 in the
studies of both classes.

As an interpretation from a substantive viewpoint, the heterogeneous case
of S2 can be interpreted as corresponding to research situations in which there
is an unobserved discrete variable P that moderates the research results. Of
course, if one knew about this variable — especially if it could be represented
or approximated by observed characteristics of the studies under investigation
— efforts to model effect size differences within the framework of HLM or
to identify the subgroups by mixture analyses would certainly be indicated.
However, it is not the aim of the present investigation to evaluate explanatory
models7 in meta-analysis (for a Monte Carlo study on this topic, see Overton,
1998). Instead, it will be assessed how the most often applied methods of meta-
analysis perform when data is collected in the heterogeneous situation S2. It
is argued that it is far from an uncommon situation that a moderator goes
unrecognized in a meta-analysis or that estimates of mean effect sizes using the
FE model are presented in heterogeneous situations (for a series of examples,
see Hunter & Schmidt, 2000).

The question arises in such cases whether an estimate of a mean effect size
is sensible at all and if so, how such reported mean effect sizes are to be in-
terpreted. This is not an easy question to answer because it depends on the
parameter one intends to estimate and the kind of inference to be made. The
presence of heterogeneity per se as in the given situation does not necessarily
preclude the reasonable application of fixed effects analysis (Hedges & Vevea,
1998) and the computation of a mean effect size. If one wishes to characterize
the study sample with the given characteristics and no further inference is in-
tended, then it is perfectly reasonable to apply fixed effects methods, but the
interpretation of test results has to be restricted to studies like those in the sam-
ple (see also Section 4.2). The mean effect size that results from applying these
procedures is intended to estimate the expected value of the effect size distri-
bution in the universe of studies, just like the grand mean in ANOVA analyses,
and has to be interpreted in a similar way in heterogeneous situations. Thus, it

7Such regression-type models are also known as “moderator analysis” in the social sciences
literature. Most often, such regression-type models do not include a random component (ui)
and can therefore be considered to be a special case of the more general HLM for meta-analysis.
These special cases are known as “meta-regression” in the medical literature.
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has to be conceived as a mean of potentially very different values of universe
effect sizes. Any of such mean effect sizes is therefore ambiguous in the sense
that vastly different ρ1 and ρ2 might yield the same mean effect size. Neverthe-
less, though ambiguous, a value of .45 for the relationship between attitudes
and behavior, for example, can be considered as informative when the addi-
tional assumption that the values in the universe of studies are not very dif-
ferent is tenable. Hence, the question whether such values make sense is not a
statistical one but has to be answered by the researcher who applies such pro-
cedures. Consider yet another example. If interest lies in the predictive valid-
ity of a personnel selection procedure in country A in comparison to country
B, then one would synthesize all results from applications in these countries
separately and make a comparison of estimated mean validities at this level of
aggregation. Of course, there may be differences in validities within countries,
but these are not of interest for the comparison as long as differences within
countries occur equally in both groups.

These remarks are definitely not intended to argue in favor of fixed effects
analyses or in any way against the application of explanatory models within
HLM, for example. Instead, they only illustrate that an estimate of a mean
effect size can indeed make sense in heterogeneous situations like S2 in the
way just described.

Continuous Distributions. The third class of situations S3 is characterized
by a continuous distribution of the correlation coefficients in the universe of
studies. The realizations of P do not take on any restricted or discrete set of
values in the universe but are spread over the entire interval from −1 to 1.
The kind of spread is described by a continuous density f . The form of this
distribution is ordinarily unknown but it is often assumed to be a normal dis-
tribution (Lau et al., 1998). There may be several reasons why the normal dis-
tribution is chosen. First, lack of prior knowledge about the exact composition
of a presumed myriad of influences that determine the effect sizes in a class
of research situations, and arguments in analogy to the central limit theorem
let the normal distribution appear as a good guess for the distribution at least.
Second, especially in situations where effect sizes that can be shown to have
a normal sampling distribution are of concern it seems reasonable, again by
way of analogy, to assume the same distribution for the universe effect sizes
as for its sampling counterpart. Finally, familiarity with and ease of statistical
tractability of the normal distribution also contribute to the fact that it is chosen
quite often as the distribution of universe effects sizes. Although none of these
reasons is essentially compelling there are no cogent alternatives available in
such a state of lack of knowledge.

However, for the present case of correlations as effect size data it would
be implausible to assume a normal distribution for the universe correlations,
due to the fact that the range of these coefficients is bounded by the values
−1 and 1. Especially when high absolute values are of particular interest, the
normal distribution would provide invalid values larger than 1 or less than
−1. The normal distribution has nevertheless been used in simulation studies



54 General Frameworks

of meta-analyses to generate values of the universe correlation coefficient (e.g.,
Overton, 1998).

The question arises which continuous distribution might be considered in-
stead of the normal distribution. Several such distributions were considered
as candidates which had to — as was the case with the normal distribution
— appear as reasonable for the distribution of the effect sizes in the universe.
They also had to conform to the requirement of being supported by the inter-
val [−1, 1]. The family of beta distributions was finally considered to be the
most sensible choice. It was chosen because its parameters can be adjusted to
yield a series of very different distributions on the desired interval. The great
flexibility of the beta distribution and the ease of its tractability also made it
particularly useful for the present purpose (see also Hedges, 1989). Moreover,
the parameters of the beta distribution can be chosen so that the distribution is
symmetrical at ρ = 0 with an increasing skew for larger values of ρ (in absolute
terms). Such distributions resemble the sampling distribution of the correla-
tion coefficients ri (see Section 7.3). To illustrate, Figure 4.4 depicts a series of
beta distributions which show the properties just mentioned.
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Figure 4.4 Beta-Distributions in S3 with varying µρ from µρ = −.80 to µρ = .80 in
increments of .20, σρ = .15 for all distributions.

The parameters of the beta distributions shown in Figure 4.4 were chosen to
have different expected values µρ from−.80 to .80 in increments of .20 but with
a constant standard deviation of σρ = .15. As is evident from the distributions
given, their forms do at least seem plausible for the given range of ρs.

In the Monte Carlo study to be presented, the family of beta distributions
will be considered as the distribution of effect sizes in the universe of studies
in S3. The following theoretical examinations will often abstract from the spe-
cific distributional form but sometimes the beta distribution will be used for
illustration purposes.
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Statistical Approaches to Meta-Analysis

After having outlined the more general characteristics and procedures in the
analysis of effect sizes, the present chapter will provide an overview of more
specific procedures and formulae proposed in the literature. As introduced
in Section 2.2, comprehensive treatments of meta-analysis associated with dif-
ferent author names and at least partially comprising different sets of proce-
dures and formulae are labeled approaches. The approaches of interest in the
present context are widespread predominantly in the social sciences and espe-
cially in the psychological literature. Furthermore, the focus of this chapter is
narrowed down to the statistical details of the approaches. Whereas the mod-
els presented in the previous chapter are also well-known in other areas of
research, there are some distinctive features of the following approaches that
have to be explicated in detail before an empirical evaluation is undertaken.

After considering the presentation of the models, the question arises why
sets of procedures and techniques are subject to a comparative evaluation at all.
Why not always choose the most proper model and corresponding estimators,
considered as optimal from a statistical point of view for a specific research
problem? First, the introduction of meta-analysis as a new statistical tool for
the social sciences has been associated with proponents from the beginning of
its history. This lead to idiosyncrasies of approaches and preferences of au-
thors becoming entrenched in research practice. For example, the correction of
correlation coefficients before their aggregation has become almost mandatory
in the field of I/O psychology, whereas in the field of educational psychology,
these corrections are only considered optional (see also Section 2.2).

Besides historical reasons, properties of the correlation coefficient as an ef-
fect size also require specialized techniques. Transformations of the correlation
coefficient as presented in Section 3.3 represent such specialized techniques
that are not of relevance when a different effect size, like the odds ratio for
example, is given in the studies under investigation.
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In this book, major approaches for correlations as effect sizes in the field of
psychology are evaluated. Further, a series of refinements are introduced for
a more comprehensive evaluation of the available procedures. The following
sections are structured in correspondence with this classification and all nec-
essary formulae for computation are given. This entails some redundancies
in the presentation of formulae but they are nevertheless completely given for
reference and to document the procedures as employed in the Monte Carlo
study. In addition, the approaches will also be presented in the same order
as the meta-analytical steps in the presentation of the FE and RE model, with
estimation first and inference thereafter.

As a final remark with respect to the approaches, the reader may wonder
why there is also one section that provides computational formulae for the
aggregation of d as an effect size when the focus should be on correlations.
These procedures are given because one of the aims of the Monte Carlo study
is also to evaluate the results of procedures that are based on transformed effect
sizes (see Section 3.3). Thus, the common assumption that the transformation
of effect sizes — specifically from r to d — is, in essence, inconsequential for
the meta-analytical results will be tested. To do this, procedures for the ag-
gregation of transformed effect sizes (i.e., d in the present context) have to be
specified. Of course, the prominent set of procedures proposed by Glass et al.
(1981) could have been added as another approach. This was not done in or-
der to keep the number of approaches at a manageable level, keep the focus on
approaches for correlation coefficients as effect sizes1, and to maintain compa-
rability to similar examinations of approaches in the literature (e.g., Johnson,
Mullen, & Salas, 1995). The question remains which procedures should be
used to aggregate the effect sizes di when there are many procedures available.
Of the major approaches under examination, any could have been chosen for
this task. The approach proposed by Hedges and Olkin (1985) presented in the
following section was chosen to provide the procedures for this aggregation.
The reason for this choice was that it seemed the statistically best founded set.
All other major approaches also provide details on the aggregation of d as an
effect size so that the choice may also be considered as somewhat arbitrary.

5.1 HEDGES AND OLKIN

The first approach is most comprehensively explicated in Hedges and Olkin
(1985) and will be labeled HO in what follows. Technical details of the ap-
proach and further procedures proposed by the authors are scattered across
a series of articles that may also be consulted for reference (Hedges, 1982a,
1982b, 1982c, 1983a, 1983b, 1991).

The presentation is divided into two subsections. The first one will give
details on the aggregation of correlation coefficients and the second one on ag-

1The approach by Glass et al. (1981) does not provide procedures specifically designed for a
meta-analysis of correlations.
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gregation procedures for d. It should be noted at the outset that the authors
of this approach do not explicitly advocate the transformation of r to d when
the database only consists of correlation coefficients, as will be the case in the
Monte Carlo study in Part III of this book. However, they do provide transfor-
mation formulae for effect sizes, so that it is possible to apply their procedures
as presented. To distinguish between the r-based and d-based procedures, the
symbol HOr represents the r-based and HOd the d-based variant, respectively.

In addition to the d-based approach there is also one refinement in proce-
dures introduced that goes back to the work of Hotelling (1953). To differenti-
ate HOr from this refinement, the latter will conveniently be denoted by HOT.

5.1.1 Procedures for r as Effect Size

In the HOr approach, the observed correlation coefficients are first transformed
by using the Fisher-z transformation (see also Section 3.1)

zi =
1
2

ln
1 + ri

1− ri

(Hedges & Olkin, 1985, p. 120, Equation 19; p. 227, Equation 4).
Next, the variances of the transformed effect sizes are given by

σ̂2
zi

=
1

ni − 3
(5.1)

(Hedges & Olkin, 1985, p. 227). Note that there is no uncertainty in determin-
ing these variances since ni of every study is given and the parameter estimate
does not influence the weights as is the case in approaches not using the Fisher-
z transformation.

Estimation of Mean Effect Size. The mean effect size estimate in z-space is
computed by using

z =

k
∑

i=1
(ni − 3) zi

k
∑

i=1
(ni − 3)

(Hedges & Olkin, 1985, p. 231, Equation 12). This exactly corresponds to the
general procedure outlined for the FE model, where the reciprocals of the (es-
timated) variances of the estimates are used as weights.

Due to the fact that the aim of estimation presumably is never a mean effect
size in z-space in practice, the estimate is transformed to an r by the inverse
Fisher-z transformation

r =
exp (2z)− 1
exp (2z) + 1

(Hedges & Olkin, 1985, p. 227, Equation 8). This results in the estimate of the
mean effect size in the HOr approach.
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Significance of Mean Effect Size. The next step of testing the mean effect size
begins by determining the standard errors for the mean effect size with

σ̂z =
1√

N − 3k
(5.2)

(Hedges & Olkin, 1985, p. 231). In Equation 5.2 and in what follows, N denotes
the total number of participants in all studies, that is, N = ∑k

i=1 ni.
Using the standard error, one can test the null hypothesis of zero mean uni-

verse effect sizes by using
g = z

√
N − 3k (5.3)

(Hedges & Olkin, 1985, p. 231), where g is ordinarily assumed to approxi-
mately follow a standard normal distribution.2

Approximate lower and upper limits of the confidence interval are con-
structed by

zL = z− gασ̂z

zU = z + gασ̂z
(5.4)

and are customarily transformed by the inverse Fisher-z transformation when
reporting results.

Homogeneity Test Q. The test statistic is provided — as described in the
context of the FE model — with Fisher-z transformed effect sizes as

Q =
k

∑
i=1

(ni − 3) (zi − z)2 (5.5)

(Hedges & Olkin, 1985, p. 235, Equation 16). It is noted that if ρ1 = . . . = ρk
and N → ∞, Q asymptotically follows a χ2

k−1-distribution.

Hotelling’s (1953) Adjustment. In his seminal paper Hotelling (1953) pro-
posed several improvements of Fisher-z with the aim to correct the bias in Z
and also to stabilize its variance (see also Section 3.1). Of these, the follow-
ing correction proposed to be applied to an average z seems to be especially
attractive

zHot = z− tanh z
(2n− 9/2)

(5.6)

(Hotelling, 1953, p. 219). In Equation 5.6, n denotes a constant sample size
across studies. In practical meta-analyses this will rarely be the case, so that
the mean of the sample sizes across studies might be used instead.

One reason why the correction given in Equation 5.6 is used instead of oth-
ers proposed by Hotelling is the fact that it was constructed to be applied
to an average z and therefore perfectly fits into procedures of meta-analysis.

2To reiterate, the somewhat unusual symbol g is used throughout the text to avoid confusion
of standard normal deviates with values of Fisher-z.
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Another reason is that with this correction, a reported mean z (or transforms
thereof) can be corrected to yield an improved estimate of the mean effect size.
An evaluation of this procedure is therefore of relevance for the conduct of
meta-analyses as well as their reception. Previous results of a Monte Carlo
study conducted by Donner and Rosner (1980) who used the HOT approach
as outlined here and compared its performance to HOr, a maximum likelihood
estimator and an estimator similar to the one proposed by Hunter and Schmidt
(see Section 5.3), suggest a good performance of HOT. They recommended the
use of HOT (and the Hunter and Schmidt procedures) for the estimation of µρ

in S1 in comparison to the other approaches they have evaluated, especially
when n is small. For a Monte Carlo study on a different modification of the
Fisher-z transformation proposed by Hotelling (1953, p. 223), see Paul (1988)
(see also Section 3.1).

A significance test can be performed by using the standard error formula
given in Equation 5.2 and applying the procedures outlined in Equations 5.3
and 5.4 for the significance test and the construction of confidence limits, re-
spectively.

5.1.2 Procedures for d as Effect Size

As was outlined in Section 3.3, correlation coefficients may also be transformed
to d by the following transformation

di =
2ri√(
1− r2

i
) .

Of course, there would be no need to apply this transformation if all effect
sizes were given as correlation coefficients because procedures to aggregate
this type of effect size have just been outlined. In practice, however, it is
scarcely the case that all retrieved studies are of the same design and some
may be experimental studies, so that only d may be available for some studies.
Conventionally, effect sizes are then converted to r or d, depending on conve-
nience. The result is a database that is a mix of converted and non-converted
effect sizes r or d. Though not explicitly stated, the usual assumption is that
the conversion does not have any influence on the results of the meta-analysis.
If this was true, then the application of the following procedures to d values
that result from a conversion from r should lead to the same results as the ap-
plication of the procedures outlined in the previous subsection to the original
correlation coefficients r.

Finally, it should be noted that the conversion formula given in the equa-
tion above is not the form of effect size that Hedges and Olkin (1985) advo-
cated. Instead, they proposed an unbiased estimator of δ that was already
introduced in Section 3.2 and that is considered preferable from a statistical
point of view. The conversion formula that represents the d statistic according
to Cohen (1988) given here was nevertheless used because of its much more
widespread use in the literature and therefore relevance for actual research.
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Estimation of Mean Effect Size. The first step is estimation of the estimate’s
variance. This variance was already given on page 29 in Equations 3.9 and 3.10
for equal n in all studies, respectively.

The reciprocals of these variance estimates can be taken as weights to yield
a mean effect size estimate by

d =

k
∑

i=1
di/σ̂2

di

k
∑

i=1
1/σ̂2

di

(Hedges & Olkin, 1985, p. 111, Equation 6).

Significance of Mean Effect Size. The null hypothesis test follows the general
logic outlined for the FE model and can be accomplished by using

g =
d
σ̂d

as the test statistic with σ̂d given by

σ̂d =

(
k

∑
i=1

1
σ̂2

di

)− 1
2

(Hedges & Olkin, 1985, p. 112, Equation 9).
Approximate lower and upper limits of the confidence interval are con-

structed by the following equations

dL = d− gασ̂d

dU = d + gασ̂d

The results for the confidence interval limits are transformed to r by Equation
3.11 when results are reported in Chapter 8 to make them comparable to the
estimated limits of the other approaches.

Homogeneity Test Q. As for the HOr approach, it is also possible to conduct
a homogeneity test by using the Q-statistic

Q =
k

∑
i=1

(
di − d

)2

σ̂2
di

(Hedges & Olkin, 1985, p. 123, Equation 25). Again, Q is supposed to asymp-
totically follow a χ2

k−1-distribution when the null hypothesis is true. It will be
particularly interesting to evaluate the performance of this test in comparison
to the HOr approach in the Monte Carlo study to be presented. Differences
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between these tests will reflect potential problems concerning the conversion
of effect sizes.

5.2 ROSENTHAL AND RUBIN

The methods proposed by Rosenthal and Rubin (RR) are described in Rosen-
thal (1978, 1991, 1993) as well as Rosenthal and Rubin (1979, 1982). As will
become evident from the following presentation, the procedures are very sim-
ilar or almost identical to those given for HOr.

Estimation of Mean Effect Size. In the RR approach, correlations are also
transformed via Fisher-z prior to further processing

zi =
1
2

ln
1 + ri

1− ri

(Rosenthal, 1991, p. 21, Equation 2.22).
For aggregation, it is not entirely clear what form of weights should be used.

With reference to Snedecor and Cochran (1967), Rosenthal (1993, p. 534) pro-
poses for the weighted aggregation of Fisher-z values to use the degrees of
freedom as weights “or any other desired weight”. For the current case this
would be ni − 3, so that the mean effect size estimate for RR would be identical
to the one presented for HOr. As an alternative to the degrees of freedom, the
sample sizes ni were chosen as weights but it is noted that these weights are
not explicitly recommended by Rosenthal and Rubin. The following computa-
tional procedure is given for the mean effect size estimate

z =

k
∑

i=1
nizi

k
∑

i=1
ni

(Rosenthal, 1991, p. 74, Equation 4.16; p. 87, Equation 4.32 and 4.33).
In the same way as for the HOr approach, the resulting estimates have to be

transformed back to r by

r =
exp (2z)− 1
exp (2z) + 1

.

Significance of Mean Effect Size. For significance testing of the mean effect
size, the following statistic is proposed

gi = ri
√

ni

(Rosenthal, 1991, p. 19, Equation 2.18; see also p. 29). That is, correlations are
transformed to standard normal deviates which are aggregated subsequently
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by applying the weights as proposed in the context of estimating the mean
effect size

g =

k
∑

i=1
nigi√
k
∑

i=1
n2

i

(Rosenthal, 1991, p. 86, Equation 4.31). Recall again that the authors originally
proposed to use the degrees of freedom as weights (i.e., ni − 3).

After having computed the standard normal deviates, approximate lower
and upper limits of the confidence interval are constructed by

zL = z− gασ̂z

zU = z + gασ̂z

Again, such confidence interval limits are transformed by the inverse Fisher-z
transformation when results are reported.

Homogeneity Test Q. The homogeneity test Q is the same as proposed in the
HOr approach and given by

Q =
k

∑
i=1

(ni − 3) (zi − z)2

(Rosenthal, 1991, p. 74, Equation 4.15).

5.3 HUNTER AND SCHMIDT

In contrast to the RR approach, the procedures introduced by Hunter and
Schmidt (1990) as well as Hunter et al. (1982) offer a series of new features
in comparison to HOr. The approach, labeled HS in what follows, is detailed
in a very large series of articles of which only a few are referenced (e.g., Burke,
1984; Hunter, Schmidt, & Pearlman, 1982; Schmidt & Hunter, 1977; Schmidt,
Hunter, & Pearlman, 1982; Schmidt, Hunter, Pearlman, & Hirsh, 1985). There
have also been a series of refinements that are not dealt with in the present
context, so the reader is referred to the relevant literature (e.g., Callender & Os-
burn, 1980; Callender, Osburn, Greener, & Ashworth, 1982; Raju, Burke, Nor-
mand, & Langlois, 1991; Schmidt et al., 1993) and also to a recent assessment
of the impact of the methods on research and practice in personnel selection
(Murphy, 2000), as well as a discussion of the quality of these so-called validity
generalization methods from various perspectives (see Murphy, 2003).

The latter two references signify the close connection of this approach with
the field of I/O psychology and personnel selection in particular. Though not
limited to this field, the main developments and applications have been done
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in the field of personnel selection. The approach is also often called validity
generalization which expresses its main characteristics.

First, the preoccupation of applications using the approach with correlation
coefficients that represent (predictive) validities of personnel selection meth-
ods is indicated. Hence, most of the procedures and their refinements pro-
posed are concerned with correlation coefficients as an effect size measure, but
procedures for coefficients from the d family have also been proposed (see, e.g.,
Hunter & Schmidt, 1990). The approach is therefore not limited to correlation
coefficients.

Second, one major question in personnel selection is whether validities can
be generalized. The designation of generalizable is done in a binary fashion, that
is, either test validity generalizes or not. Hence, the term validity generalization
denotes a classification of tests in two groups. This seems to be a quite specific
use of the word “generalization” in comparison to more popular ones (see,
e.g., Shadish et al., 2002) and might be understood only by considering the
legal circumstances in the United States of America (for a review, see Landy,
2003). A common misinterpretation of the term is that it is used to characterize
the variability in (predictive) validity coefficients for a certain test across sit-
uations. If the validity coefficients are not stable across situations, one might
easily use a phrase like “test validity does not generalizes (across situations)”
to describe this fact. However, in the HS terminology, a different term is used
in this case, namely situational specificity. It is considered as quite an important
question for practice whether a personnel selection method has to be validated
in every new situation of application on the one hand. On the other hand, va-
lidities might have been demonstrated to be stable across a series of situations
so that it can reasonably be assumed that they hold in a new situation without
the need for collecting new evidence. The former case describes a test which is
situationally specific, and in the latter case validities are not specific for situa-
tions.

Whereas the proponents of this approach have always strongly argued in
favor of generalizability and situational non-specificity, and also presented ev-
idence to support these claims in the field of personnel selection (e.g., Schmidt
& Hunter, 1998), the approach and its procedures has also been severely criti-
cized (e.g., James et al., 1986; James, Demaree, Mulaik, & Ladd, 1992). Because
such issues are not of utmost importance for the statistical quality of the ap-
proach, the reader is referred to the book edited by Murphy (2003) for a com-
prehensive overview.

One further important and distinctive feature of the HS approach is the au-
thors’ strong recommendation to correct correlations for various so-called ar-
tifacts before they are aggregated (for the pros and cons of applying the cor-
rections, see, e.g., Schmidt & Hunter, 1999b). A series of research scenarios to
illustrate the relevance of correcting artifacts is given by Schmidt and Hunter
(1996). It might be noted, however, that proponents of other approaches have
provided similar corrections of effect sizes (e.g., Hedges & Olkin, 1985), though
not as elaborate as has been developed within the HS approach. Nevertheless,
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this feature of the HS approach is not of relevance in the Monte Carlo study of
Part III, thus only the basic idea is given here.

One of the potential so-called artifacts which influence the correlation be-
tween two variates X and Y is measurement error, another potential artifact is
restriction of range3. If both artifacts apply in a certain situation, the correla-
tion in the population is attenuated. Let ρa be the attenuated correlation and ρ
its unattenuated counterpart. Then

ρa = ρ× A−1

describes the relationship between these two, where A denotes a so-called ar-
tifact multiplier. The artifact multiplier is considered as a constant which results
from one or multiple artifacts operating in a specific situation. For example, if
one of the correlated variables has a reliability of rtt = .81, then — drawing
on results from classical test theory (Lord & Novick, 1968, p. 69) — the artifact
multiplier for the correction of unreliability in the predictor is A =

√
rtt = .90.

Thus, ρa is attenuated by a factor of .90 in this example.
Meta-analysis based on artifact corrected correlations are certainly useful

— at least as an addendum to analyses based on uncorrected correlations — to
shed light on “what effect size we might expect to find in the best of all possible
worlds” (Rosenthal, 1994, p. 240). What the implications and interpretations of
meta-analytic results including artifact corrections are, is, however, debatable.
In the literature on validity generalization it has been repeatedly argued that
analyses based on such a corrected database can lead to estimates of the re-
lationship between constructs (e.g., Schmidt & Hunter, 1999b). Unfortunately,
this is not the case as Boorsbom and Mellenbergh (2002) have convincingly
argued.

In sum, artifact corrections are an important feature of a “full-blown” HS
approach but they are neither necessary to evaluate the core of the HS proce-
dures as outlined in the following paragraphs nor do they unequivocally lead
to refined interpretations of meta-analytic results as proposed by Hunter and
Schmidt. For more details on corrections for artifacts, the reader is again re-
ferred to the pertinent literature (Hunter & Schmidt, 1990, 1994a) and also pre-
vious Monte Carlo studies that incorporated and partly also evaluated these
corrections (e.g., Aguinis & Whitehead, 1997; Callender et al., 1982; Cornwell
& Ladd, 1993; Duan & Dunlap, 1997; Law, Schmidt, & Hunter, 1994; Raju,
Anselmi, Goodman, & Thomas, 1998).

After these preliminaries, the focus of the following outline of the HS ap-
proach will be on the proposed statistical procedures for aggregating the avail-
able research database. In the HS terminology, this would be called bare-bones
meta-analysis.

3For a more complete list of potential artifacts, see Hunter and Schmidt (1990).
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Estimation of Mean Effect Size. The aggregation of correlation coefficients
in the HS approach is done by applying

r =

k
∑

i=1
niri

k
∑

i=1
ni

(Hunter & Schmidt, 1990, p. 100). It can be seen by inspecting this equation that
in contrast to the previous approaches HOr and RR, the correlation coefficients
are not transformed before the coefficients are aggregated. A negative bias is
therefore expected in contrast to the (uncorrected) Fisher-z based approaches
which exhibit a positive bias (see Section 3.1). Furthermore, the coefficients are
weighted by ni and not by the optimal weights represented by the reciprocals
of the squared standard errors of the estimates. From a statistical point of
view, this leads to larger standard errors of the mean effect size estimate and
therefore less power in testing.

Significance of Mean Effect Size. The estimate for the standard error of the
mean effect size is a hotly debated issue in the HS approach (cf. Callender
& Osburn, 1988; Duan & Dunlap, 1997; Hunter & Schmidt, 1994b; Osburn &
Callender, 1992) and has also lead to some confusion when evaluating the HS
approach (Johnson, Mullen, & Salas, 1995; Schmidt & Hunter, 1999a). Indeed,
confusion may stem from the various forms of computational formulae that
have been proposed in the HS approach. This issue is taken up by evaluat-
ing the four most prominent versions for the standard error presented in the
following formulae.

The formula recommended for estimation of the sampling variance of the
mean effect size estimate by (Schmidt et al., 1988; see also Osburn & Callender,
1992; Whitener, 1990) is

σ̂2
r1 =

(
1− r2)2

(N − k)
(5.7)

(Osburn & Callender, 1992, p. 115, Equation 3). The index 1 in σ̂2
r1 signifies

that it is the first version presented here. When this version of the sampling
variance is used in what follows, it will be labeled HS1. This version is sup-
posed to yield the best results when a homogeneous situation like S1 is given
(Osburn & Callender, 1992).

The second version HS2 is given by

σ̂2
r2 =

k
∑

i=1

(
1− r2

i
)2 / (ni − 1)

k2 (5.8)

(Osburn & Callender, 1992, p. 116, Equation 4). Except for very small and
divergent sample sizes, HS1 and HS2 are expected to yield similar results (Os-
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burn & Callender, 1992). The terms summed in the numerator of equation 5.8
are essentially the estimated variances of the individual correlations. These
estimates in the numerator have attracted considerable attention in the litera-
ture on validity generalization (e.g., Callender & Osburn, 1988; Fuller & Hes-
ter, 1999; Hunter & Schmidt, 1994b; Osburn & Callender, 1992) and it has been
shown that they depend on several characteristics of the research situation like
range restriction, for example (Aguinis & Whitehead, 1997), for which it may
also be corrected (e.g., Duan & Dunlap, 1997).

The third version for the sampling variance HS3 is given by

σ̂2
r3 =

1
k


[

k
∑

i=1
ni (ri − r̄)2

]
k
∑

i=1
ni

 (5.9)

(Osburn & Callender, 1992, p. 116, Equation 5; see also Hunter & Schmidt,
1990, p. 100). This version of the sampling variance is supposed to “hold” for
the heterogeneous case and should also perform well for the homogeneous
case (Osburn & Callender, 1992, p. 116).

The fourth and last form HS4 proposed to estimate the sampling variance is
given by

σ̂2
r4 =

(
1− r2)2

(N − k)
+

1
k


[

k
∑

i=1
ni (ri − r̄)2

]
k
∑

i=1
ni

−

k
∑

i=1

(
1− r2

i
)2 / (ni − 1)

k2

= σ̂2
r1 + σ̂2

r3 − σ̂2
r2

(Osburn & Callender, 1992, p. 116, Equation 7). It is explicitly recommended
for the heterogeneous case (Whitener, 1990).

In principle, each of these formulae discussed in the cited literature can be
used for tests and to construct confidence intervals. In the Monte Carlo study
presented in Part III all four versions will be evaluated with respect to their
performance in the various situations described in Section 4.5 (for an evalua-
tion with real data, see Fuller & Hester, 1999).

The formula to compute a standard normal deviate to test the mean effect
size estimates is given for all versions by

g =
r
σ̂r

.

As in the previous approaches, the approximate lower and upper limits of
a confidence interval are constructed by

rL = r− gασ̂r

rU = r + gασ̂r
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(Hunter & Schmidt, 1990, p. 121). Both for the test as well as for the construc-
tion of the confidence interval σ̂r stands for one of the four versions of the
sampling variance. Although it is well-known that the correlation coefficient
is not normally distributed unless n is very large (see Section 3.1), the tests may
nevertheless perform as suggested by the formulae, which is due to the central
limit theorem. In Chapter 8 the corresponding results on the performance of
the four versions will be reported.

Homogeneity Test Q. A homogeneity test is conducted in the HS approach
by using

Q =

k
∑

i=1
(ni − 1) (ri − r)2

(
1− r2)2

(Hunter & Schmidt, 1990, p. 111). Though not labeled as such in the cited
source, in essence, the above equation enables a Q-test as included in the other
approaches. The tendency of the proponents of the HS approach to deny situ-
ational specificity is expressed by their suggested interpretation of the test re-
sults. They state that “if the chi square is not significant, this is strong evidence
that there is no true variation across studies, but if it is significant, the varia-
tion may still be negligible in magnitude” (Hunter & Schmidt, 1990, p. 112).
Thus, the result of the test is taken as informative when in favor of “no true
variation”, that is, situational specificity, and devalued when indicating het-
erogeneity.

Estimation of Heterogeneity Variance. The estimation of heterogeneity vari-
ance only makes sense within the framework of a random effects model, hence
it might be considered as obvious that the HS approach assumes a RE model.
However, the procedures outlined above suggest the HS approach to assume a
FE model because estimated heterogeneity variance is not incorporated in es-
timation and tests. Thus, a somewhat ambiguous case is given here, as is also
evidenced by an inconsistent classification of the HS approach with respect to
the FE-RE model distinction in the literature (cf. Erez et al., 1996; Field, 2001;
Hedges & Olkin, 1985). The ambiguity may result for several reasons. First,
the procedures outlined do not fit clearly in one of the model schemes intro-
duced in Chapter 4. Second, the assumption of differences in universe effect
sizes and therefore nonzero σ2

ρ is an integral part of the HS approach (Hunter
& Schmidt, 1990). At the same time the authors of the approach provide proce-
dures and many arguments to reduce observed variability in effect sizes. They
do this up to a point where they conclude that universe variance is negligible
and generalization of effects (across situations) is therefore possible. Addi-
tionally, they have stated that “. . . applications of our methods have usually
used the fixed effects model described in Hedges and Olkin (1985)” (Hunter &
Schmidt, 1990, p. 405) on the one hand, and also “The methods described in
Hunter et al. (1982), Hunter and Schmidt (1990) [. . . ] are RE models” (Hunter
& Schmidt, 2000, p. 275) on the other hand. Such statements have certainly
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contributed to the ambiguity. As a result, it is not entirely clear how the HS
approach is to be classified with respect to models in meta-analysis because
it is a “hybrid” type in procedures. By taking the answer to the question of
whether population correlations are considered as random variables in an ap-
proach as an anchor to make the classification, the HS approach qualifies as an
RE approach. Thus, it does make sense to estimate heterogeneity variance.

The procedure to estimate heterogeneity variance σ2
ρ as proposed in the HS

approach is drawing on simply taking the following difference between vari-
ance estimators

σ̂2
ρ = σ̂2

r − σ̂2
e (5.10)

(Hunter & Schmidt, 1990, p. 106), where σ̂2
r is used to estimate the variance of

r and σ̂2
e denotes an estimator for the sampling error variance. The reasoning

to arrive at this relationship includes the assumptions that r is an unbiased
(and consistent) estimator of ρ, and that an error component e and ρ in the
relationship r = ρ + e are independent.4 None of these assumptions is correct
in a strict sense. Nevertheless, violations of the assumptions are ordinarily not
considered to be reasons for concern in practical applications of meta-analysis
(see, e.g., Hedges, 1988).

A little rearrangement of Equation 5.10 shows that the variance of r is de-
composed into two parts. One is the heterogeneity variance σ2

ρ and the other
is the sampling error variance σ2

e , where estimators are represented in Equa-
tion 5.10. Estimation of heterogeneity variance is done by computation of the
following terms

S2
r =

1
N

k

∑
i=1

ni (ri − r̄)2

and

σ̂2
e1 =

(
1− r2)2 k

N
,

where the observed variance of correlations S2
r is used as an estimator for the

variance of r. Again, there have been several estimators proposed for σ2
e in

the literature, so that σ̂2
e1 is indexed by 1 to signify that this is a first estima-

tor of σ2
e . According to Hunter and Schmidt (1990, p. 107), this represents an

“almost perfect first approximation”. Note that this is the formula used by
Johnson, Mullen, and Salas (1995), who conducted one of the first comparison
between approaches. They used this estimator in the context of significance
testing when conducting their comparative evaluation of the HOr, RR, and
HS approaches. Of course, it is the wrong estimator of the variance of r as it
estimates the expected variance in observed effect sizes due to sampling er-
ror. If k had been placed in the denominator as in Equation 5.7, it would have

4Note the close similarity of this basic equation to those in HLM models, which shows again
that many standard meta-analytic models can be considered as special cases of the more gen-
eral HLM.
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been an appropriate estimator of σ2
r in the HS approach. Thus, the resulting

estimated variances were much too large in the Johnson, Mullen, and Salas
study. The negative results reported by Johnson, Mullen, and Salas (1995) for
the HS approach and the corresponding conclusions are therefore useless (see
also Schmidt & Hunter, 1999a).

A second estimator is given as

σ̂2
e2 =

(
1− r2)2

(N/k)− 1
.

According to Hunter and Schmidt (1990, p. 108; see also Hunter & Schmidt,
1994b, p. 171) this is supposed to be “an even better estimate of the sampling
error variance”, that is, for the estimation of σ2

e . Hence, only the second es-
timate was actually used in the Monte Carlo study presented in Part III. For
a previous Monte Carlo study on the robustness, bias, and stability of σ2

ρ , see
Oswald and Johnson (1998) who report a negative bias of the estimators pre-
sented here under various distributional conditions.

There have been presented further estimators within the framework of the
HS approach that claim to be applicable also for databases with dependent
correlations and to correct for a potential underestimation in the methods pre-
sented above. However, they are not presented here (see Martinussen & Bjørn-
stad, 1999).

Equation 5.10 can also be regarded as the basic equation of the HS approach
since many arguments pertaining to developments of the model rest on this
equation. As with many procedures in the HS approach, Equation 5.10 has
stimulated much criticism in the literature but arguments will not be repeated
here. The interested reader is referred to the pertinent literature (e.g., Osburn
& Callender, 1990; Thomas, 1989a, 1990a).

75%-Rule. A procedure unique to the HS approach is the so-called 75%-rule
originally proposed by Schmidt and Hunter (1977). The reasoning behind this
rule is as follows. Recall that the development of the HS approach was done
with validity coefficients as the main effect size of interest and personnel se-
lection as the most important field of application in mind. Validity coefficients
are supposed to be influenced by a series of mainly methodological factors of
which many can in principle be corrected for (see Hunter & Schmidt, 1994a).
However, in most applications of meta-analysis all the information necessary
to correct for the artifactual factors is not available so that variance in observed
effect sizes due to uncorrected artifactual influences is always presumed to re-
main. The component supposed to account for the largest amount of observed
variance (S2

r ) is sampling error. If observed variance is larger than expected by
sampling error, then there may be variance in effect sizes left to be explained
(i.e., σ2

ρ 6= 0). This would represent a challenge to the hypothesis of validity
coefficients not being specific to situations, where generalization across situa-
tions is a desirable state of affairs for most researchers. Consider in this context
the following fraction
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x =
σ̂2

e2
σ̂2

r3k
.

An estimator of the sampling error variance in observed effect sizes is given
in the numerator and the observed variance in the denominator (S2

r = σ̂2
r3k).

Clearly, if there is no artifactual variance in the observed effect sizes left and no
explanatory variables exist, observed or unobserved, to explain variability in
effect sizes, then this fraction should lead to a value of one because observed
variance is totally accounted for by sampling error. As already mentioned, not
all artifactual influences can be corrected for, so the following rule of thumb
has been proposed

• Homogeneity, if x ≥ 0.75

• Heterogeneity, if x < 0.75

(see e.g., Hunter & Schmidt, 1990, p. 68). That is, effect sizes are considered to
be homogeneous, if sampling error accounts for at least 75% of the observed
variance in effect sizes, hence the name 75%-rule.

As examples for previous Monte Carlo studies on this rule, consider Spector
and Levine (1987) who found that with small k the ratio as given above is bi-
ased (i.e., larger than 1) in homogeneous situations. The ratio quickly increases
as the number of k decreases, irrespective of n. In a critique of this article, Cal-
lender and Osburn (1988) showed that this result was an artifact stemming
from the extremely skewed distribution of the ratio so that the expected value
of the distribution of ratios, on which Spector and Levine focused, has an ex-
pected value larger than 1 although the individual comparison of estimated
error variance and observed variance resulted in no bias.

Like the homogeneity test based on the Q-statistic, the 75%-rule is also taken
as indicant in the HS approach of whether there are unsuspected moderators
(i.e., explanatory variables) (Hunter & Schmidt, 1990, p. 440). A Monte Carlo
investigation on the comparative evaluation of these tests for the detection of
heterogeneity will be presented in Part III of this book (see also Cornwell &
Ladd, 1993; Koslowsky & Sagie, 1993; Sackett, Harris, & Orr, 1986; Sánchez-
Meca & Marín-Martínez, 1997). For a critical appraisal of the rationale of the
75%-rule, the reader is referred to James et al. (1986).

As an addition to the 75%-rule, there has also been proposed a 90%-rule
with the same rationale as outlined above, but with a cut-off value of .90 for
x that is supposed to be more suitable for Monte Carlo studies in which no
artifactual variance exists (Sackett et al., 1986). This rule is also considered in
the results to be reported in Chapter 8.

5.4 REFINED APPROACHES

Up to this point, the three main approaches to meta-analysis in the field of
psychology have been presented. In the present section, two further sets of



REFINED APPROACHES 71

procedures will be introduced, one approach for RE models and another that
is suitable both in the FE as well as RE model.

5.4.1 DerSimonian-Laird

The most prominent RE approach in psychology draws on the derivations as
given by DerSimonian and Laird (1983, 1986) and will be labeled DSL in the
present context. Although it is almost identical with the procedures outlined
in Section 4.2, computational procedures are given in this section for complete-
ness and reference.

Estimation of Heterogeneity Variance. The heterogeneity variance is pre-
sented first for this approach. This is due to the fact that it is used in the estima-
tor of the mean effect size and significance testing, both of which are presented
subsequently. Note that the Fisher-z transformation is used in this approach,
so that the variance σ2

ζ is of interest, that is, the variance of the universe pa-
rameters in z-space. The heterogeneity variance is estimated for correlations
as effect size data by the moment estimator

σ̂2
ζ =

Q− (k− 1)
a

,

where

a =
k

∑
i=1

wi −
[

k

∑
i=1

w2
i

/
k

∑
i=1

wi

]
.

This estimator is unbiased by construction. Ordinarily, σ̂2
ζ+ = max{0, σ̂2

ζ } is
used in applications because σ̂2

ζ may be negative. σ̂2
ζ+ can be called a truncated

estimator which is no longer unbiased (see also Böhning et al., 2002). There
have been published several tests of the quality of this estimator and also al-
ternative estimators have been proposed. They will not be dealt with here and
the reader is therefore referred to the relevant literature (e.g., Böhning, 2000;
Biggerstaff & Tweedie, 1997; Friedman, 2000; Malzahn, 2003; Malzahn, Böhn-
ing, & Holling, 2000).

Estimation of Mean Effect Size. The mean effect size is estimated in the DSL
approach by a weighted estimator as follows

z =

k
∑

i=1
w∗

i zi

k
∑

i=1
w∗

i

,

where

w∗
i =

(
1

ni − 3
+ σ̂2

ζ

)−1

.
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Estimation of the mean effect size follows the procedures as outlined within
the general framework of the RE model in Section 4.2. As was shown, the
procedures of the RE and FE model differ mainly with respect to the weight
used in computations. For the present case, note that there is a special case
for which the mean effect size as given above for the DSL approach would
be identical to the one resulting from the application of FE model procedures
as specified for the HOr approach. This would be the case if the number of
persons per study were constant across studies because both parts of the sum
to compute the weights (i.e., (ni − 3)−1 and σ̂2

ζ ) are the same for all studies
to be aggregated. In other words, in situations of equal n for all studies the
estimate of the mean effect size of DSL will not differ from HOr. This is due to
the fact that the variances of the Fisher-z transformed estimators only depend
on n. When n is equal for all studies, the weights do not differ. However,
when n is different for the studies under investigation the weights will mostly
differ between HOr and DSL estimators and different estimates may result
in practical applications. This should be borne in mind since the design of
the Monte Carlo study in Part III will be characterized by a constant n for all
studies.

Significance of Mean Effect Size. Significance tests are performed in a usual
form by using the test statistic

g =
z
σ̂z

with

σ̂z =

√√√√√ 1
k
∑

i=1
w∗

i

,

so that g can be compared with the critical value from the standard normal
distribution for a desired level α.

Approximate lower and upper limits of the confidence interval are con-
structed by

zL = z− gασ̂z

zU = z + gασ̂z .

Again, the confidence limits are customarily transformed into r-space subse-
quently by the inverse Fisher-z transformation.

5.4.2 Olkin and Pratt

The last approaches to be presented are based on an early publication by Olkin
and Pratt (1958) on the unbiased estimation of the correlation coefficient (see
also Section 3.1), which was applied to the problem posed in meta-analysis by
Hedges (1988, 1989; see also Hedges & Olkin, 1985).
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Estimation of Mean Effect Size. The estimation of the mean effect size draws
on the UMVU estimator G proposed by Olkin and Pratt (1958) (already given
in Equation 3.5 on page 26). The following formula repeats the approximation
of G also given in Section 3.1.

Gi = ri

(
1 +

1− r2
i

2 (ni − 1− 3)

)
.

As a first version of an estimator for the mean effect size, consider

G =

k
∑

i=1
niGi

k
∑

i=1
ni

.

The estimator and further computational procedures using this estimator will
be labeled as OP approach.

A second version of the estimator is established in analogy to the procedures
in the FE model. To compute the weights for aggregation according to the FE
model the variance of this estimator is needed. The variance of G is given
by Equation 3.7 on page 27. Defining the weights wi(FE) as usual in the FE
approach as σ̂−2

G , the weighted estimator is given by

GFE =

k
∑

i=1
wi(FE)Gi

k
∑

i=1
wi(FE)

.

Since the weights are constructed as is common in the FE model, this will
be labeled the OP-FE approach. Recall that in contrast to z-based approaches
and HS, the variance strongly changes across values of ρ. This may have a
profound influence on the results when applying this approach. Especially
when n is small and estimates thus vary strongly, biased results may emerge.
This is due to the facts that, first, the variances are smaller for larger absolute
values of ρ (see Figure 3.4) and, second, the (strongly varying) ri are plugged
into Equation 3.7 to obtain estimates of the variance of G. Hence, in applying
this procedure high correlations emerging by chance will receive a high weight
and an upward bias may result in mean effect size estimation.

A third estimator that draws on the general procedures for the RE model is
presented next. It uses weights that incorporate an estimate of heterogeneity
variance that is given in the last paragraph for this approach. The weights
in the random effects version are designated as wi(RE) and are given by (σ̂2

ρ +
σ̂2

G)−1. They are used to estimate GRE as follows
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GRE =

k
∑

i=1
wi(RE)Gi

k
∑

i=1
wi(RE)

.

This estimator as well as related computational procedures employing it will
be labeled the OP-RE approach.

Significance of Mean Effect Size. The test for the OP approach draws on
the fact that G has the same asymptotic distribution as r (Olkin & Pratt, 1958;
Hedges & Olkin, 1985). As a result, approximately the same standard error is
assumed which is estimated by

σ̂G =
1− G2

√
N − k

. (5.11)

The authors also state that G has larger variance than r so that the proposed
estimator can be considered to be only an approximation. Interestingly, this
approximation has already been used in a Monte Carlo study on combined
estimators for the universe correlation by Viana (1982).

For the OP-FE approach, the standard error is computed by

σ̂GFE
=

(
k

∑
i=1

wi(FE)

)− 1
2

and correspondingly for the OP-RE approach by

σGRE
=

(
k

∑
i=1

wi(RE)

)− 1
2

.

Therefore,

g =
G)
σG

, g =
GFE

σGFE

, g =
GRE

σGRE

are g-values to be compared with a critical value from the standard normal
distribution for the OP, OP-FE and OP-RE approach, respectively.

The confidence limits are constructed by

rL = G− gασ̂G

rU = G + gασ̂G

for the OP approach, for the other approaches they are constructed analo-
gously.
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Homogeneity Test Q. For the homogeneity test, only OP-FE is considered.
For this approach, the test statistic is computed as

Q =
k

∑
i=1

wi
(
Gi − GFE

)2
.

Estimation of Heterogeneity Variance. The estimated variance of G is used
to estimate the heterogeneity variance by

σ̂2
ρ = S2

G −
1
k

k

∑
i=1

σ̂2
GFE

,

where S2
G is the observed variance of the Olkin-Pratt estimator

S2
G =

1
k

k

∑
i=1

(
Gi − GFE

)2

(Hedges, 1988, p. 198; see also Hedges, 1989, pp. 473–474). Again, estimation
is restricted to usage of the estimated variance of the OP-FE approach.

5.5 CONSEQUENCES OF CHOOSING AN APPROACH:
DIFFERENT ESTIMATED PARAMETERS

After having outlined statistical details of several approaches, some conse-
quences of choosing between approaches will be examined in this section. The
common assumption that the choice of an approach is largely inconsequential
for the results is thereby scrutinized and challenged. The treatment will be
restricted to a theoretical examination. An empirical Monte Carlo study will
be presented in the subsequent Part III of the book to validate some predic-
tions derived from theoretical results presented in the present section and to
comparatively evaluate the performance of the procedures as proposed in the
approaches.

In the present section, the focus will be kept on the expected value and vari-
ance of the mixing distribution as parameters of interest in meta-analysis. It
will become evident that one of the main differences between the approaches
as outlined in this chapter are differences in the use of effect sizes. That is,
whether correlation coefficients are used without any transformations or trans-
formed to Fisher-z or d, respectively. Also, the focus will be laid on S2 because,
on the one hand, there are no relevant modifications of universe parameters in
a homogeneous case (S1), and, on the other hand, the general problems out-
lined in the current section readily generalize to S3.

There are two different values ρ1 and ρ2 in the universe of studies in S2. As
specified in Section 4.5, both values have equal probability so that for estima-
tors of the expected value of the mixing distribution based on r values it would
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be natural to consider the mean of the two universe correlations given by

µρ =
ρ1 + ρ2

2
(5.12)

as the parameter to be estimated. This is simply the mean of the two different
universe correlations. Of course, it would be reasonable in such a situation
not only to estimate a single parameter of the effect size distribution, but —
if possible — to identify the classes and estimate ρ1 and ρ2 separately in an
analysis with HLM, for example. As already stated, an evaluation of such
procedures is not the aim of the present context. Instead, the focus will be on
an evaluation of the weighted mean effect size as an estimator of the expected
value of the mixing distribution.

With regards to the expected value of the mixing distribution, it would intu-
itively be equally natural to expect the estimators of all approaches to estimate
the parameter µρ. To the best of the author’s knowledge, all applied meta-
analyses on issues of substantive interest which used any of the approaches
applying a transformation of the correlation coefficient, seem to presume this.
That is, mean effect size estimates are interpreted as if they estimated a mean
universe correlation. What this exactly means in applications of meta-analysis
is rarely explicated but it seems as if in every case a mean correlation as given
in Equation 5.12 was implied. The question to be dealt with here is whether
such an interpretation is valid. This is not the case because in contrast to es-
timators based on r, estimators based on the Fisher-z transformed correlation
coefficients (HOr, HOT, RR, DSL) do not estimate a “mean ρ” in the universe
of studies but

µρz = tanh µζ

= tanh
(

ζ1 + ζ2

2

)
= tanh

(
tanh−1(ρ1) + tanh−1(ρ2)

2

)
.

(5.13)

It is important to note that µρz is the expected value in the space of ρ that
results from the inverse Fisher-z transformation of the expected value µζ of
ζ. Hence, the computation of the expected value is carried out in z-space and
the result is transformed via the inverse Fisher-z transformation to arrive at an
expected value of ρ. To distinguish the expected value of ρ for which compu-
tations are carried out in r-space (i.e., µρ) from the one for which computations
are done in z-space, a double index is used in µρz to indicate the origin from
another space.

As shown in Equation 5.13, for the given case S2 the mean of ζ1 and ζ2
transformed to a mean ρ using the inverse Fisher-z transformation is µρz. The
focal question is: Is it true for all combinations of ρ in S2 that µρ = µρz? If it
were true, then a differentiation of µρ and µρz would not be necessary and the



CONSEQUENCES OF CHOOSING AN APPROACH 77

aforementioned interpretation of mean effect size estimates based on Fisher-z
transformed correlations would be correct.

As already stated, this is not the case and it is quite important to make this
distinction since an inverse Fisher-z transformation of µζ does not lead to µρ in
general. Only when ρ1 = ρ2, that is in the homogeneous case S1, does µρ = µρz
hold. For the case of only two different ρs, Equation 5.13 can equivalently be
expressed as

µρz =
√

1 + ρ1 + ρ2 + ρ1ρ2 −
√

1− ρ1 − ρ2 + ρ1ρ2√
1 + ρ1 + ρ2 + ρ1ρ2 +

√
1− ρ1 − ρ2 + ρ1ρ2

(5.14)

in terms of the original ρs. This equation makes it clearer that µρ equals µρz
only when ρ1 and ρ2 are the same. It may be noted that Olkin (1967, p. 116) has
already provided an expression similar to the one given above when consid-
ering the weighted average of correlation coefficients from two independent
populations with a common ρ, a problem not exactly the same as in the present
context.

It is important for meta-analysis in general that Equation 5.14 is not re-
stricted to S1 and can be generalized beyond this restricted situation. In fact,
it can be generalized to an arbitrary number of different values ρ. The follow-
ing result provides such a general expression for which Equation 5.14 can be
regarded as a special case.

By induction we have the following

Lemma. For all c and ρ = (ρ1, . . . , ρc) we have

(i) ∏c
j=1 (1 + ρj) = ∑α ρα

(ii) ∏c
j=1 (1− ρj) = ∑α (−1)|α|ρα

where summation extends over all α ∈ {0, 1}c satisfying |α| ≤ c.

Note that α = (α1, . . . , αc), |α| = ∑ αj, and ρα = ρα1
1 × · · · × ραc

c . Now, let
ρ = (ρ1, . . . , ρc) and z = (z1, . . . , zc) be the vector of corresponding Fisher-z
values. Define h(ρ) = tanh(z). Then

Theorem.

h(ρ) =
(∑α ρα)1/c − (∑α (−1)|α|ρα)1/c

(∑α ρα)1/c + (∑α (−1)|α|ρα)1/c

Proof.

h(ρ) =

(
∏c

j=1
1+ρj
1−ρj

)1/c
− 1(

∏c
i=j

1+ρj
1−ρj

)1/c
+ 1

=

(
∏c

j=1 (1+ρj)
∏c

j=1 (1−ρj)

)1/c
− 1(

∏c
j=1 (1+ρj)

∏c
j=1 (1−ρj)

)1/c
+ 1

The result then is a consequence of the above given Lemma.
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As an example to see how the generic form of the expression h(ρ) works for
cases other than the two-point distribution of focal interest, consider the case
of three different ρ. Let ρ = (ρ1, ρ2, ρ3) = (.10, .50, .90). Then (∑α ρα)1/c and
(∑α (−1)|α|ρα)1/c expand to(

∑
α

ρα

)1/c

= 3
√

1 + ρ1 + ρ2 + ρ3 + ρ1ρ2 + ρ1ρ3 + ρ2ρ3 + ρ1ρ2ρ3 = 3
√

a(
∑
α

(−1)|α|ρα

)1/c

= 3
√

1− ρ1 − ρ2 − ρ3 + ρ1ρ2 + ρ1ρ3 + ρ2ρ3 − ρ1ρ2ρ3 = 3
√

b,

so that

h(ρ) =
3
√

a− 3
√

b
3
√

a + 3
√

b

=
3
√

3.135− 3
√

0.045
3
√

3.135 + 3
√

0.045
= .61.

The resulting value of h(ρ) = .61 shows that the use of Fisher-z yields an
overestimation in comparison to µρ = .50, but now for the case of a three-
point mixing distribution. As can also be easily recognized, the task to explic-
itly specify the expression for cases with more than three different ρ becomes
rather laborious, though widely available computing resources make it accom-
plishable.

To give a more comprehensive impression of how large the differences can
get in S2, a series of differences µρ − µρz for varying positive ρ1 and ρ2 were
computed and are depicted in Figure 5.1. The differences in µρ and µρz for
varying ρ1 and ρ2 are portrayed with a surface to enhance visibility of the
trends.
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Figure 5.1 Differences between µρ and µρz by different ρ1 and ρ2.

As is evident, µρ is always smaller than µρz when ρ1 6= ρ2. For the homo-
geneous case there is a ridge from the lower corner of the graph to the upper
at a height of zero, indicating the equality of µρ and µρz for this parameter
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constellation. With growing differences between the two ρs, differences in ex-
pected values become increasingly larger up to values of approximately −.35
in extreme cases.

There are several implications of this observation. Most importantly, the
estimated parameters in the universe are indeed different for the estimators.
That is, the Fisher-z transformation introduces a different estimated parameter
through its nonlinear transformation of the correlation coefficients in heteroge-
neous situations. In general, approaches that employ the Fisher-z transforma-
tion will always result in higher absolute values for the estimate of the mean
effect size in such situations. This may not be entirely clear to every research
consumer of meta-analyses when interpreting the results. Second, as a result
Fisher-z based estimators may be regarded as inappropriate as estimators of
µρ because estimates will necessarily differ from this parameter as illustrated
in Figure 5.1. Although the differences as large as the extreme cases depicted
in the figure will probably be easily identified in applications of meta-analyses
for a two-point mixing distribution in the universe, by simple inspection of
the effect size distribution, smaller differences may remain undetected. Fur-
thermore, simple detection of such cases may become quite difficult with dis-
crete mixing distributions with more support points than two, especially when
these are fairly close to each other. The application of the Fisher-z transforma-
tion will in these cases inflate the mean effect sizes in relation to µρ, a fact that
underscores the importance of homogeneity tests.

Another implication of the fact that Fisher-z based procedures estimate µρz
and not µρ in heterogeneous cases is that it would be somewhat unfair to judge
the quality of z-based estimators by comparison with µρ, a parameter they are
not supposed to estimate. Rather than discarding Fisher-z based estimators
from analyses in S2 to be reported for the Monte Carlo study in Part III, the
parameters for comparisons of the estimators correspond to the value they
actually estimate, with µρ as the value for estimators based on r and µρz for
estimators based on Fisher-z transformed values. The parameters thus will be
chosen to match the parameter to be estimated when reporting results of the
Monte Carlo study in Chapter 8.

Basically the same is true for estimators based on d. A similar terminology
is used to examine this issue. Hence, the expected value in the space of r that
results from transforming an expected value computed in d-space and subse-
quently transformed into r-space by way of Equation 3.11 will be denoted by
µρd. As was shown in Section 3.3, the transformation of r to d has a similar
functional form in comparison to the Fisher-z transformation. Accordingly,
also a similar form for the difference between µρ and µρd is expected and in-
deed will be given as shown in Figure 5.2.

The graph depicted is slightly steeper in the tails of large ρ differences as
the transformation suggests. The values for µρd were computed in analogy
to Equation 5.13 with the r to d transformation applied to ρ1 and ρ2 and the
inverse transformation from d to r applied to the mean δ resulting in µρd. As
was the case for the Fisher-z transformation, a ridge for equal values of ρ1 and
ρ2 indicates the equality of µρ and µρd in the homogeneous case.
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Figure 5.2 Differences between µρ and µρd by different ρ1 and ρ2.

However, values for the mean effect size using HOd are not very close to
µρd as the general logic outlined here would suggest. Actually, they are much
closer to µρ. How can this be the case if HOd is assumed to be an estima-
tor of µρd? The reason for this effect lies in the confoundation of the employed
weights with δ when aggregating the d values. Holding n constant, the weights
are dependent on the parameter δ or estimates thereof, respectively (see Sec-
tion 3.2). The effect of using these weights is to downweight higher d. Assume
equal n in two groups and recall that the weights are the reciprocals of σ2

d , then
by holding n constant, σ2

d increases with d, and the weights, being reciprocals
of σ2

d , decrease. The form of the relationship between σ2
d and d is illustrated in

Figure 5.3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

5

10

15

20

25

30

d

1
/

σ
2 d

Figure 5.3 Reciprocals of σ2
d by d.

In this figure, an n of 100 was assumed for computing the weights and val-
ues are depicted up to d = 5, which corresponds to r ≈ .93. There is a clear
trend for decreasing weights with increasing d. This leads to mean d values
being much closer to, but not exactly at, µρ in comparison to µρd. A selection
of varying values for S2 is presented in Table 5.1 along with values for µρ,
µρd and a weighted version of µρd. The latter was computed by applying the
weights to the population parameters when aggregating.
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Table 5.1 Comparison of Theoretical Values of µρ and µρd in S2

ρ1 ρ2 µρ µρd µρd(w)

.00 .10 .05 .0502 .0501

.00 .20 .10 .1015 .1005

.00 .30 .15 .1553 .1517

.00 .40 .20 .2132 .2039

.00 .50 .25 .2774 .2575

.00 .60 .30 .3511 .3123

.00 .70 .35 .4401 .3675

.00 .80 .40 .5547 .4191

.00 .90 .45 .7183 .4470

Note. The n was fixed at 100 for all values of w. µρd(w) is the weighted version of µρd.

It is evident by comparison of columns three to five that the weighted ver-
sion of µρd leads to results much closer to µρ for larger differences between ρ1
and ρ2. Since the weights are not chosen to produce this effect it can be de-
scribed as somehow incidental. However, recognizing this effect, it would not
be reasonable to compare mean effect sizes based on d with an unweighted
version of δ, at least not for larger differences. Hence, the results for the bias
of the estimators, for example, to be presented in Chapter 8 are based on com-
parisons between µρ and mean effect size estimates based on d.

Although the estimated parameter for r-based approaches is µρ, there may
also arise problems for some approaches in estimating this parameter when
the variances of r or G are used in computing the weights for aggregation. The
approaches for which this problem may be relevant are OP-FE and to a smaller
degree also for OP-RE. The latter also employs estimates of the heterogeneity
variance that are equal for all studies to be aggregated so that weights depend
on the variance of the estimate to a lesser degree. As already mentioned, this
homogenizes the weights.

The problem of this dependency is exacerbated when n is low. In such situ-
ations, observed correlation coefficients are highly variable. Theoretically, the
variances of estimates are the same in this situation. However, due to the fact
that the (highly variable) estimates of the universe parameter (r or G) are used
in estimating their variances, the variances also vary strongly and therefore so
do the weights. Because there is a relationship of high or low weights occuring
along with high or low estimates, a bias in the pooled estimate may be intro-
duced by plugging in the estimates of the variances in the computation of the
weights. In cases with (nearly) equal n, it would thus be sensible to estimate
the variance of the estimates based on an n-weighted pooled estimate of all
effect sizes available. Such a procedure is employed, for example, in the HS
approach as outlined in this chapter. Moreover, the problem does not pertain
to HS at all for the reciprocals of the variances are not used as weights for the
pooled estimate.
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In sum, the choice of an approach is often associated with a choice of effect
size measures for computations. As shown here, this may have profound ef-
fects in heterogeneous situations. The generally applied interpretation of mean
effect sizes based on correlation coefficients as estimates of the expected value
µρ of the mixing distribution only holds for r-based procedures but not in gen-
eral for procedures based on transformations of r, since transformations have
also to be applied at the level of parameter values (universe of studies).

With regard to the commonly applied Fisher-z transformation this places
some remarkable constraints on its usefulness in the context of meta-analysis.
It is essential when this transformation is applied for aggregating effect sizes to
guarantee the homogeneous case on theoretical or empirical grounds. Other-
wise, the mean effect size does not in general estimate what is mostly intended
to be estimated, namely µρ. Of course, it may not be an easy task to inter-
pret mean effect sizes in the heterogeneous case without explicitly modeling
the situation adequately by application of HLM or mixture modeling, for ex-
ample. But cases are not uncommon at all in which explanatory variables are
not available and the effect size database remains heterogeneous. When us-
ing r-based approaches, interpretation of mean effect sizes as estimates of µρ is
theoretically founded, whereas for approaches that apply transformations it is
not. In the case of HOd, the situation is much more complicated in comparison
to HOr because weights also have to be taken into account. To be sure, the
expected value µρ is more adequate for most cases in S2 treated here, but it
is not the parameter to be estimated by HOd from a theoretical point of view.
In the Monte Carlo study in Part III an evaluation of the precision of estimates
will be reported with respect to the parameters to be estimated as reported in
this section.

5.6 COMPARISONS OF APPROACHES: STATISTICAL
PROCEDURES

The approaches presented in previous sections are a set of procedures and
techniques that has become very common in the application of meta-analysis
in psychology and other social science disciplines. The procedures outlined
are not the only available. There are even more statistical refinements and pro-
cedures to be found in the literature (e.g., Kraemer, 1983; Viana, 1980, 1982)
than have been presented and referenced up to this point. However, the fo-
cus of the following paragraphs will be laid on the more common procedures
and their properties. Furthermore, the comparison largely implies correlation
coefficients as effect sizes. Some of the following statements might have to be
altered when comparing proposed procedures for other effects sizes.

The first characteristic used to distinguish the approaches is the assumed
model. Among the approaches considered, the majority can be classified as
FE approaches. This also mirrors current research practice, in that procedures
based on the FE model are still the most often applied. Approaches based on
RE models have been repeatedly called for (Hunter & Schmidt, 2000; National
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Research Council, 1992) but this does not yet seem to have had a profound
effect on research practice. The FE approaches are HOr, HOT, RR, HOd, OP,
and OP-FE whereas the RE approaches are DSL and OP-RE. Being a hybrid
type, the HS approach is not easy to classify for various reasons (see Section
5.3) but it seems to be more of an RE approach in nature. Yet, it is noteworthy
that others have classified it as an FE approach (e.g., Erez et al., 1996; Overton,
1998).

The HS approach also stands out somewhat for its peculiar procedures, like
the 75%-rule, which is not included in other approaches. A feature of this
approach that is very much emphasized by Hunter and Schmidt (1990) are
the various techniques to correct for artifacts. These are not of concern in the
present context but it should be recognized that an important research prob-
lem is addressed with such corrections. Although distinctive in emphasis and
elaboration, corrections of effect sizes are not unique to the HS approach (see
also Hedges & Olkin, 1985, pp. 131).

With the FE and RE model as outlined in Chapter 4, it is easy to recognize
the common structure of the approaches as far as estimation of the mean effect
size and inferential procedures are concerned. The commonalities go so far
that, in fact, HOr and RR are largely indistinguishable and may not count as
different approaches at all. Again, it is recognized that they have been classi-
fied as such in previous comparisons (e.g., Johnson, Mullen, & Salas, 1995).

A second characteristic for comparing the statistical procedures of the ap-
proaches is the effect size measure used in synthesizing correlation coefficients.
As has been outlined in the previous section, important differences exist when
transformations of the correlation coefficient are applied. This makes the ag-
gregated effect size measure a quite important characteristic, at least in hetero-
geneous situations. The r-based approaches are HS, OP, OP-FE, and OP-RE.
The Fisher-z-based approaches are HOr, HOT, RR, and DSL, whereas HOd
uses another transformation that also leads to a different estimated parameter
in the universe of studies in heterogeneous situations. Regarding bias of the
estimators it is expected that the approaches may lead to quite accurate results
only with respect to the corresponding estimated parameters.

The third characteristic to compare or classify approaches is the weighting
scheme. Whereas some approaches use so-called optimal weights (i.e., recipro-
cals of squared standard errors), others simply use the individual study sam-
ple size as weights in their procedures. To classify the approaches with re-
spect to this attribute, recall that the optimal weights for the approaches us-
ing the Fisher-z transformation are in essence determined by the sample sizes.
This can be seen by inspecting Equation 5.1 on page 57 for HOr, for exam-
ple. Hence, in these cases, approaches can as well be classified as using ni as
weights because the differences are minuscule in general. As a consequence,
almost all of the presented approaches use the sample size as weights, except
for OP-FE, OP-RE, and HOd.

Now, does the weighting scheme really make a difference? At least some
expectations retrievable in the literature suggest that this is not the case. For
example, Huffcutt (2002) clearly states that “it is unlikely that the choice of
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weighting method has any real influence on the mean effect size [. . . ] esti-
mates” (p. 209). Furthermore, Sánchez-Meca and Marín-Martínez (1998b) have
not reported any striking differences between weighting methods for d as an
effect size measure on the basis of their Monte Carlo study results. It is never-
theless argued that the weighting does make difference.

The reasons for this are, first, that the empirical evidence available is based
on the effect size d, and this is a special case as has already been scrutinized.
The theoretical analysis in Section 5.5 has revealed an effect of the weights
which might have obscured a profound effect of weighting in the Monte Carlo
study by Sánchez-Meca and Marín-Martínez (1998b). Their results may there-
fore not generalize to the present case of interest, correlation coefficients. Sec-
ond, recall the dependency of the weights for the UMVU estimator on ρ and
also bear in mind the potential variability of effect sizes due to sampling error.
Taking further into account that the observed effect sizes have to be plugged
into the estimator for the standard error reveals that using such weights will
lead to an upward bias in mean effect size estimators. This is exactly what can
be expected for the estimators in OP-FE and OP-RE.

Hence, the weighting scheme is an important classification aspect for ap-
proaches, at least in cases for which a similar plug-in procedure is used as in
OP-FE and OP-RE. How, then, can these be the statistically optimal weights?
The reason is simply that to prove the optimum properties of this weighting
scheme, one has to assume that the weights are known. Because this is almost
never the case, one has to use the plug-in procedure which causes the problem
and makes the weighting scheme suboptimal. For a theoretical analysis and
empirical demonstration of the considerable effect of using plug-in estimates
in the context of estimating heterogeneity variance, see Böhning et al. (2002).

Of the approaches introduced, HOd is somewhat special. It is hardly com-
parable to the other approaches because in the way it is used in the present
examination it would almost never be used in practice (i.e., a database con-
sisting only of r would ordinarily not be converted to d). Remember that the
approach was introduced to show how correlation coefficients converted to d
would be aggregated. It is intended to enable a test of the common assumption
that the well-known conversion of r to d does not have an effect on the results
of meta-analysis.

There are some empirical comparisons of meta-analytical approaches in the
literature available to date. One quite influential early comparison that has
raised serious doubts on the quality of the HS approach was conducted by
Johnson, Mullen, and Salas (1995). They compared the approaches HOd, RR,
and HS by analyzing a small database which they also transformed by adding
constant values, for example. Hence, they have not conducted a Monte Carlo
study but analyzed a specific dataset and its transformations to examine the
quality of the approaches. Unfortunately, there are several problems with this
comparison. First, they stated with reference to the techniques proposed by
Hedges and Olkin (1985) that “. . . study outcomes usually are converted into
standard deviation units. . . ” (Johnson, Mullen, & Salas, 1995, p. 95). Hedges
and Olkin actually do not advocate transformations of r to d as a standard
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technique applied to correlation coefficients. Instead, they provide elaborate
procedures for the analysis of correlation coefficients, as can be seen in Section
5.1. Although sometimes approaches as presented in this book are associated
with certain effect sizes, it is not true for any of the approaches outlined that
they can only be applied to a certain kind of effect size family. Admittedly,
the HS approach has a main focus on correlations, but is not limited to the
analysis of this effect size measure. It is therefore important to recognize that
the present examination evaluates the procedures of the approaches that are
proposed for correlational data and may not generalize to other procedures
proposed. Second, the formula for standard error in the HS approach as used
by the authors (Johnson, Mullen, & Salas, 1995, Formula 12, p. 97) is wrong
and leads to strong overestimates of the standard error of the mean effect size
(see also Schmidt & Hunter, 1999a). Third, Johnson et al. tried to vary certain
“parameters of the databases [. . . ] while attempting to hold all other variables
constant. . . ” (Johnson, Mullen, & Salas, 1995, p. 99). Unfortunately, there was a
(linear) relationship in the database between r and n (r = .158) that influenced
the results of their comparisons between the approaches. In sum, their com-
parison is only of limited value for a comparative evaluation of the approaches
under consideration.

Despite these problems, the Johnson et al. study may have had a profound
effect on other researchers and may have led them to abstain from using the
HS approach. Others even tried to “explain” the divergence from conventional
statistical expectations that was reported in the Johnson et al. study for the HS
approach (e.g., Erez et al., 1996, p. 283). Nevertheless, the Johnson et al. study
had at least the beneficial effect of drawing the attention of researchers to the
potentially diverging approaches in psychology.

Another more recent comparison of approaches focusing on correlation co-
efficients as effect sizes was done by Field (2001). This study was not plagued
with the problems of the Johnson et al. study and developed this work by
conducting a Monte Carlo study. Field (2001) reported a series of results on
the estimation of the mean effect size, significance test for the mean effect size,
and homogeneity test performance. In separate Monte Carlo studies the per-
formance of the approaches in homogeneous as well as heterogeneous situa-
tions was examined. Interestingly, his results indicated a bias in estimating the
mean effect size in heterogeneous situations being very much larger for the
approach using the Fisher-z transformation (DSL) in comparison to the HS ap-
proach. In contrast, such effects were not observed in homogeneous situations
(here, HOr was compared to HS). A clear theoretical rationale for this effect
was, however, lacking.5 For more detailed results the reader might wish to
consult the original article. Overall, the reported results seemed to favor the

5It might be noted that Hunter et al. (1982, p. 42) already pointed to the excess bias resulting
from the Fisher-z transformation. In later work (Hunter & Schmidt, 1990, pp. 216–217), they
repeated this observation but still without providing an elaborate statistical argument. They
only pointed to an (still) unpublished paper which was referenced by Field (2001) to support
his prediction. Hence, an elaborate theoretical argumentation as given in the previous chapter
has not yet been available.
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HS approach over other approaches mainly on the grounds of larger bias in
heterogeneous situations for Fisher-z based approaches.

A further comparison, namely of the DSL and HS approach, was conducted
by Hall and Brannick (2002). Although large parts of the study focused on
artifact corrections, which are not of interest here, they reported some results
worth noting in the present context. In a comparison between the approaches
based on Monte Carlo study data, a similar pattern of results with respect to
the bias of the mean effect size estimators was observed as in the Field (2001)
study. That is, in homogeneous situations both approaches lead to approxi-
mately equal results and in heterogeneous situations the results differed. Dif-
ferences grew bigger the larger the variance of universe parameters was, with
DSL leading to overestimates. This result is perfectly compatible with expec-
tations on the basis of the theoretical analyses of the estimators’ properties
outlined in this chapter. Hall and Brannick (2002), however, attributed this
observation to some peculiarity of their Monte Carlo procedure. Most interest-
ing for the present examination of approaches are reanalyses of four published
meta-analyses. The authors reported higher estimates of the DSL approach in
comparison to the HS approach on the basis of the four real datasets, though in
one case the estimates were virtually identical. The maximum difference was
between a value of .237 (HS) and .286 (DSL) for one study. This difference is
remarkable and might have been even bigger if the mean effect size level and
the variance of universe correlations would have been larger. These additional
results in the Hall and Brannick (2002) study point to the fact that the theoret-
ical analyses of this chapter are not only statistical gimmicks but can have a
real impact. For further theoretical and empirical comparisons of approaches
with different models and effect size measures, the reader is referred to the
pertinent literature (e.g., Overton, 1998; Brockwell & Gordon, 2001).

To summarize, the approaches under examination have many attributes in
common as can be recognized from the perspective of the general frameworks
of meta-analysis. HOr and RR, for example, are different in a minor detail at
best. Nevertheless, important differences between approaches lie in the un-
derlying model (FE vs. RE), the effect size measures used in aggregation (r vs.
Fisher-z) and also in the weights employed in aggregation. Previous compar-
isons of approaches — most of which were based on Monte Carlo study results
— show convergence as well as differences in results, where differences can
at least partly be attributed to properties of the estimators as outlined in this
chapter.



6
Summary of Statistical Part

In this part of the book, the statistical foundations of several approaches to
meta-analysis of correlations have been outlined. The effect size database of
interest in the present context was restricted to two families, the correlation
coefficient and standardized mean effect sizes with a strong focus on the for-
mer. They still represent the most often used effect sizes in the social sciences
and properties of estimators for both were therefore examined.

For the correlation coefficient as an effect size, the sample correlation coef-
ficient and its properties were examined. The approximation introduced by
Fisher (1921) was presented as a transformation of the correlation coefficient
that shows a much more rapid convergence to a normal distribution in com-
parison to the correlation coefficient. Both estimators are biased and approx-
imate formulae suggest a larger bias in absolute value for Fisher-z. However,
the approximate variance of Fisher-z is independent of the population param-
eter to be estimated whereas the approximate variance of the correlation co-
efficient is not. For the latter, illustrations of this dependency were given. In
addition to the common estimators r and Fisher-z, the unique minimum vari-
ance unbiased estimator introduced by Olkin and Pratt (1958) and its variance
were presented. The variance was also shown to be dependent on the popula-
tion parameter to be estimated.

From the d family, three estimators were presented of which d is considered
the most important in the present context. It is, however, not the one which
best attains desirable statistical properties like unbiasedness. The variance of
d was also shown to depend on the the population parameter it is supposed to
estimate, but the relationship is very different from the one presented for the
correlation coefficients.

A brief examination of the conversion of the effect sizes presented along
with revised formulae was given. It was concluded that available formulae
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may not hold for the nonnull case. The Monte Carlo study in Part III will
provide evidence on this subject.

The methods of aggregating effect sizes were first presented in a general
framework by specifying the statistical models of fixed effects and random ef-
fects. One important difference between the models lies in their assumptions
about the distribution of effect sizes in the universe of studies. In the fixed
effects model, homogeneity of all effect sizes or subgroups of effect sizes is of-
ten assumed. The fixed effects case represents a common assumption made
in most applications of meta-analysis in practice but was criticized on vari-
ous grounds (e.g., Erez et al., 1996; Hunter & Schmidt, 2000; National Research
Council, 1992). It was pointed out in this context, that in the presence of hetero-
geneity application of the fixed effects model demands careful interpretation
of the mean effect size. It has to be interpreted like a grand mean in ANOVA
and may in some cases be ambiguous. This does not necessarily invalidate
statements made on the basis of results from applying fixed effects models in
heterogeneous situations. Whether ambiguity is indeed a problem, is a ques-
tion to be answered by the researcher applying the models in a specific research
situation.

In the random effects model, in contrast, heterogeneity of effect sizes is al-
ways an integral part of estimation as well as inference (see Hedges & Ve-
vea, 1998). For both models, desired inference is different. In the fixed effects
model, interpretation is restricted to studies like those available. In the ran-
dom effects model, generalization of estimated characteristics of the effect size
distribution leads to generalizations of effects to studies different from those
examined but from the same research domain (Hedges, 1994b; Hedges & Ve-
vea, 1998). As was pointed out, one important task for a researcher who wants
to apply meta-analysis, is to carefully consider the model of the situation of
interest and the desired inferences.

Additionally, the principles and concepts of applying mixture models to
meta-analysis were outlined. It was pointed out that they provide a very flex-
ible framework for the research situation of meta-analysis and were used to
describe the research situations S1 to S3 that cover many important situations
and will be used in Part III in the Monte Carlo study to systematize the design
and presentation of results.

As another model class, hierarchical linear models were briefly introduced.
These models are often used to assess the effect of observed explanatory vari-
ables on the effect size variability. It was shown that these models are very
general and most other models can be regarded as special cases of hierarchical
linear models.

The specific procedures of the various approaches to meta-analysis were
outlined in detail in the subsequent chapter. As the major meta-analytical ap-
proaches for correlations as effect sizes, the approaches proposed by Hedges
and Olkin (1985), Rosenthal and Rubin (1979), as well as Hunter and Schmidt
(1990) were identified. In addition to these approaches, refinements were also
presented that draw on the works of Hotelling (1953), Olkin and Pratt (1958),
as well as DerSimonian and Laird (1986). All approaches are presented for
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application to correlations as effect sizes. In addition to these approaches, the
procedures for d as an effect size presented by Hedges and Olkin (1985) were
also outlined. Distinctions were drawn between the approaches with respect
to the effect size to be aggregated (r, Fisher-z or d) and they were categorized
according to the general framework introduced. The major approaches as well
as OP, HOT, and OP-FE were identified as fixed effects approaches whereas
DSL and OP-RE are random effects approaches. HS seemed to be of a hy-
brid type. Two major approaches, HOr and RR, are indistinguishable and may
therefore not count as different approaches at all.

In the penultimate section of the last chapter, it was shown that the choice
of an approach is at least consequential in situations S2 and S3, where hetero-
geneous situations are given. Fisher-z-based (HOr, RR, HOT, and DSL) and d-
based (HOd) approaches were shown to estimate different parameters in com-
parison to r-based approaches. Since the expected value µρ of the effect size
distribution is considered to be the parameter of main interest in meta-analysis
of correlations, cautions were raised about the application of Fisher-z based
approaches in heterogeneous situations. Furthermore, the use of variances of
the estimates in computing weights when the variances are confounded with
the population parameters was pointed out to be a potential problem for the
pooled estimators of the approaches. For HOd, the effect of applying such a
weighting scheme is that the estimates are expected to be closer to µρ than to
the theoretically derived parameter without employing weights. In the case
of OP-FE and OP-RE problems in estimation may arise. However, the r-based
approaches retain the interpretation of the mean effect size estimate for µρ in
all situations because n is used in weighting the effect sizes and are therefore
preferable in these situations from a theoretical point of view.

Finally, a comparison of approaches was presented that highlighted the ma-
jor statistical attributes to classify the approaches as presented beforehand.
These were the distinction between random versus fixed effects models, the
use of transformed correlations, and the weighting scheme. Additionally, a
brief overview of previous comparisons of meta-analytic approaches for cor-
relations as effect sizes was presented.

In the following chapters, the design and results for a Monte Carlo study
conducted for evaluation of the approaches will be presented. The situations
introduced in the present chapter will be incorporated in the design and per-
formance of the approaches with respect to the various estimates they propose
will be evaluated.





Part III

Evaluation of Statistical Approaches:
A Monte-Carlo Study





7
Aims, Design, and Implementation

In this part of the book, a comprehensive Monte Carlo study for the compar-
ative evaluation of the statistical approaches will be presented. First, the aims
and general procedure will be outlined. Procedural details will be given to en-
able an assessment of the precision of the study and justify the validity of the
results to be presented in Chapter 8. Next, the parameters characterizing the
universe from which the effect sizes are drawn will be presented and related
to the situations of fixed and random effects as outlined in Chapter 4. This
will define the scope of interpretation of the results and shed light on viable
generalizations of the results. Finally, technical details on the generation of cor-
relation coefficients in Monte Carlo studies in general are discussed and some
specifications for software programming to conduct the Monte Carlo study are
given.

Monte Carlo studies are designed to investigate the properties of statistical
procedures, techniques, or estimators in particular by conducting a specified
number of replications of a statistical procedure when an analytical treatment
of the problem is not feasible. In a sense, they can be regarded as experiments
conducted to study the behavior of statistics of interests subject to the variation
of a set of parameters within the framework of a prespecified model. Accord-
ingly, the design of a Monte Carlo study delimits the scope of interpretation of
the results (see Skrondal, 2000). If interest lies, for example, in the performance
or robustness of a parameter’s estimator, it can only be evaluated with respect
to the specific other parameters of the model that have been varied or held
constant in a Monte Carlo study. Hence, in the following sections the design of
the Monte Carlo study conducted to compare the computational approaches of
meta-analysis as outlined in the previous chapters will be described in detail.
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7.1 GENERAL AIMS AND PROCEDURE

The main aim of the Monte Carlo study is to compare as well as evaluate the
various statistical approaches of meta-analysis as presented in Chapter 5. One
of the most important questions to be answered based on the results is whether
and when the choice of an approach of meta-analysis makes a difference. In the
present Monte Carlo study, the effect sizes under scrutiny will be confined to
correlations. Only the d-statistic will be of concern insofar as correlations can
be transformed to d and the meta-analysis be based on these transformed effect
sizes. The correlation coefficient was chosen as an effect size measure to com-
pare the meta-analytical approaches for several reasons. First, it is one of the
most often reported effect sizes indices in the empirical literature in the social
sciences and psychology in particular. It therefore represents one of the most
representative effect size measures in these scientific areas. Second, all the ap-
proaches presented in Chapter 5 explicitly propose procedures to aggregate
this effect size measure. Third, its various forms can be easily accommodated
to express the size of an effect in a wide variety of research situations and also
for results from focused hypothesis tests, a fact that lead several researchers to
strongly advocate its use (e.g., Rosenthal & DiMatteo, 2001; Rosenthal et al.,
2000). The empirical comparison of meta-analytic approaches is thus limited
to a research database consisting of correlations.

If present, differences between the results of these approaches will be high-
lighted and compared to expectations from an analytical point of view. Com-
parisons of empirical results with the latter type of expectations are also of
interest insofar as many of the theoretical results presented and referenced in
Part II hold only asymptotically. Thus, it will be investigated whether the ap-
plication of the proposed procedures yields sufficiently accurate results so that
their use is justified under restricted conditions (see Hedges, 1994b). The re-
striction of conditions predominantly refers to the number of studies to be ag-
gregated and the number of persons in the studies. It is important to recognize
and differentiate these two types of asymptotics. On the one hand, holding
everything equal, results may be expected to converge asymptotically to some
parameter when n grows larger. On the other hand, this might be the case —
ceteris paribus — when the number of studies in a meta-analysis grows. It may
well be the case that for some estimator of interest, only one of these types is
relevant and a growing n or k does not have an effect on the results.

The approaches will be compared with respect to the statistical properties
of the proposed procedures for the various meta-analytical tasks. The tasks
are estimation, testing, and confidence intervals for the mean effect size, ho-
mogeneity tests, and estimating heterogeneity variance. The presentation of
the results is structured correspondingly. Special attention will be payed to
indices that were developed in individual approaches, like the 75%-rule of the
HS-approach), and their usefulness as meta-analytical tools will be assessed in
a separate subsection.

Some computational details and specifications on the indices used to make
comparisons (e.g., for the mean squared error) will be reported when they are
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needed, that is, in the relevant sections in Chapter 8. It will then be pointed
out which of the respective indices performs best with regards to conven-
tional statistical criteria, like the mean squared error of the point estimators,
for example. A possible and hardly surprising result might be that there is
no single approach to meta-analysis performing best under all conditions de-
fined by the design. Instead, a newly assembled collection of procedures from
various approaches might emerge as a set of meta-analytical techniques per-
forming best under the examined conditions. If the performance of the indices
varies strongly in dependence on parameters varied in the Monte Carlo de-
sign, the parameter configurations under which single indices perform best
will be highlighted. This can be useful information for future meta-analyses to
condition their choice of an index on the specific circumstances (e.g., mean n
of the studies to be integrated and number of studies k).

The comparison of approaches will be conducted under various parameter
configurations that correspond to different models. As mentioned in Section
4.1, the most often applied approaches in meta-analyses on research topics in
psychology assume a fixed effects model. This has been severely criticized
for various reasons and calls have been made for an increased use of the ran-
dom effects model (e.g., National Research Council, 1992). Nevertheless, the
research practice in meta-analysis has not yet followed this call (for examples,
see Hunter & Schmidt, 2000). Hence, a comparative evaluation of the effects
of applying the fixed effects procedures of the approaches in heterogeneous
cases is of vital interest. This is the case for at least two reasons. First, it will be
possible to point out situations in which flaws in the conclusions of such meta-
analyses are likely to prevail. Second, it will be possible to assess the tenability
of conclusions of such meta-analyses and the potential need for reevaluations.
Comparisons of meta-analytical approaches that pursue a similar goal have
already been conducted (e.g., Johnson, Mullen, & Salas, 1995), but there are
some shortcomings in procedure and design associated with these compar-
isons that make it reasonable to reinvestigate this topic (see also Section 5.6).
Furthermore, most comparisons of procedures referenced in Section 5 have
focused on single indices and used different procedures in their simulation
studies that complicates and exacerbates the comparison of approaches. The
present effort therefore also aims at comparing the approaches within a sin-
gle simulation framework and to evaluate the approaches comprehensively in
procedures and design.

7.2 GENERAL EXPECTATIONS AND PREDICTIONS FOR
THE RESULTS

On the basis of the many properties of estimators and procedures highlighted
in Part II, some more specific predictions for the results can be made. These
will be highlighted in the following paragraphs.
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Estimation of the Mean Effect Size. The bias of the correlation coefficient and
Fisher-z transformed correlations is a very well investigated topic in the statis-
tical literature. At least since Hotelling’s seminal paper in the 1950s, the biases
are well-known and can count as theoretically well understood. Nevertheless,
there is a plethora of articles investigating the comparative biases of the r and
Fisher-z transformed r in simulation studies (e.g., Corey et al., 1998; Donner &
Rosner, 1980; Field, 2001; Silver & Dunlap, 1987). Adding yet one more Monte
Carlo study to demonstrate the biases seems like flogging a dead horse.

Hence, it is expected on the basis of theoretical results outlined in the pre-
vious part that in a homogeneous situation (S1) the approaches, as categorized
by type of effect size measure and using n as weights, show slightly different
biases in opposite directions, especially when n is small. Corresponding re-
sults will only add to the credibility of the simulation procedure and represent
nothing new. Yet, additional estimators are included in this Monte Carlo study
which have not been investigated as thoroughly as HOr and HS, for example.
It is expected that OP will be unbiased and HOT will show a similar behavior.
These predictions are expected to hold across all values of n and k in the Monte
Carlo design. OP-FE and OP-RE are expected to show positive biases due to
the weighting scheme used (see Section 5.6). In comparison, OP-FE will show
a larger bias than OP-RE because incorporation of (estimated) heterogeneity
variance will level differences in weights in the latter approach. The size of
the biases is not easy to predict and will emerge as a result of the Monte Carlo
study. Biases for these two approaches will also diminish when n grows larger
because of decreasing variability of observed effect sizes for larger n. The bias
will stay unchanged across values of k, which will be true for all approaches
since biases are not expected to vanish or be exacerbated because more (bi-
ased) data points are added. Predictions for HOd can hardly be made due to
its strange behavior (see Section 5.5). As a consequence, there are also no good
reasons to expect HOd to show similar results as any of the other approaches.

In a heterogeneous situation (i.e., S2 and S3) predictions are quite different.
Here, Fisher-z based approaches estimate µρz and not µρ. Only with respect to
the parameter which is estimated, approaches are expected to perform well. It
should nevertheless be borne in mind that Fisher-z based approaches have a
positive bias with respect to µρ the larger the heterogeneity variance. The rea-
sons for this are expounded in Section 5.5. Again, OP is expected to perform
uniformly best in the heterogeneous situations because of its UMVU quali-
ties. HOT is now expected to estimate a different parameter in comparison
to OP due to its Fisher-z basis. OP-FE and OP-RE are expected to retain their
bias in general, but it is again predicted that OP-RE will show smaller bias
the larger the heterogeneity variance. This interesting effect is expected be-
cause with growing heterogeneity variance the weights will be dominated by
the estimates of the heterogeneity variance. Again, it is unclear how HOd will
perform.

Overall, OP is expected to perform uniformly best. In some of the situations
under investigation other approaches might nevertheless show acceptable per-
formance with the standards of precision in the social sciences in mind.
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With respect to another aspect of estimating the mean effect size, namely the
estimators’ mean squared error, predictions are not easy to make. Of course,
there will be a tendency of estimators with large bias to also show large mean
squared errors, but it is not necessarily the case that estimators with small bias
will perform well with respect to this criterion. These facts notwithstanding,
OP is again expected to perform best in relation to all other estimators.

Significance Tests. With respect to tests of the mean effect size, it is important
to discriminate between two cases: when µρ = 0 and when it does not. Of
course, the null hypothesis need not be H0: µρ = 0, any other value of interest
might be inserted instead of 0, but this traditional “nil hypothesis” will be
focused on here. For the purpose of testing, there is a large set of candidates
included in this Monte Carlo study.

Predictions concerning Type I error rates will first be explicated, that is, the
performance of the approaches when the null hypothesis is true will be exam-
ined. In a homogeneous situation S1, all approaches are expected to retain an a
priori chosen α level to an acceptable degree, except for cases in which small
n is coupled with small k and a disadvantageous weighting scheme is used,
as for OP-FE, OP-RE, and HOd. This is due to the facts that all testing proce-
dures follow the same basic rationale on the one hand, and deleterious effects
of some weighting schemes as already outlined on the other. When the null
hypothesis is not true, the power of the approaches’ procedures is concerned.
Power will be higher for all approaches the larger the effect, that is, the higher
the absolute value of µρ. With regards to power it is important to recognize
both n and k being relevant for the performance. One of the reasons to apply
meta-analysis at all is because of its suspected high power due to aggregating
study results (i.e., increasing k and total n). This is indeed a valid suspicion
as Cohn and Becker (2003) as well as Hedges and Pigott (2001), for example,
have demonstrated. However, in these papers it was also demonstrated that
power is not always high in meta-analysis. For example, adding studies with
small sample sizes may decrease power (Hedges & Pigott, 2001) for RE ap-
proaches. Hence, this effect is expected to occur in the results of the simulation
study. Otherwise, FE approaches will tend to reject the null hypothesis more
often than the more conservative RE approaches (see Hedges & Vevea, 1998,
for example). Because OP is expected to be most precise in estimation, this is
expected to generally translate to better performance in testing as compared to
other FE approaches.

In heterogeneous situations the RE approaches are expected to perform better
overall as compared to FE approaches, because the basic model assumption
(heterogeneity) is correct and the approaches account for this in their proce-
dures. This will also generally lead to more conservative decisions in compar-
ison to FE approaches. Hence, higher power of FE approaches is expected to
come at the cost of excessive Type I error rates. More specifically, the null hy-
pothesis will always be false in S2 in the Monte Carlo study due to the design
which does not include negative universe parameters. In essence, basically the
same results as in S1 are expected to emerge with acceptable performance of
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most approaches in most situations, except for some combinations of the de-
sign variables (low n coupled with high k). In S3, RE approaches are expected
to perform best when the null hypothesis is true (i.e., µρ = 0) because FE
approaches do not incorporate heterogeneity variance in the standard error.
More specifically, this prediction applies to DSL and OP-RE. However, DSL
will retain the prescribed α-level best because it is suspected that the weighting
scheme of OP-RE will impair its performance when n is small. With reference
to Osburn and Callender (1992), it was pointed out in the context of presenting
the HS approach that using the variants HS3 and HS4 may result in good per-
formance in heterogeneous situations (see also Whitener, 1990). Hence, these
two approaches are also expected to perform well. If the null hypothesis is
false, then the power can again be examined. In these cases DSL is again pre-
dicted to show more conservative behavior in comparison to FE approaches.
However, it is again predicted that the higher precision of OP will have a ben-
eficial effect on its performance, though at the cost of an excessive Type I error.

Confidence Intervals. In evaluating confidence intervals of the approaches
two aspects have to be accounted for: coverage rates and interval widths. Cov-
erage rates refer to the proportion of intervals covering the universe parameter
in a series of replications. High coverage rates may come at the cost of large
intervals, so they are not unequivocal indicators of the quality of the proce-
dures. Thus, such rates have to be qualified by simultaneously considering the
interval widths.

The most important property of estimators to attain high coverage rates —
disregarding interval widths — is low bias. Since OP is expected to show the
smallest bias in all situations, it is again predicted to show the best perfor-
mance. This is anticipated to be true in all situations S1, S2, and S3. RE ap-
proaches will show high coverage rates in all situations but these approaches
will also have the largest interval widths notwithstanding which situation is
examined. This is caused by incorporating estimates of heterogeneity variance
in standard errors, which will almost always be positive, even in the homo-
geneous situation. Coverage rates are expected to become better for all ap-
proaches for larger n and k as conventional statistical results would suggest.

Homogeneity Tests. Two different types of homogeneity tests were intro-
duced in Chapter 5, those based on the Q-statistic and the 75% or 90% rule,
respectively. First, focus will be on the Q-statistic, which is available to con-
duct a test in the approaches HOr, HOd, HS, and OP-FE. For the predictions
it is important to recall one of the most important assumptions of this test,
namely the normal distribution of the deviates. These are squared, weighted
and summed over k studies to arrive at the Q-statistic. Under this assump-
tion and if the null hypothesis is true, the Q-statistic has an asymptotic central
χ2

k−1-distribution, that is, when study sample sizes are (very) large.
As a consequence, it can be predicted that HOr will perform best in compar-

ison to the other approaches. The basis for this prediction is the reasonableness
of the assumption of normally distributed deviates for Fisher-z transformed



GENERAL EXPECTATIONS AND PREDICTIONS FOR THE RESULTS 99

correlations. In contrast, it is not wise to assume a normal distribution either
in the case of r-based approaches (HS and OP-FE) or for HOd. At least when
ρ is moderate to large and/or sample sizes are not huge, the assumption is
not tenable. With regards to HOd, the assumption might be sensible if d was
not a transformed r as in the present case. In addition to the distributional
assumption, the deleterious effects of the weighting scheme are expected to
operate again for HOd and especially OP-FE. In sum, HOr is expected to per-
form best amongst the approaches under examination. However, on the ba-
sis of theoretical analyses (see Hedges & Pigott, 2001) and previous evidence
from attempts to evaluate this test (e.g., Harwell, 1997; Sánchez-Meca & Marín-
Martínez, 1997), it can be expected that at least for some combinations of the
design variables Type II errors will occur. More specifically, it is predicted that
particularly for situations of small n and large k — which operates to exacer-
bate the small n problem — low power of the homogeneity test based on the
Q-statistic will be observed.

The 75% and 90% rules as homogeneity tests are not expected to represent
viable alternatives to the homogeneity test mentioned in the above paragraph.
Due to their crude rationale and previous evaluations of these rules (for an
overview of results, see Cornwell & Ladd, 1993), a high Type I error rate and
relatively low power for combinations of moderate to low n and k is to be
expected.

Estimation of Heterogeneity Variance. A total of three estimators for the het-
erogeneity variance is available in the Monte Carlo study: DSL, HS, and OP-
RE. Of these, DSL is Fisher-z based and therefore in z-space and not directly
comparable to the other two estimators based on r. Unfortunately, there is no
transformation formula available to date to make these three estimators di-
rectly comparable. Nevertheless, some predictions for their comparative per-
formance are possible.

In the homogeneous situation S1, all estimators are expected to show posi-
tive but small bias. This is due to their construction which prescribes negative
estimates to be set to zero. If either non-truncated (i.e., negative estimates are
not set to zero) or truncated estimators are compared, then DSL and HS are
predicted to perform better than OP-RE. Despite the fact that OP-RE is unbi-
ased (see, e.g., Hedges, 1989), the deleterious effects of the weighting scheme
are expected to hamper good performance, at least when n is small. DSL is
not expected to suffer from any weighting scheme problem and is unbiased
by construction, though the weighting scheme might cause problems with the
estimator when other effect sizes are used as in the present case (see Böhning
et al., 2002). Hence, the DSL estimator is expected to perform best.

Basically the same predictions for relative performance of the approaches
can be made for heterogeneous situations. DSL is expected to perform best, HS
might show negative bias (see Hall & Brannick, 2002), OP-RE will perform
worst.
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7.3 DISTRIBUTIONS IN THE UNIVERSE OF STUDIES

In line with the differentiation between fixed and random effects models drawn
in Chapter 4 and with regard to the importance of assumptions about the dis-
tribution of the universe effect sizes to be modeled, the situations introduced
in Section 4.5 will be distinguished in the Monte Carlo study. The choice of the
situations is mainly oriented on the assumptions that are ordinarily made in
published meta-analyses about the universe of studies.

As a consequence, S1 is an important situation to include in the design,
mostly because of its prevalence in the literature. It represents the homoge-
neous case where only a single universe effect size is assumed to be estimated
by the studies under investigation. Additionally, S1 is also included in the de-
sign of the Monte Carlo study to test whether the FE methods work properly
when their basic assumptions are met and also to explore how RE methods
perform in homogeneous situations.

One of the heterogeneous situations included in the design is S2. Here, two
different values ρ1 and ρ2 are present in the universe of studies with equal
probability of occurrence. The difference between these values is not yet spec-
ified, but is a design aspect. The probabilities of .50 associated with the two
values of ρ are the weights of the components in mixture distribution parlance
and will not vary as part of the design. The Monte Carlo study thus also in-
vestigates the performance of the approaches in S2 and compares estimates of
mean effect sizes, for example, with the expected value of the mixing distribu-
tion they are intended to estimate. It should finally be kept in mind that the
design of the Monte Carlo study will be limited to situations in which the com-
ponent weights will also always be equal. Of course, this restriction precludes
reliable generalizations to situations in which there are more than two classes
and where components weights are very different.

The second type of heterogeneous situation included in the Monte Carlo
study is S3. Here, a univariate continuous distribution is given in the universe
of studies which is the beta distribution in the present study. The normal dis-
tribution was not used because it is not bounded by the interval [−1, 1] and
to avoid discarding invalidly large values. An alternative procedure was re-
alized by Overton (1998), for example, who randomly set invalid values from
the normal distribution to values between .90 and .9999 according to a uniform
distribution extending over this range. This is certainly an unsatisfactory state
of affairs because the density of the normal distribution is distorted by such
trimming of values and a determination of its actual parameters and properties
is thus impeded. Hence, such procedures are not considered as satisfactory.

In contrast to an earlier work that also used the beta distribution (Hedges,
1989), using parameters for the beta distribution that yield U-shaped or rect-
angular distributions was refrained from because they did not appear as plau-
sible for the distribution of effect sizes in the universe. The same is true for
distributional forms of a J-shape. Discussion of this issue will be resumed in
the following section when the specific parameters values for the Monte Carlo
design will be introduced.
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The question remains how the particular parameters of the beta distribution
were calculated in the Monte Carlo study. To elucidate the procedure, consider
the following probability density function of the beta distribution with param-
eters p and q

pX (x) =
1

B (p, q)
xp−1 (1− x)q−1 , 0 6 x 6 1,

given in standard form (see Johnson, Kotz, & Balakrishnan, 1995). As is evi-
dent, this standard form is bounded by the interval [0, 1]. Next, the aim is to
find values of the parameters p and q that correspond to desired expected val-
ues and variances in terms of ρ. For example, how should p and q be chosen
to yield a beta distribution with an expected value of µρ = .10 and σ2

ρ = .15?
To find an expression for the computation of the parameters it is important to
note that a random variable X following a beta distribution still continues to
be beta-distributed when linearly transformed. Accordingly, the transforma-
tion P = 2X− 1 is applied to a standard beta-distributed random variable X to
yield a distribution on the interval [−1, 1]. Furthermore, the moments of this
transformed variable are (see Johnson, Kotz, & Balakrishnan, 1995, p. 219)

E(P) =
2p

p + q
− 1,

and
Var(P) =

4pq
(p + q)2(p + q + 1)

.

Equating E(P) and Var(P) with µρ and σ2
ρ , respectively, and solving simulta-

neously for p and q leads to the following equations

p =
1 + µρ − µ2

ρ − µ3
ρ − σ2

ρ − µρσ2
ρ

2σ2
ρ

= −
(1 + µρ)(−1 + µ2

ρ + σ2
ρ )

2σ2
ρ

q =
1− µρ − µ2

ρ + µ3
ρ − σ2

ρ + µρσ2
ρ

2σ2
ρ

=
(−1 + µρ)(−1 + µ2

ρ + σ2
ρ )

2σ2
ρ

Now µρ and σ2
ρ correspond to the desired values for the expected value and

variance in terms of the beta-distributed variate on the interval [−1, 1]. Ap-
plying these equations to the example given above (µρ = .10 and σ2

ρ = .15)
yields p = 23.65 and q = 19.35, respectively. In the Monte Carlo study these
equations were applied to compute the parameters of the beta-distribution for
a whole set of combinations of µρ and σ2

ρ . The resulting values are reported in
Tables A.1 and A.2 in the appendix. The type of continuous distribution of the
random variable P in the universe of studies is now specified and characterizes
S3 of the Monte Carlo study.

In sum, a total of three situations S1 to S3 is given of which the first repre-
sents a homogeneous case and the second and third are heterogeneous cases.
The first two situations S1 and S2 are characterized by discrete distributions
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whereas the third is continuous. Of course, one could easily imagine a host
of further situations: for example, situations with more than two groups and
a discrete distribution, a variety of different component weights in the dis-
crete situations, different parametric continuous distributions in the universe
and maybe even mixtures of continuous distributions at the universe level.
Thus, although this Monte Carlo study can count as one of the most compre-
hensive in design on the present research topic up to date, it is necessarily
limited. These limits of the design should be borne in mind when examining
the results. Having described the types of situations under investigation, the
parameter values that were chosen for the various variables of the design will
now be specified.

7.4 PARAMETERS

The variables of the design to evaluate the approaches of meta-analysis are

• the values of µρ for all situations S1 to S3,

• the variance of the beta distribution (σ2
ρ ) in S3,

• the number of studies k to be aggregated in a meta-analysis, and

• the number of persons n to compute the effect sizes in the individual
studies.

The values for µρ represent one single universe effect size common to all k
studies in S1 and the expected value of the beta distribution in S3. For S2, two
different values ρ1 and ρ2 were chosen. Of course, there is also a corresponding
µρ in S2, however, it is ambiguous for the specification of ρ1 and ρ2.

As specified in Section 4.5, the weights for the components in S2 were held
constant. Additionally, the number of persons for each effect size is considered
to be invariant within each simulated meta-analysis. That is, if in S1 there is
one universe parameter µρ underlying a number of k = 32 studies, for exam-
ple, then the effect sizes ri of all 32 studies have some fixed number of persons.
Although not representative of published meta-analyses, n is held constant
mainly to exclude any interaction effects of n with other aspects of the design.
An interaction effect of n and µρ, for example, is indeed a very interesting re-
search topic on its own. The well known publication bias in meta-analysis
(Begg, 1994; Rosenthal, 1979) can be regarded as such an interaction and con-
tinues to stimulate research efforts to assess and eliminate such influences on
the results of a meta-analysis (e.g., Hedges & Vevea, 1996; Iyengar & Green-
house, 1988; Rust, Lehmann, & Farley, 1990; Schwarzer, Antes, & Schumacher,
2003; Vevea & Hedges, 1995). Thus, the reasons to hold n constant are to en-
sure exclusion of such interaction effects from the results and to keep the focus
on the effects of the design variables as implemented.

The specific values that are used for the design variables listed above are
presented in Table 7.1. The first row of Table 7.1 shows that the values for µρ

are positive in all simulated cases.
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Table 7.1 Parameter Values in the Simulation Procedure

Parameter Values Number of
Values

µρ 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 10

σ2
ρ (σρ) 0.0025 (0.05); 0.01 (0.10); 0.0225 (0.15);

0.04 (0.20); 0.0625 (0.25)
5

k 4; 8; 16; 32; 64; 128; 256 7

n 8; 16; 32; 64; 128; 256 6

Note. µρ = expected value of correlation in the universe, σ2
ρ = variance of correlations

in the universe, k = number of studies per meta-analysis, n = number of persons per
study used to compute the observed correlations (ri).

Since the distributions in the interval below zero would mirror those simu-
lated on the positive side, only the given set of values is of concern. Note that
the values provided for µρ also represent the range of values chosen for ρ1 and
ρ2 in S2. The second row shows the values for the variances and the respective
standard deviations in parenthesis for the beta distributions in situation three.
The given values are considered to cover the range of plausible variances for
the mixing distribution. The third and fourth row show the range of values
for the number of studies in a meta-analysis and the number of persons per
study, respectively. The values were chosen to yield a higher resolution for
small values but also to extend to relatively large values. This was achieved by
calculating powers of two beginning with 22 for k up to 28.

The reader might wonder whether the values used in the Monte Carlo study
are representative of published meta-analyses. Unfortunately, investigations
of the characteristics of the distributions of the design variables are quite rare,
so the main resource to judge adequacy of the values is research experience. At
least, there are content analyses of meta-analytic studies of correlations in I/O
psychology available (Cornwell, 1988; see also Lent, Aurbach, & Levin, 1971).
The results of Cornwell’s study on 81 meta-analyses published in seven major
journals of I/O psychology provides descriptive statistics for the distributions
of n and k, respectively. Since there are extreme values for both variables (Max-
imum n = 45, 222 and Maximum k = 2, 162), the author provided the statistics
for a truncated distribution for both variables1. The mean value for n was 283
(Median = 102; Mode = 73) and a value of 37 (Median = 12; Mode = 6) resulted
for k. Hence, the choice of including a value of k = 4 in the present Monte
Carlo study seems warranted. An additional argument in favor of the inclu-
sion of such small values is the fact that subgrouping of studies corresponding
to the levels of assumed explanatory variables very often leads to very small
k in the subgroups (see, e.g., Farrell & Hakstian, 2001). The largest value for k

1The distributions were truncated at n ≤ 500 and k ≤ 120.
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included in the design does not occur very often but there are other research ar-
eas, like attitude–behavior research, for which a very large number of research
articles is available (see, e.g., Eckes & Six, 1994; for an overview, see Schulze &
Wittmann, 2003). The values chosen for n in the present design seem to cover
the range of values occurring in practice although very small values are not
very often reported in the content analysis (however, Minimum n = 7). But
again, there are research areas for which very small n is customary as Hunter
and Schmidt (1994b), for example, have pointed out. The variances chosen in
the present design also match those used by Cornwell and Ladd (1993) and
those used in other Monte Carlo studies in the field.

In sum, the levels chosen for the design variables seem to cover customary
values of research practice, at least in the I/O psychology area. Nevertheless,
the criterion of realism should not be overvalued when considering the levels
of the design, since research practice might change and in some fields of study
totally different characteristics may prevail. Moreover, against the background
of the aim to study the properties of statistics that draw on asymptotic statis-
tical theory, it is important to include also low values of the design variables.
The inclusion of values for µρ that can be judged as very high in compari-
son to estimates observed in meta-analyses in any field of psychology is also
intended not only to mirror research practice but to study the behavior of pro-
cedures also under extreme conditions. However, it is not the case that such
high values do not occur in I/O psychology (see Hite, 1987) or social psychol-
ogy (see Schulze & Wittmann, 2003), for example.

To gain an overview of the large number of design variable combinations
under study, it is instructive to review their number. In S1, only one of the
ten universe effect sizes is given and the variance is zero in all cases. These
10 values are combined with all of the k and n values resulting in a total of
10× 7× 6 = 420 meta-analyses to be simulated.

The second situation S2 differs from the first in that two different values for
ρ are given, resulting in a number of non-redundant combinations of (10×9)

2 =
45. The differences between the values range from .10 to a maximum of .90.
Again, these 45 universe value combinations are combined with all of the k
and n values leading to a total of 45× 7× 6 = 1890 meta-analyses.

Finally, the values for µρ of the beta distribution were combined with the
variances of row two in Table 7.1. The full combination of all values unfortu-
nately lead to J-shaped beta distributions in extreme cases. This is illustrated
in Figures A.1 to A.5 in the appendix and can be seen by inspecting the pa-
rameter values p and especially q in Table A.2 in the appendix. For values of p
or q less than one, the beta distribution turns into a J-shape (Johnson, Kotz, &
Balakrishnan, 1995). The utilization of such distribution types would lead to
sampling values from the beta distribution that are predominantly very large
and close to one, with a few extremely low values to attain the prescribed val-
ues for µρ and σ2

ρ . Two reasons lead to the omission of such distributions from
the Monte Carlo design. First, the described problem only applies to very high
values of µρ in combination with high values of σ2

ρ that are very unlikely to
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arise in practice. Second, the utilization of these distributions would presum-
ably have an enormous impact on the results of the study, in particular on the
tests of homogeneity and estimates of heterogeneity variance. They would
lead to biased assessment of the overall performance of estimators due to ex-
treme values that emerge from J-shaped distributions. The following combi-
nations were omitted: µρ = .90 with variances σ2

ρ = .0625, .04, .01, .0225 and
µρ = .80 with variances σ2

ρ = .0625, .04. The omission of the six combina-
tions of µρ and σ2

ρ resulted in 10× 5− 6 = 44 combinations and thus a total of
44× 7× 6 = 1848 meta-analyses in S3.

The sum of the meta-analyses of all situations amounts to a total of 4158.
For all these combinations, the statistics and tests of the several approaches
to meta-analysis are computed to facilitate a comparative evaluation of the
approaches in a wide range of possible situations given by these combinations.
For all of the 4158 combinations, the computations were repeated in 10,000
iterations. Correspondingly, the results to be presented in Chapter 8 are either
the means of certain statistics computed over all iterations or statistics derived
from the iterations, like the standard deviation of the estimators for the mean
effects over 10,000 values. The number of iterations in the present study can be
considered to be relatively large in comparison to other Monte Carlo studies in
the context of meta-analysis. Most previous Monte Carlo studies have chosen
1000 iterations (e.g., Cornwell, 1993; Law, 1995; Sackett et al., 1986; Sánchez-
Meca & Marín-Martínez, 1998a; Spector & Levine, 1987) or 5000 iterations (e.g.,
Harwell, 1997; Sánchez-Meca & Marín-Martínez, 1998b), only a few studies
have used 10,000 iterations (e.g., Alexander et al., 1989; Silver & Dunlap, 1987)
and rarely were more iterations used (100,000 by Field, 2001). The number of
iterations chosen here is therefore regarded as sufficient.

7.5 DRAWING RANDOM CORRELATION COEFFICIENTS

A final important technical aspect of the simulation study will now be dis-
cussed in considerable detail because it is one of the most important steps in
the Monte Carlo study. Up to this point it has been laid out which variables
and values are chosen for the design of the Monte Carlo study. The next task
is to generate random correlation coefficients ri that conform to these prescrip-
tions. For convenience, assume correlations coefficients have to be generated
for a single ρ, that is, S1 is of concern and ρ = ρ1 = . . . = ρk. Note that
the problem to be described is fully equivalent for all other situations and the
results of this sections do not only pertain to S1.

There are k independent studies with a common sample size n. The ob-
served correlation coefficients ri provided by the studies are assumed to be
based on pairs (x1, y1), . . . , (xn, yn) of two variates X and Y having a joint bi-
variate normal distribution. Drawing random correlation coefficients means
that we want to generate a set of k values of ri for a given ρ. The first proce-
dure that comes to mind is to generate n pairs for the two variates X and Y and
compute the sample correlation correlation coefficient. That is, one would use
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the following equations to generate the values for x and y on an observational
level:

x = v×√
ρ + e1 ×

√
1− ρ

y = v×√
ρ + e2 ×

√
1− ρ

(7.1)

where v, e1, and e2 are realizations of corresponding variates that follow a stan-
dard normal distribution and are mutually independent. This procedure has
often been used in Monte Carlo studies to generate correlation coefficients (e.g.
Corey et al., 1998) and it is easy to show that X and Y have correlation ρ when
generated by this procedure.

Unfortunately, this procedure is computationally rather intensive and takes
up a great amount of computation time in a large simulation study. This is the
case because to generate a single correlation ri one has to draw n× 3 times for
v, e1, and e2 from a standard normal distribution and correlate the resulting
values of x and y subsequently. To speed up the whole process of generating
correlation coefficients it would be much more efficient to directly draw corre-
lations from the sampling distribution of the correlation coefficient or approx-
imations thereof without generating pairs of values for X and Y. Several can-
didates for a more efficient approach using this strategy are considered now.
The reader not interested in technical details may skip the following section
and directly go to Section 7.6 without loss of understanding for the subsequent
chapter.

7.5.1 Approximations to the Sampling Distribution of r

Alternatives to the computationally intensive procedure are given by using
a series of analytical results on the distribution of the correlation coefficient.
First, it is well known that when ρ = 0

r
√

df√
1− r2

∼ tdf, (7.2)

where df are the degrees of freedom (df = n− 2) in Equation 7.2. Accordingly,
one could draw values from a central t distribution with df degrees of freedom
and use the transformation

r =

√
t2

t2 + df
(7.3)

that results from solving Equation 7.2 for r to simulate a series of ri values. This
procedure would fulfill the need for a more efficient strategy but the question
arises how r values can be generated in cases where ρ 6= 0.

Ideally, one would draw directly from the sampling distribution of such
correlation coefficients but their distribution is unfortunately mathematically
rather complex (see Section 3.1). Since it cannot be given in closed form, its
usage as a distribution to draw correlations from is obstructed. Nevertheless,
it will be considered as a benchmark to judge the quality of the approximations
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to the distribution of r we will turn to in the following paragraphs. The PDF
of r was already given in Equation 3.1 on page 21.

Three approaches that rely on different distributional approximations to the
PDF as given by Equation 3.1 are considered and discussed in some detail in
the following paragraphs. A comparison and evaluation of these approaches
with respect to the proximity to the PDF of r will follow their presentation.

The Fisher Approximation. A first method to generate r values with a specific
ρ in the underlying population is to randomly draw values from a normal
distribution N (µZ, σ2

Z) with the following parameters

µZ =
1
2

ln
(

1 + ρ

1− ρ

)
= tanh−1 ρ (7.4)

and
σ2

Z =
1

n− 3
. (7.5)

In the next step, the resulting values of z are transformed to sample correlation
coefficients r via

r =
exp(2z)− 1
exp(2z) + 1

= tanh r.

Although refinements of these formulae have been proposed in intensive in-
vestigations of the mathematical properties of the distribution function of r
(Hotelling, 1953; Ruben, 1966), the approximation by using Equations 7.4 and
7.5 is a very popular one (see Chapter 3.1) and might therefore be considered
as a possible and natural procedure for a simulation study.

The Harley Approximation. A second approach is based on the analyses
reported by Harley (1957) that dealt with an approximation of the noncentral
t distribution by the distribution of a transformed correlation coefficient. She
showed that in a population with a given ρ of

ρ =

√(
2τ2

2n− 3 + τ2

)
, (7.6)

the function √
2 df(1− ρ2)

2− ρ2
r√

1− r2
∼ tdf,τ (7.7)

is distributed as noncentral t with noncentrality parameter τ. Using equation
7.6 and solving for τ leads to

τ =

√
(2 df +1) ρ2

2− ρ2 .
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This result can be used in simulation studies to compute τ of the noncentral t
distribution to randomly draw values from. From a rearrangement of Equa-
tion 7.7, the resulting values of t can then be transformed back to r using the
following equation

r =

√√√√ t2

t2 + (2 df +1) df
2 df +1+τ2

,

which is given here in a form remarkably similar to Equation 7.3.

The Samiuddin-Kraemer Approximation. The last approximation to be con-
sidered here is based on the work by Samiuddin (1970) that was later refined
and extended by Kraemer (1973, 1975; Kraemer & Paik, 1979). Due to the elab-
orations mainly presented by Kraemer it will be labeled Kraemer approximation
in what follows. The approximation also draws on the t distribution.

It was shown that
(r− ρ′)

√
df√

(1− r2)(1− ρ′2)
∼ tdf (7.8)

has a central t distribution with df degrees of freedom. In Equation 7.8, ρ′ is
a function of ρ that has to satisfy a series of requirements not repeated here
(see Kraemer, 1973). Although Kraemer (1973) proposed that the median of
the distribution of r is a good approximation to ρ′ and better than ρ at least
for small sample sizes while Mi (1990) was able to show that if ρ is taken as ρ′

the distributional result stated above holds. Accordingly, the possibility for a
simulation study established by this approximation is to draw t values from
a central t distribution with df degrees of freedom and convert the resulting t
values to r. The conversion can be done by solving Equation 7.8 for r, which
leads to

r =
(n− 2) ρ−

(
ρ2 − 1

)
t
√

n− 2 + t2

n− 2− (ρ2 − 1) t2 .

Of course, it is claimed that all the approximations presented here are sat-
isfactory as compared to the sampling distribution of r. The results reported
by the referenced authors seem to support this claim. It is therefore reasonable
to consider these approximations when a Monte Carlo study is conducted, in
which a large amount of r values has to be randomly generated, as is the case
for the present study. It should finally be noted that none of the authors of
the approximations advocated their use for the purpose of conducting Monte
Carlo studies. The utilization of the approximations can consequently be re-
garded as an innovative aspect of their usefulness, but their utility has to be
scrutinized beforehand. We will now turn to an evaluation of the presented
approximations for this purpose.



DRAWING RANDOM CORRELATION COEFFICIENTS 109

7.5.2 Evaluation of the Approximations

Among the most important questions within the framework of an evaluation
are the procedures of evaluation and provision of according criteria. The ap-
proximations presented in the previous subsection will be evaluated by deter-
mining the distribution and distributional properties of the rs they produce.
As a first criterion, a visual inspection of the probability density function of
the r values of the approximations in comparison to the exact density given in
Equation 3.1 will be carried out. Additionally, the expected value and variance
of the distributions will be compared as a second set of criteria, again with
the exact density as a standard for comparisons. The approximations will be
considered as satisfactory if the distributions of the r values generated by the
procedures very closely match those of the values as given by the exact dis-
tribution. To accomplish this type of evaluation, the distributions in question
were determined by numerical methods using MATHEMATICA. For details on
the specific procedures applied, the interested reader is referred to Section B
of the appendix where an annotated MATHEMATICA notebook can be found.
It can be used to understand the genesis of the results reported here and to
reproduce and possibly extend them.

The general logic underlying the computations is as follows. The character-
istic feature of all the approximations is that there is a transformation T of the
correlation coefficient R, denoted as T ◦ R, the distribution of which (PT◦R) can
be approximated by a member of a well-known family of distributions. That
is, the values T ◦ R are conceived as if they were generated by a variate X with
a probability distribution PX belonging to that family. Yet in other words, the
distributions PT◦R and PX — or equivalently the random variables T ◦ R and
X — are equated. For example, in the Fisher approximation the rs are trans-
formed to z values that have an approximate normal distribution as described
above. In the proposed procedures to generate r values the first step is to draw
values from the hypothesized probability distribution of X and convert the re-
sulting values back to r subsequently by applying the transformation formulae
presented in the previous subsection. To be clear, it is thereby assumed that PX
is not only the asymptotic but the exact distribution of T ◦ R. In the case of the
Fisher approximation PX is the normal distribution, whereas for Harley’s and
the Kraemer-Samiuddin approximation it is the central and noncentral t distri-
bution, respectively. The question to be answered by the evaluation is whether
the distribution of the rs, which are generated by the outlined procedure, does
indeed show the same properties as R expected by exact theory.

All transformations T are strictly increasing so that the inverse function ex-
ists. For an example, consider again the Fisher approximation where it is the
inverse Fisher transformation tanh z. That is, for all transformations there is
T(R) = X, and we also have T−1(X) = R. Under these conditions the aim
can be restated as to determine the probability density of R when the density
pT◦R(x) is given and the inverse transformation is applied. To achieve this
aim, we first consider

P(R ≤ r) = P(T−1(X) ≤ r) = P(T ◦ R ≤ T(r)).
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Again, this will be illustrated for the Fisher approximation by

P(R ≤ r) = P(tanh(Z) ≤ r) = P(Z ≤ z).

The probability density distributions can therefore be computed as

P(R ≤ r) = P(T ◦ R ≤ T(r)) =
∫ T(r)

−∞
pT◦R(x)dx =

∫ r

−1
pT◦R (T(y)) T′(y)dy,

where the critical step is a change of variables2 in the equation above. Yet
again, this can be illustrated as an example for the Fisher approximation by

P(R ≤ r) =
∫ z

−∞
ϕ(x)dx =

∫ r

−1
ϕ
(

tanh−1(y)
)

tanh−1′(y)dy

where ϕ(x) is the normal distribution with expected value ζ and variance
(n− 3)−1. The change of variables is extraordinarily useful for the present pur-
pose of inspecting a distribution of a random variable (R) when it is subject to
a transformation, since the result of this procedure is of utmost importance for
the evaluation of such transformations. Applying this procedure to the present
set of transformations allows a comparative inspection of the distribution of R
for different cases. The following Figures 7.1 and 7.2 depict examples of the
density distributions for the transformations of interest in the present context.
In Figure 7.1 the densities are plotted for n = 32 and ρ = .30. As can be seen,
the densities are virtually indistinguishable by inspection in this case. All ap-
proximations coincide with the exact density of R and can therefore count as
very satisfactory. In Figure 7.2 a more extreme case is depicted, also for n = 32
but ρ = .90. Note that this case is of interest for the present study as it is part
of the design. Here, the curves do not all coincide. The density for the Harley
approximation is obviously most “off” from the others. The Fisher and Krae-
mer approximation are virtually identical but do not perfectly match the exact
density of R. Nevertheless, from inspection of the figures they may still count
as very good approximations to the exact density. The point to be noted is that
graphical comparisons between the densities of the approximations in compar-
ison to the standard distribution allow some of the approximations to appear
as quite satisfactory. Of course, up to now only two special cases with a fixed
n and two different ρ values were chosen for comparison and for other con-
stellations of the parameters the approximations may be even better or worse

2As a reminder, a change of variables is given for two continuous functions f and g, where f
is continuous and g is continuously differentiable with derivative g′, by∫ g(b)

g(a)
f =

∫ b

a
( f ◦ g) · g′

∫ g(b)

g(a)
f (u)du =

∫ b

a
f (g(x)) · g′(x)dx.

The two equivalent forms for the change of variables are given here for ease of comparison
with the equations given in the text (see e.g., Spivak, 1967).
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Figure 7.1 Densities for R of the approximations, n = 32, ρ = .30.
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Figure 7.2 Densities for R of the approximations, n = 32, ρ = .90.

than indicated in the figures. The parameter constellation was actually delib-
erately chosen to illustrate a general trend of the value of the approximations.
First, all approximations become worse the higher the ρ that is chosen. Second,
all aproximations are almost perfect in the region about ρ = 0. Third, a point
not illustrated by the figures, all approximations perform better the higher the
value for n that is is chosen, but they are still visually distinguishable from
the exact density for ρ ' .90 when n is not extremely large. In sum, the ap-
proximations perform very well for some constellations of the parameters but
not for all. As will become evident by the following inspection of the numer-
ical properties, that is, the expected values and variances of the distribution,
the visual inspection of such graphs can be quite deceptive insofar as good-
looking approximations may nevertheless not achieve satisfactory values for
distributional properties.
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Table 7.2 Expected Values and Variances for the Approximations and the Exact
Density of R, n = 8 and n = 128, ρ = 0, . . . , .90

Hotelling Fisher Harley Kraemer

n ρ µ σ2 µ σ2 µ σ2 µ σ2

.00 .000 .1429 .000 .1472 .000 .1429 .000 .1429

.10 .093 .1409 .085 .1455 .093 .1409 .086 .1412

.20 .187 .1349 .171 .1403 .186 .1349 .172 .1363

.30 .281 .1250 .259 .1317 .280 .1251 .260 .1281

.40 .376 .1115 .348 .1196 .374 .1116 .349 .11668

.50 .472 .0945 .440 .1040 .469 .0947 .441 .1017

.60 .571 .0747 .536 .0851 .563 .0753 .537 .0835

.70 .672 .0529 .637 .0629 .654 .0547 .638 .0623

.80 .776 .0305 .745 .0386 .741 .0350 .746 .0388

.90 .885 .0105 .864 .0145 .820 .0187 .864 .0151

.00 .000 .0079 .000 .0079 .000 .0079 .000 .0079

.10 .100 .0077 .099 .0077 .100 .0077 .099 .0077

.20 .199 .0073 .198 .0073 .199 .0073 .198 .0073

.30 .299 .0065 .298 .0066 .299 .0065 .298 .0066

.40 .399 .0056 .397 .0056 .397 .0056 .397 .0056128

.50 .499 .0045 .497 .0045 .495 .0045 .497 .0045

.60 .598 .0033 .597 .0033 .589 .0033 .597 .0033

.70 .699 .0021 .697 .0021 .679 .0022 .697 .0021

.80 .799 .0010 .798 .0011 .761 .0013 .798 .0011

.90 .899 .0003 .899 .0003 .834 .0006 .899 .0003
Note. The columns labeled “Hotelling” correspond to the exact density whereas the
other columns are labeled in accordance with the approximations introduced in the
previous Subsection 7.5.1.

Table 7.2 presents a series of expected values and variances of the approxi-
mations and the exact density for comparison. Similar to the visual inspection
of the figure, only a small subset of possible combinations of n and ρ is chosen
for comparison and presented in Table 7.2, but these values suffice to illustrate
the general points to be highlighted3. First, the approximations by Fisher and
Kraemer seem to fare equally well in comparison to Harley’s, which generally
leads to inferior values for higher ρ in terms of differences to the Hotelling
standard. Second, all approximations get worse for higher ρ and better for
larger n. This is what is to be expected from statistical theory, because the dis-
tribution of R is central t at zero and all the approximations are expected to
be almost perfect in this region. Furthermore, the distributional properties of
the approximations hold only asymptotically, so they get better with growing

3With the notebook presented in Appendix B it easy to compute any desired values to extend
the comparisons.
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numbers of n. Lastly, none of the approximations seems to provide satisfacto-
rily similar expected values and variances to the standard, except in the case
of ρ in the region of zero combined with high n. Although the reported differ-
ences may appear quite small in value, they are actually too large for the pur-
pose of generating correlation coefficients by these procedures. To understand
this judgment, focus on the Fisher approximation as an example. This approx-
imation leads to generally smaller expected values in comparison to the exact
density and somewhat larger variances. This means that a simulation study in
which z values are drawn from a normal distribution, these are converted to r
by the inverse Fisher transformation, and estimates of the mean effect size are
based on these r values, may possibly report flawed conclusions for an assess-
ment of the bias. The reasons for a potential flaw lie in the difference between
the expected value of the Fisher approximation and the exact distribution. The
expected value for a situation of n = 64 and ρ = .50 is µ = 0.49701 for the
exact density and µ = 0.49398 for the Fisher approximation. Now suppose
a comparison between the biases of r and Fisher-z is of interest in this situa-
tion. For the exact density, the biases to be anticipated by statistical theory4

are Biasr = −0.002943384 for r and Biasz = 0.003987731 (given in the space
of r) (see Hotelling, 1953, p. 212 for r and p. 216 for z), the well known nega-
tive bias for r and positive bias for z. But the biases are not to be anticipated
when the expected value of the probability distribution is shifted downwards
by the simulation procedure as is the case with the Fisher approximation. This
downward shift will have the effect that the overestimation of Fisher-z will
not be as large as expected by theory and the negative bias of r will emerge
as larger in absolute value than it effectively is when assessed in relation to
the exact density. In short, the positive bias of z is compensated by using the
Fisher approximation in the simulation procedure and incorrect conclusions
with respect to biases may result.

It is therefore concluded that the considered candidates for a simulation
procedure cannot be used because they produce distortions of the sampling
distributions for statistics. This happens to an extent that is of relevance for
Monte Carlo studies. Hence, none of the candidates will be used and the com-
putationally more costly procedure introduced at the beginning of this section
in the Equations 7.1 will be used instead. The results of the evaluation have rel-
evance not only for a decision in this Monte Carlo study, but also for a reevalu-
ation of previous ones. For example, Spector and Levine (1987) have employed
the Fisher approximation to generate r values in a Monte Carlo study on the
susceptibility of the HS-procedure to Type I and II error rates. In light of the
results presented here, at least some doubt is cast on the results and conclusion
of the Monte Carlo study by Spector and Levine and others who have used the
approximations.

4Note that the bias of r given here does not add up with the expected value to ρ exactly. This
occurs because the approximation by Hotelling (1953, p. 212) is only given up to the third term
of an expansion.
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7.6 DETAILS OF PROGRAMMING

A computer program for MS-DOS was designed and programmed in Borland
C++ Version 5.02. The procedure to generate the correlation coefficients fol-
lowed Equations 7.1. Since a very large amount of numbers had to be ran-
domly drawn for these correlations, a random number generator with a very
long period length was of interest. Remarkably, standard random number gen-
erators in common use appear to have serious deficiencies (Hellekalek, 1998).
According to the review of random number generators by Hellekalek (1998),
the Mersenne Twister (TT800) (Matsumoto & Nishimura, 1998) was the only
random number generator with a flawless performance,5 and was therefore
implemented in the program.

To speed up the draws from the standard normal distributions, an array of
two million values was filled from which values were drawn. The array was
randomly refilled 8 times in the course of the whole computations.

7.7 SUMMARY

The current Monte Carlo study is designed for a comparative evaluation of
the approaches to meta-analysis in common use in the social sciences and the
procedures they propose as valuable tools for meta-analysis. To achieve this
aim, the design of the Monte Carlo study includes a wide range of different
values for the universe correlations ρ in the universe of studies (from .00 to .90
in increments of .10), the number of studies to be aggregated (from 4 to 256),
and number of persons in the studies to be aggregated (from 8 to 256). Ad-
ditionally, different situations are implemented in the design that correspond
to the assumptions of the fixed and random effects models in meta-analysis.
The situations were distinguished by the form of the distribution of universe
effect sizes that were classified as discrete and continuous. For the discrete
distributions homogeneous and heterogeneous situations are included where
the heterogeneous situations have two distinct values. In the case of a continu-
ous distribution, six different variances of a beta-distribution were additionally
varied.

As a result, the whole procedure can be thought of as a two-stage sampling
process. In the first step, universe values are drawn from a distribution in
the universe of studies with prespecified properties as described above and in
the second step, observed values are drawn from distributions with properties
that depend on the universe values drawn in step one. For the second step, dif-
ferent forms to generate the observed correlation coefficients were considered
and the possibility to draw correlations directly from approximate distribu-
tions was rejected as unsatisfactory.

5The source code of the Mersenne Twister TT800, as well as reviews of the quality of random
number generators can be found at http://random.mat.sbg.ac.at
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Results

The following sections provide an overview of the results for the Monte Carlo
study of meta-analytic approaches. First, a brief introduction to the presenta-
tion style will be given. This seems necessary because of the complex structure
and multitude of results. The intention is to make the presented results more
easily comprehensible and to point out how a maximum of information can be
gathered from the graphics found in the subsequent sections. The presentation
of results diverges from the structure of Chapter 5 in that the focus is kept on
the questions to be answered by the statistical analyses. First, Section 8.2 is
devoted to questions pertaining to the estimation of the effect size in the uni-
verse of studies, for example, issues regarding the bias and relative efficiency
of the proposed estimators. Next, the results on the accuracy of homogeneity
tests will be reported in Section 8.5. Finally, estimators of the heterogeneity
variance — which are important in random effects approaches — are exam-
ined in Section 8.6. The sequence of sections thus resembles the conduct of a
meta-analysis, while not exactly mirroring it. The situations S1 to S3 will be
separated in all sections to assess the statistics’ performance under different
conditions.

8.1 PRELIMINARIES

One of the characteristic features of the present study is the wealth of situa-
tions, design variables, and number of different approaches to be compared.
Most of the results are subject to levels of the dimensions k, n, µρ, or differences
of ρ1 and ρ2 in S2. Additionally, results are compared for levels of variances
(σ2

ρ ) in S3. The number of dimensions obviously precludes any simple picto-
rial or tabular presentation. As a consequence, the report of the results needs
to be brought into an easily comprehensible form.
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The results presented in the text are always selected to represent and il-
lustrate the primary aspects of the respective results. Mostly, results will be
collapsed over at least one design variable. More specifically, collapsed means
that the mean over all levels of such a variable will be computed. The resulting
mean values will then be presented for the levels of all other variables in the
design. For example, in the presentation of results for the biases of estimators
over several levels of n, the mean values computed across levels of k will be
presented. The absolute values of biases are then easily interpretable, if biases
do not (greatly) vary over levels of k. A more complicated picture emerges in
cases where results differ across all levels of all design variables. This will be
highlighted in the presentation and should be borne in mind when inspect-
ing collapsed results. Nevertheless, even in these more complicated cases, a
comparison of the approaches is still possible.

In general, much more emphasis will be placed on graphical rather than
tabular presentation of the results to facilitate illustration of trends and rela-
tionships which often go unrecognized in tables. The figures will prevalently
be three-dimensional graphs since they often give a better impression of inter-
actions of the design variables and are also very compact ways of representing
a wealth of results and general trends. All three-dimensional graphs will dis-
play smoothed data or surfaces using negative exponential smoothing. This
is a local smoothing technique using polynomial regression with weights.1 In
short, the weights are chosen in this technique so that the influence of points
decreases exponentially with the horizontal distance from certain points of the
surface.

The following graphs illustrate the effect of smoothing and how graphs pro-
duced by this technique can be interpreted. The upper left and right panel in
Figure 8.1 depict a three-dimensional scatterplot of the bias of a statistic for
varying µρ and n. Both upper panels show the same results, each from a dif-
ferent angle of view. The lower panels depict the same graphs with smoothed
surfaces added resulting from negative exponential smoothing. As can eas-
ily be seen, the lower set of graphs gives a much clearer and more easy to
grasp picture of the relationships between the variables depicted. These types
of graphs also supersede series of two-dimensional line graphs as ordinarily
presented in the literature, where it is left to the observer to synthesize the
graphs cognitively. When inspecting the graphs it is important to recognize —
as can be verified in Figure 8.1 — that the intersections of the meshes on the
surfaces correspond to the data points plotted. The mesh intersections are not
to be interpreted as projections of the plots’ grid intersections onto the surface.
Data point dots will therefore be omitted in the graphs of the results sections.
Since the data points are not equally spaced with respect to a linear scale on
the design variables n and k, the mesh of the surface will also be more tightly
interconnected in some areas when the results are plotted by n and k. Addi-
tionally, when different shadings occur on the surfaces they can be interpreted

1For the graphical presentation in this chapter, SigmaPlot for Windows Version 8.02 and its
smoothing facilities were used to prepare the figures.
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Figure 8.1 Illustration of smoothing in graphical presentations.

as contours with respect to the vertical axis. In the example graphs this is the
axis labeled “Bias of µ̂ρ”. This enables the reader to see the height of values on
the surfaces even in the middle of a three-dimensional graph. At least rough
estimates of the actual values plotted can thereby be gathered from the graphs.

Unfortunately, the virtues of a concise graphical presentation of the results
are accompanied by a loss in numerical precision in the report. More precise
results not readily read from the figures are provided by the author to the in-
terested reader upon request.2

8.2 ESTIMATION OF THE MEAN EFFECT SIZE IN THE
UNIVERSE OF STUDIES

At the core of most meta-analyses is the estimation of a mean effect size. Two
connotations are usually associated with this phrase. First, a summary of the
available effect size data is intended to be given by the meta-analyst that is a

2Email: rs@psy.uni-muenster.de
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good representation of the data at hand. The weighted mean of the observed
effect sizes usually gives such a good summary in a least-squares sense. Sec-
ond, the phrase also alludes to estimating a parameter of the distribution of
effect sizes in the universe of studies. The parameter supposed to be of most
concern to meta-analysts is µρ, the expected value of the universe distribution
in the space of r. It is this latter sense that will be of concern in the follow-
ing subsections. The main question to be answered is how well the different
r-based estimators of the various approaches are in estimating µρ. Recall from
Section 5.5 that z-based approaches do not estimate µρ but µρz. This issue will
be elaborated when it is of most concern, namely when presenting the results
for heterogeneous situations.

All approaches outlined in Chapter 5 provide procedures that yield esti-
mates either for µρ or µρz. Results on the bias of these estimators and their
accuracy are given first, followed by results for the proposed significance tests
of the approaches. The two subsections will thus provide an evaluation of the
estimators with respect to estimation and inference.

8.2.1 Bias

The bias of an estimator is one important aspect of its statistical quality (see
Stuart et al., 1999). The biases were computed for the following presentation
so that positive biases indicate estimators for which the mean exceeds the pa-
rameter to be estimated. As in most previous studies on the bias of some of the
estimators under investigation, the biases will first be examined in a homoge-
neous situation.

8.2.1.1 Homogeneous Situation S1 In S1 we have the simple situation of
only one effect size in the universe of studies that is estimated by all k stud-
ies. Hence, µρ and µρz are equal and estimators of approaches using r versus
its Fisher-z transform need not be differentiated here. The bias of approaches
that apply the Fisher-z transformation was computed for the mean effect size
transformed into r-space, whereas for approaches that do not apply this trans-
formation the estimators were used directly. For convenience, the value in the
universe to be estimated is denoted by µρ in all situations. This notation is
used also in describing the results in S1 for reasons of consistency. Of course,
µρ is a constant ρ in S1, and the reader should not be confused by this notation.

The following graphs show the biases of all approaches by the design vari-
ables k and n. As mentioned in the introduction of this chapter, statistics have
to be combined across levels of other design dimensions (i.e., µρ in the present
case) to facilitate the presentation of results. To create the graphs depicted in
Figure 8.2, the mean bias of the estimators over the omitted dimension µρ was
computed and the data points in the figure represent these mean biases. As
will become evident from the subsequent presentation, biases vary substan-
tially over levels of µρ, so that it should be borne in mind for interpretation
of the depicted values that the graphs represent aggregates over the omitted
dimension.
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Figure 8.2 Bias of µρ estimators in S1 by k and n.

Here and in the following graphs, the three panels show the results of all ap-
proaches. The arrangement of approaches is not oriented on theoretical con-
cerns but for clearer representation of the results. The reader may wonder
why the results for DSL and RR are omitted. This is due to the fact that the
results for both approaches are identical to the results for HOr as far as bias
and mean squared errors are concerned. For a recapitulation of the reasons
for these identities the reader is referred to Sections 5.2 and 5.4.1. The results
for RR are generally omitted from the presentation in the text — except for the
subsection on significance testing — because the results for RR and HOr are
indistinguishable for theoretical reasons.

The bias of all estimators strongly depends on the sample size whereas bi-
ases show practically no variability with respect to k. The strongest change
in biases occurs from very small n = 8 to approximately n = 64. For values
larger than 64 the biases for all approaches vanish, as one would expect from
consistency of the estimators. Estimators of approaches that use the Fisher-z
transformation without corrections (HOr) generally show a positive bias and
estimators simply based on r (HS) always show a negative bias. This is to be
expected from the theoretical analyses reported in Section 3.1.

Two estimators can be identified in Figure 8.2 that show outstanding per-
formance in biases. The correction of r by Olkin and Pratt (OP) as well as the
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Figure 8.3 Bias of µρ estimators in S1 by µρ and k.

correction of z proposed by Hotelling (HOT) show nearly flat planes at a value
of zero bias, though OP seems to be slightly better for very small n and k.

In contrast to these extraordinarily good estimators, OP-RE and especially
OP-FE stand out with a very poor performance. Whereas both upper panels
in Figure 8.2 have a similar scaling on the vertical axis, the scaling of the lower
panel had to be strongly extended to show the surfaces for these latter esti-
mators. The surfaces for OP-FE and OP-RE depicted in the figure clearly show
the inadequate performance of these estimators of µρ when n is small. The pro-
posed reason for these poor results of the estimators is the weighting scheme
they apply. As already mentioned, accidently high values of r receive a very
high weight in comparison to lower values and thereby they exert a strong
influence on the overall estimate, leading to the high positive bias. OP-RE
performs better in S1 than OP-FE because it incorporates estimates of hetero-
geneity variance in its weights that are equal for all aggregated effect sizes.
Since these estimates are most frequently non-zero even though the universe
variance is zero in S1, the deleterious effect of the weights for the biases of OP-
FE is somewhat levelled out in OP-RE. The performance of these approaches
was expected to be impaired when n is small, however, the magnitude of bias
seems surprising. The poor performance of both estimators can also be seen in
the graphs shown in Figures 8.3 and 8.4.
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Figure 8.4 Bias of µρ estimators in S1 by µρ and n.

Figure 8.3 shows the biases of the estimators for varying µρ and number of
studies. Biases are shown not to strongly vary across values of k, only for small
values of k below approximately 16 studies do biases show smaller values in
comparison to higher values of k. This somewhat surprising finding was also
reported in a comparison of r and the Fisher-z transformation by Corey et al.
(1998) and is not expected from theoretical examinations given in Section 3.1.

The arrangement of estimators in all panels of Figure 8.3 is the same as be-
fore and shows the same direction of bias for all estimators. Again, OP and
HOT appear as flat planes in the graphs with OP showing slightly better per-
formance for very small values of k. The curvature of the graphs across values
of µρ is representative of the general behavior of the estimators. The largest
values of bias occur in the region about µρ ≈ .60. Scaling of the vertical axis
has again to be extended for OP-FE and OP-RE to show the very high values
of bias for these estimators.

This has also to be done for the graphs depicted in Figure 8.4, where biases
are shown across values of µρ and n. Because the biases do not show sub-
stantial variability across values of k and Figure 8.4 shows aggregates over this
design dimension, it can be regarded as the best representation of the results
on biases in S1.
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Table 8.1 Descriptive Statistics for the Bias of µρ Estimators in S1

Statistic

Approach Max. Mean Median Min. SD

HOr .0324 .0053 .0018 −.0008 .0075
HOT .0008 −.0011 −.0002 −.0174 .0023
HOd .0009 −.0036 −.0011 −.0240 .0056
HS .0008 −.0058 −.0025 −.0301 .0077
OP .0026 .0000 .0000 −.0033 .0004
OP-FE .3432 .0514 .0184 −.0005 .0740
OP-RE .1180 .0280 .0146 −.0010 .0303
Note. The total number of values described by these statistics is 420.

The direction of the estimators’ biases and their absolute values closely
match the results depicted in Figure 8.2. It becomes evident in Figure 8.4 that
in contrast to the estimators based on r or its Fisher-z transform, HOd shows
its maximum bias not in the region about .50 but at higher values around .80.
However, this slight departure from the behavior of the other estimators does
not seem to be of great importance for an overall evaluation of the estimator.
Nevertheless, it is remarkable that the application of the transformation from r
to d and the meta-analytical aggregation of the resulting effect sizes retains the
negative bias of r that becomes a positive bias through the application of the
Fisher-z transformation.

OP and HOT again appear as the best estimators in terms of bias and can be
designated as the best estimators over the design dimensions n, k, and µρ after
inspection of the graphs presented up to this point. The proposed refinements
of the estimators in common use show a very satisfying behavior at all levels
of the design variables.

The graphs presented here also point to two types of convergence. First,
biases converge to zero with larger n, as would be expected. The second type
is convergence for larger values of k. Biases do not converge to a value of zero
for larger k but instead converge to the bias expected from statistical theory.
This is important insofar as it makes clear that adding more studies to a meta-
analysis does not lead to vanishing biases in the pooled estimator.

The absolute values of the reported biases may seem very small in magni-
tude. In fact, most descriptive statistics presented in Table 8.1 show relatively
small values of bias for all estimators, except OP-FE and OP-RE. The absolute
mean values seem to be of trivial magnitude and not of relevance for interpret-
ing meta-analytical results at all.

If the sole purpose of a meta-analysis would be the estimation of µρ in a ho-
mogeneous situation this may indeed be regarded as a valid summary state-
ment for the results presented here. Correspondingly, it has been stated that
the cases are very rare in which a correction of bias is worthwhile (Hunter &
Schmidt, 1990, p. 71). Although the results also indicate that bias can be of
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substantial magnitude when n is very small, such values of n are rarely en-
countered in practice.

Nevertheless, when evaluating the results one should also take into consid-
eration the importance of the estimates for other analytical steps in a meta-
analysis. They play a prominent role, for example, in the computation of the
Q-statistic. Although seemingly of inconsequential magnitude, a small bias
transfers to and may add up in other statistical analyses based on these esti-
mators. Apart from the small biases of most approaches, the observed biases
for OP-FE and OP-RE are of such magnitude that it does not seem sensible to
use them as estimators when n is less than approximately 60.

8.2.1.2 Heterogeneous Situation S2 The next situation for which perfor-
mance of the estimators will be evaluated is S2. A two-point distribution of
effect sizes is given in the universe of studies in S2. In analogy to the previous
section, mean biases will be computed for several combinations of the design
variables.

For better comprehension of the results presented, a reconsideration of the
estimated universe parameters seems necessary. In Section 5.5 it was shown
that the estimated parameters are different in S2 for estimators based on r,
Fisher-z transformed r, and d (as resulting from a conversion of r). Recall,
however, that in the case of HOd the weights have an effect making it more
sensible to use µρ as a universe parameter for comparison. Hence, in the fol-
lowing presentation of results the bias of HOd was not computed with respect
to µρd as the general logic outlined for Fisher-z based approaches would sug-
gest but with respect to µρ. This seemingly inconsistent procedure was applied
due to the fact that the values to be presented for HOd are actually much closer
to µρ than µρd.

For the approaches using the Fisher-z transformed correlation coefficient,
the universe parameters µρz are higher as compared to µρ. This is illustrated
in Figure 5.1 on page 78. To give a more precise impression of this difference
consider Table 8.2.

The first two columns in this table provide combinations of the two different
parameters in the universe of studies. In the third column the corresponding
µρ is given, in the forth column µρz, and the difference between these two pa-
rameters can be seen in the fifth column. These differences are actually part of
the values depicted in Figure 5.1. It is important to realize that the values in
the fifth column are theoretically derived and not estimated. As an interpreta-
tion of these differences in the context of estimation, one can think of them as
providing the biases for Fisher-z based approaches if they were unbiased with
respect to µρz but evaluated with respect to µρ. Hence, it would come as no
surprise to observe a “bias” of −.10 for the HOr mean effect size estimator in
the case as specified in the penultimate row of Table 8.2, for example. Note that
this “bias” would be observed (only) if the HOr estimator was indeed unbiased
(with respect to the parameter µρz it in fact estimates)!
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Table 8.2 Comparison of Values of µρ and µρz in S2

ρ1 ρ2 µρ µρz µρ − µρz Est. Bias µρ − (µρz + Est. Bias)

.00 .10 .05 .0501 −.0001 .0016 −.0017

.00 .20 .10 .1010 −.0010 .0034 −.0044

.00 .30 .15 .1535 −.0035 .0051 −.0086

.00 .40 .20 .2087 −.0087 .0063 −.0150

.00 .50 .25 .2679 −.0179 .0080 −.0259

.00 .60 .30 .3333 −.0333 .0093 −.0426

.00 .70 .35 .4084 −.0584 .0105 −.0688

.00 .80 .40 .5000 −.1000 .0093 −.1093

.00 .90 .45 .6268 −.1768 .0080 −.1848
Note. The estimated bias is for the HOr approach (Est. Bias) and was taken from the
results for k = 16 and n = 16.

As a consequence, the biases for Fisher-z based approaches reported in this
section are evaluated with respect to µρz. To facilitate comparisons of these
biases with others reported for r- and d-based estimators, they are given in r-
space, that is, the inverse Fisher-z transformation is applied. As an illustration,
column six in Table 8.2 provides estimated biases for HOr from the Monte
Carlo study results for the case of k = 16 and n = 16. As can be seen, the
values are small and round off to approximately −.01 in most cases. Thus,
it can be concluded that HOr has a small bias with respect to µρz in S2. If
interest lies in biases with respect to µρ, they can easily be estimated as well
by computing values as given in column seven. By inspecting these values it
becomes clear that — at least in this case — the biases of HOr with respect to
µρ are predominantly composed of the theoretically derived values in column
five and the estimated biases in column six only account for a small part.

Amongst the available estimators only those based on r provide estimates
of µρ in S2. This is quite an important theoretical result for the estimation of
a mean effect size with correlational data in a heterogeneous situation of the
given type. Biases for these approaches are not transformed and will be given
as they result in the Monte Carlo study.

In sum, when inspecting the following results, the reader should bear in
mind that Fisher-z based approaches are evaluated with respect to a different
universe parameter as the other approaches. In addition, since µρ was used
as the standard of comparison for HOd, but µρ can not be considered the esti-
mated parameter when weights are disregarded, its role is somewhat special.
To highlight these facts, the following presentation of results is subdivided in
accordance with these distinctions.

r-Based Estimators in S2. There are four r-based estimators under investi-
gation: OP, OP-FE, OP-RE, and HS. Figure 8.5 gives an overview of the results
for these estimators for varying k and n (upper panels).
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Figure 8.5 Bias of r-based µρ estimators in S2 by k and n (upper panels) as well as
by ∆ρ and k (lower panels).

Both upper panels in the figure show similar behavior of the estimators as
compared to the results in the previous situation. The only difference is an
even worse performance for the OP-FE estimator approximating a value of .10
in bias with growing n. As before, OP is also in S2 clearly the best estimator
available in this category of estimators, showing almost no bias at all. HS also
shows good performance, at least for sample sizes of 32 or larger.

The lower panels in Figure 8.5 depict the biases of the estimators across
values of k and differences between ρ1 and ρ2, which will henceforth be de-
noted by ∆ρ, that is, ∆ρ = ρ1 − ρ2. The forms of the surfaces differ somewhat
more from those in S1. The direction of biases is still the same, with the OP-
estimator being best across all values of the design. HS is depicted in the same
graph and shows small negative biases which are almost invariant across val-
ues of ∆ρ. Biases of HS can again be considered as negligible at least when
sample sizes are 32 or larger.

The biases of OP-RE are approximately the same as those reported in S1.
OP-FE shows steadily increasing biases with higher values of ∆ρ that rapidly
reach levels that can be considered to be unacceptable. As is evident from these
results, the approximation of an OP-FE bias of .10 in the upper right panel is
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Figure 8.6 Bias of r-based µρ estimators in S2 by ∆ρ and n.

due to very large differences in bias across values for the difference between
universe parameters. OP-FE is the only estimator in this class that is strongly
affected by ∆ρ. In addition to the strong effect of ∆ρ, small n even amplify the
bias depicted in Figure 8.5. This can be seen by inspecting the results shown in
Figure 8.6.

The values for biases of r-based estimators across values of n and differences
between ρs are depicted in Figure 8.6. The general trends and evaluation of the
estimators do not change in comparison to S1, as can be seen by inspection of
this figure. OP is consistently showing a flat surface of zero bias across all
values of n and ∆ρ, hence it is clearly also the best point estimator of µρ in S2.
HS only shows a small bias for very small n and does not perform as well as
OP overall. In marked contrast, OP-RE and especially OP-FE show relatively
bad performance, as can be seen in the right panel of Figure 8.6.

The reported biases of OP-FE across the design variables are huge in mag-
nitude. It is remarkable that even with very high n biases do not diminish but
actually rise. Such an observation is counterintuitive for at least two reasons.
First, the results in the previous figures also show that the k point estimates of
OP — on which OP-FE is based — are very accurate and show almost no bias
at all in any of the situations and combinations of design variables. Hence,
problems with biases of the OP-FE estimator cannot be caused by the point
estimates. Second, consistency of estimators suggests that biases do not rise
for increasing n but decline (and vanish for very large n). The converse is ob-
served for OP-FE. All this clearly points to an effect of the weighting scheme
because point estimates are very accurate on the basis of the UMVU estimator.
Since the highest values for the bias of OP-FE are almost as high as the mean
effect size in the universe (see the combination of lowest n and highest ∆ρ in
the right panel of Figure 8.6), this shows that the class having higher ρ of the
two-point distribution exclusively dominates the estimates. Hence, it must be
the case that the correlations arising from the class with a higher ρ receive an
excessive weight in comparison to the ones of the lower ρ class. Recall, first,
that the weights are the reciprocals of the variances; second, that the variances
of the estimator are different across values of ρ (see Figure 3.4); and third, that
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Figure 8.7 Bias of d-based µρ estimators in S2.

the estimates are plugged into Equation 3.7 to arrive at the estimates for the
variances. Putting these facts together explains the high biases of OP-FE. As
an example, consider the case of ρ1 = 0, n = 256 and ρ2 = .90, n = 256. For
simplicity, assume that all r arising from ρ1 are exactly zero and all r from ρ2
are .90. As an aside, this is not far from what is actually observed with n = 256.
In the given case, the weight for the first class is w1 = 252.00, and w2 = 7104.54
for the second. Applying these weights in the given situation and aggregating
a total of k = 256 studies leads to an estimate of µ̂ρ = .87. Subtracting µρ = .45
leads to a bias of .42, a value corresponding to the highest biases of OP-FE in
the Monte Carlo study as can be observed in Figure 8.6, for example. Hence,
large difference in weights lead to the huge biases observed for OP-FE in S2.

Overall, the general trends in biases across levels of the design variables are
similar to those resulting in S1. Biases are fairly stable across values of k, OP
clearly shows the best performance, and the weighting scheme emerges as a
profound problem for OP-FE making the use of this estimator very unreason-
able.

d-Based Estimator in S2. The results for the d-based estimator are depicted
in Figure 8.7. As can be seen, biases show a somewhat strange behavior that
differs from those of r-based estimators.
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Figure 8.8 Bias of Fisher-z-based µρz estimators in S2.

Although there are regions of the design variables where the d-based esti-
mator shows no bias, it is quite sensitive with respect to differences between
universe parameters in comparison to other estimators. The highest absolute
values occur for combinations of small k and n. Recall again that the bias is
computed with respect to µρ and that varying weights of d also exert an in-
fluence on the behavior of the estimator. As a result, HOd shows a different
behavior in bias in comparison to the situation S1. Over- or underestimation
of µρ is harder to predict than for other estimators.

Fisher-z Based Estimators in S2. The estimators of this category are HOr
and HOT. To reiterate, as the universe parameter for these estimators µρz was
used which differs from µρ the larger the difference between ρ1 and ρ2 (see
Section 5.5). The upper left panel of Figure 8.8 shows biases for this category
of estimators similar to those in S1.

Although HOT shows some deficiencies in bias with combinations of very
small k and n it can still be considered as a better estimator than HOr. The
estimates are therefore also improved in S2 by the application of Hotelling’s
correction. The upper right panel of Figure 8.8 shows the biases by k and dif-
ferences between ρs. In contrast to the r-based estimators there is a tendency
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Table 8.3 Descriptive Statistics for the Bias of µρ and µρz Estimators in S2

Statistic

Approach Max. Mean Median Min. SD

HOr .0323 .0061 .0026 −.0012 .0078
HOT .0011 −.0019 −.0006 −.0253 .0032
HOd .0189 .0003 .0003 −.0343 .0078
HS .0004 −.0058 −.0026 −.0289 .0070
OP .0041 .0000 .0000 −.0051 .0005
OP-FE .5175 .1622 .1324 .0011 .1256
OP-RE .1166 .0297 .0188 .0006 .0283
Note. The total number of values described by these statistics is 1890.

of larger negative biases to occur for small values of k. The biases of estimators
by n and differences between ρs are shown in the lower panel of the figure.
As can be seen in the upper right and lower panel, biases of HOr do not dif-
fer very much across levels of ∆ρ and the same is true for k. The number of
persons shows a strong influence on biases only for very small n. In sum, the
Fisher-z-based estimators do not show larger biases of concern in comparison
to the results reported in S1, but estimators are only precise with respect to
µρz. Finally, a highly condensed overview of the descriptive statistics for the
estimators in S2 is presented in Table 8.3. The values in this table underscore
the conclusions for S2 already drawn.

In sum, values for biases are relatively small for all estimators, except for
OP-FE, and may generally not be of concern at all, as was the case in S1. Al-
though OP-RE does not show mean biases in Table 8.3 as high as those for
OP-RE, the estimates are highly variable in comparison to those of other esti-
mators. This undesirable property points to the existence of cases in which the
biases for this estimator are high. Hence, it does not appear attractive as an
estimator even though it is designed for heterogeneous situations.

It must again be emphasized that biases have always to be judged against
the background of different universe parameters. From a substantive point of
view, r-based estimators address the parameter of interest best. The d-based
estimator also performs relatively well in estimating µρ but its bias is less pre-
dictable in comparison to r-based estimators. The results from meta-analyses
for mean effect sizes in heterogeneous situations of type S2 can therefore be
interpreted as estimating quite accurately the expected value of the mixing
distribution. However, for Fisher-z based estimators it has to be taken into ac-
count that it is µρz that is estimated, a parameter usually not of interest to the
researcher. Hence, concerns are in order regarding the usage of Fisher-z based
in heterogeneous situations like S2. The interpretation of the mean effect size
as a “mean ρ” is not warranted in a strict sense under these circumstances.
Whereas the assumption of homogeneity can be regarded as a prerequisite for
an interpretation of the mean effect size of z-based approaches in S2, the re-
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sults from the other approaches can safely be interpreted as estimates of the
expected value of the distribution of ρs. Nevertheless, whether such an esti-
mate is of real interest must be decided by the researcher based upon substan-
tive concerns, because a vastly different set of ρ1 and ρ2 may have produced
the observed mean effect size.

8.2.1.3 Heterogeneous Situation S3 The last situation S3 for which biases
of the estimators will be examined is characterized by a continuous distribu-
tion of effect sizes in the universe of studies. Analogous to the introductory
remarks made in the previous Subsection 8.2.1.2, the estimated parameters µρ

and µρz used as standards of comparison for the various estimators are con-
sidered first. For the case of correlation coefficients not subjected to the Fisher-
z transformation, the expected value of the beta distribution is taken as the
parameter of interest. For the Fisher-z transformed coefficients, the expected
value in z-space (i.e., µζ) given by

µζ =
∫ 1

−1
tanh−1(r) f (r)dr

constitutes the standard of evaluation. Here, f (r) is the beta probability den-
sity function as described in Section 4.5. The values of µζ are subsequently
transformed into the space of r by the inverse Fisher-z transformation µρz =
tanh µζ . The resulting values computed for the expected values and variances
of the beta distribution are reported in Tables A.1 and A.2 in the appendix. For
the same reasons as in S2, the expected value µρ was used for the d-based es-
timator and results are presented separately for the three groups of estimators
in the following paragraphs.

r-Based Estimators in S3. Biases of the estimators of this category over
different combinations of the design variables can be inspected at a glance in
Figure 8.9.

Evidently, the biases of the r-based estimators do not differ much from the
previous two situations in overall quality. The OP estimator is again char-
acterized by showing practically no biases notwithstanding which parameter
constellation is prescribed by the design variables. The behavior of the estima-
tors with respect to n and k is quite the same as before with biases showing
practically no variation across values of k and larger biases for smaller n. It can
also be seen that except for OP, the biases tend to be slightly smaller for HS as
σ2

ρ becomes larger. The scaling of the vertical axis, however, shows that over-
all biases for HS are very small and only grow to a noticeable magnitude for
extremely small sample sizes not likely to be encountered in practice. OP-FE
again shows unacceptable behavior making it unsuitable as an estimator for
situations of type S3 as well. Hence, it does not seem reasonable to include
OP-FE in all of the following performance evaluations of the various estima-
tors.



ESTIMATION OF THE MEAN EFFECT SIZE 131

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.00

0.02

0.04
0.06

50
100

150
200

250

B
ia

s
o

f
µ̂

ρ

σ2
ρ

n

OP

HS

OP-FE

OP-RE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.02

0.04
0.06

50
100

150
200

250

B
ia

s
o

f
µ̂

ρ

σ2
ρ

n

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.00

0.02

0.04
0.06

50
100

150
200

250

B
ia

s
o

f
µ̂

ρ

σ2
ρ

k

OP

HS

OP-FE

OP-RE
0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.02

0.04
0.06

50
100

150
200

250

B
ia

s
o

f
µ̂

ρ

σ2
ρ

k

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.00

0.02

0.04
0.06

0.00.10.20.30.40.50.60.7

B
ia

s
o

f
µ̂

ρ

µρ

σ2
ρ

OP

HS

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.02

0.04
0.06

0.00.10.20.30.40.50.60.7

OP-FE

OP-RE

B
ia

s
o

f
µ̂

ρ

µρ

σ2
ρ

Figure 8.9 Bias of r-based µρ estimators in S3.
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Figure 8.10 Bias of d-based µρ estimators in S3.

Note that the present situation is perfectly suitable for random effects ap-
proaches like OP-RE, but the performance in estimating µρ is actually best for
a fixed effects approach, namely OP. This is proposed to be due to the defi-
ciencies of the weights used for OP-RE as already mentioned. Although the
very good performance of OP is remarkable, disadvantages of FE approaches
are suspected to lie more in testing, for example, rather than estimation of the
universe parameter. The reader is also reminded that DSL, a random effects
approach, leads in the present situation to the same results as HOr.

d-Based Estimator in S3. The next estimator for which results on biases are
presented is the d-based estimator HOd. Again, an ensemble of graphs is given
in Figure 8.10 to present results at a glance.

Evidently, biases of this estimator become larger only for very small n. This
can be seen in the upper left panel in Figure 8.10. There is a slight tendency
for higher values of HOd to occur for larger values of σ2

ρ but again, the pattern
of relationships of biases across design variables is not as clear as for other
approaches. Large values of µρ are accompanied by stronger negative biases
(see lower panel). Although all the biases depicted in the three panels are
very small in absolute terms, the observed effects are supposed to be due to
the weights employed in computing the mean effect sizes using this estimator.
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Figure 8.11 Bias of Fisher-z-based µρz estimators in S3.

Because larger values of d are downweighted by using the weights, as already
discussed in detail, and such values occur more often with larger variances
of the mixing distribution, the negative bias for small σ2

ρ visible in the upper
right panel of Figure 8.10 seems to be compensated. For large values of µρ, a
stronger negative bias results but all in all the values of bias are very small and
not of practical concern except for cases of very small sample sizes n.

Fisher-z-based estimators in S3. The biases of the Fisher-z-based estimators
are presented in Figure 8.11. The relevant estimators in this class are HOr and
HOT.

As in the situations before, HOT performs better than the non-corrected
Fisher-z-based estimator HOr. Very small n influences biases of these estima-
tors in a negative way and can lead to a noticeable bias of the HOr estimator.
Nevertheless, biases are not large in general and only become discernible for
extreme levels of the design variables, especially n (see upper left panel in Fig-
ure 8.11. The variance of effect sizes σ2

ρ does not have a profound effect on the
estimates of µρz. Especially in the lower panel of Figure 8.11 some values for
the estimators are hard to inspect precisely. Finally, descriptive statistics for
the biases in S3 are again presented in Table 8.4 for an overview of the results
in S3.
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Table 8.4 Descriptive Statistics for the Bias of Estimators µρ in S3

Statistic

Approach Max. Mean Median Min. SD

HOr .0325 .0039 .0013 −.0286 .0080
HOT .0038 −.0025 −.0008 −.0447 .0045
HOd .0090 −.0014 .0000 −.0337 .0060
HS .0037 −.0053 −.0022 −.0306 .0071
OP .0037 .0000 .0000 −.0052 .0007
OP-FE .4545 .1071 .0775 −.0068 .0992
OP-RE .1161 .0248 .0126 −.0073 .0276
Note. Valid values for all entries are 1848.

Evidently, a similar picture as compared to S2 emerges. It can be seen that
biases for OP-RE and OP-FE are far more variable in comparison to the other
estimators and can produce biases in maximum that are certainly not accept-
able. All other estimators fare quite well with respect to the parameters they
estimate. OP is clearly the best estimator also in the given situation. It is not
only closest on target overall, but also shows the smallest variability in biases.
For a comparison of the Fisher-z-based and the other estimators it is quite in-
structive to also consult Tables A.1 and A.2 in the appendix to gain an impres-
sion of how different µρ and µρz can become.

8.2.2 Relative Efficiency

Besides the bias of an estimator as an expression of how close it is to the esti-
mated parameter, the variance is also an aspect of its closeness to the parame-
ter. However, it is not the variance of an estimator per se that is of concern here
but the variance about the parameter of interest. That is, the squared distances
from the universe parameter to be estimated are taken and not the ones with
respect to the expected value of a potentially biased estimator. The well-known
decomposition (see Stuart et al., 1999, p. 24)

MSE(T) = E(T − θ)2 = Var(T) + (E(T)− θ)2 (8.1)

shows that for unbiased estimators T the mean squared error (MSE) equals the
variance of the estimator. In the Monte Carlo study, the values computed are
actually

MSE =
1

Iter

Iter

∑
l=1

(r̂l − µρ)2,

where Iter signifies the number of iterations (10,000) and r̂l denotes an estima-
tor based on r. That is, the squared distances from the expected value of the
distribution of universe effect sizes are summed over all iterations. In the fol-
lowing comparisons, the MSE-ratios of different estimators will be presented.
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In S1, µρ is used as the universe parameter in the computation of the MSEs,
whereas in S2 and S3 the question of choosing an appropriate universe pa-
rameter for comparing the approaches arises again. For the approaches that
use the Fisher-z transformation in estimating the mean effect size, there are
two possibilities. First, the MSEs can be computed in z-space. That is,

MSEz =
1

Iter

Iter

∑
l=1

(ẑl − µζ)2,

where ẑl is the estimator and µζ the expected value of the mixing distribution
in z-space. The additional problem arises that the MSEs for all situations of
z-based estimators are not directly comparable to MSEs for r-based estimators.
To make the MSEs of the various estimators in S2 comparable, the term

h(ρ) =
√

1 + ρ1 + ρ2 + ρ1ρ2 −
√

1− ρ1 − ρ2 + ρ1ρ2√
1 + ρ1 + ρ2 + ρ1ρ2 +

√
1− ρ1 − ρ2 + ρ1ρ2

− ρ1 + ρ2

2
,

which is the difference between µρ and µρz, is used for correction. The correc-
tion factor gives the difference between µρ and µρz theoretically to be expected
for the various parameter values in S2. Subtracting h(ρ) from the Fisher-z
transformed values (tanh ẑl) offers the opportunity to compare the MSEs of
the Fisher-z based and r-based estimators on a common scale via

MSE =
1

Iter

Iter

∑
l=1

(
(tanh ẑl − h(ρ))− µρ

)2.

What should become evident here is that in essence the estimator is actually
changed by h(ρ) to estimate a different value, namely µρ. For this corrected es-
timator, the mean squared distances about µρ are computed as for the r-based
estimators. Of course, the above equation can be simplified by eliminating the
redundant term µρ, resulting in

MSE =
1

Iter

Iter

∑
l=1

(
tanh ẑl − µζ

)2,

which may be conceived as the natural conception for computing the MSEs
for Fisher-z-based estimators in r-space. The derivation given above has just
demonstrated that using this conception of the MSE can be justified on theo-
retical grounds.

Following this general logic, it would be natural to use the expected values
of the beta distribution in the computation of the MSEs in S3 correspondingly.
Unfortunately, numerical integration necessary to compute these values was
considered to be computationally too expensive and a correction factor like
h(ρ) is not readily available for the continuous case. Hence, the comparison of
all approaches is not possible in S3.
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Table 8.5 Relative Efficiencies of µ̂ρ in S1

Approach HOr HOT HOd HS OP OP-RE

HOr 1
HOT 1.1118 1
HOd 1.1008 .9901 1
HS 1.0931 .9832 .9930 1
OP 1.0683 .9609 .9705 .9773 1
OP-FE .4741 .4264 .4307 .4337 .4438 1
Note. Table entries are the fraction of the approach found in the column header in
the numerator and the row-labeled approach in the denominator. For all approaches
mean values were computed over all values of ρ, k, and n.

As in the previous sections, results are presented for S1 and S2 consecu-
tively, beginning with S1. First, it can be noted that all MSEs of the estimators
become smaller for larger k, n, and µρ, respectively. Since these general trends
apply to all approaches the presentation will be confined to overall results,
that is, means of MSEs over all values of k, n, and µρ. Table 8.5 provides a
condensed overview of the relative efficiencies of the estimators in S1.

Note that in S1 the MSEs are comparable for all estimators without any cor-
rections because µρ = µζ . The entries in the table can be read as follows. The
estimators found in the column are the entry in the numerator and the esti-
mator in the row is the denominator of a fraction of MSEs. Values larger than
one therefore represent smaller MSEs for the estimator in the denominator and
vice versa. The values in Table 8.5 suggest that HOT is the most efficient esti-
mator in terms of MSE. This is somewhat surprising given that OP has shown
remarkably small biases overall, as shown in the previous sections. The reason
for this finding lies in the fact that variances of the estimators contribute an im-
portant part to the corresponding MSEs and also to variation of MSEs across
values of the design dimensions. Because the variability across levels of the
design variables is very similar for all approaches, no graphical representation
is given here.

To facilitate interpretation of the results in Table 8.5, the following remarks
seem warranted. As can be seen in Equation 8.1, the MSEs amount to the vari-
ances of unbiased estimators and these variances may well be larger for unbi-
ased in comparison to biased estimators. The important distinction between
MSEs for these two types of estimators lies in the second term of Equation 8.1
being zero for unbiased and nonzero for biased estimators. Now consider the
case of µρ = 0 where the HS (and also OP) estimator actually estimates µρ

(see page 121, for example). Here, the variance of the HS estimator is smaller
than the variance of the OP estimator and the MSE ratio restricted to this case
leads to a value of .9059 in favor of HS. On the other hand, if the comparison is
restricted to ρ = .50 where the HS estimator performs worst in terms of bias,
the same comparison leads to a value for the ratio of 1.0295, now favoring OP
in terms of MSE. Of course, this phenomenon pertains to all comparisons in
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Table 8.6 Relative Efficiencies of µ̂ρ and µ̂ρz in S2

Approach HOr HOT HOd HS OP OP-RE

HOr 1
HOT 1.0968 1
HOd 1.0425 .9505 1
HS 1.0582 .9648 1.0150 1
OP 1.0290 .9381 .9870 .9724 1
OP-FE .4829 .4403 .4632 .4564 .4693 1
Note. Table entries are the fraction of the approach found in the column header in
the numerator and the row-labeled approach in the denominator. For all approaches
mean values were computed over all values of ρ, k, and n.

Table 8.5 and also what follows. The values reported in the tables for a com-
parison of estimators regarding their MSEs are therefore to be interpreted with
respect to the performance of estimators across the levels of the design vari-
ables. Hence, across all values of µρ from zero to .90, HOT is the most efficient
estimator. This does not imply that HOT is the most efficient estimator for all
possible values of µρ.

Table 8.6 presents the results for S2 that closely mirror the results in S1.
The only notable difference is that HOd is slightly less efficient than HS in this
situation.

As remarked at the beginning of this subsection, the comparison of estima-
tors with respect to MSE in S3 is not possible due to values in different spaces
that could not be transformed or corrected. In sum, the surprising result for
the MSEs is that OP — which performed uniformly best in all situations with
respect to bias — does not also show up as the best estimator in terms of MSE.
As a result, it is not more precise in general as compared to HS when all sit-
uations under investigation are taken into account (see in this context Hedges
& Olkin, 1985, p. 226). Instead, HOT performed best, an estimator that also
showed good performance with respect to biases. Taking these two criteria to-
gether, it can be recommended for S1 to use OP when a relatively small n is
given and when µρ is not suspected to be very low. HOT can be considered
as an alternative for larger n when µρ is suspected to be small because of its
higher efficiency. For S2 and S3 OP should be considered as first choice for it
estimates the parameter usually of interest µρ rather precisely in terms of bias,
in contrast to HOT which estimates µρz.

8.3 SIGNIFICANCE TESTS FOR THE MEAN EFFECT SIZE:
TYPE I ERRORS AND POWER

Apart from an accurate parameter estimation, significance tests are a common
feature of meta-analysis. The significance testing practice in psychology has
often been criticized as mentioned in the introductory chapters. Nonetheless,
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all approaches offer procedures to test the estimates of the effect sizes, although
some authors explicitly deemphasize using such tests (e.g., Hunter & Schmidt,
1990). In this section, the proposed procedures are evaluated with respect to
their performance in testing the generally adopted null hypothesis µρ = 0.
This will be done by examining the rejection rates of the null hypothesis under
various conditions and comparing these rejection rates to the α-level a test is
supposed not to exceed when the null hypothesis is true. The second case of
interest is the performance of the tests when the null hypothesis is false. Both
cases will be separated in the following presentation.

Since this subsection on testing is the only one in which differences between
HOr and RR can occur, the latter will be included in the following tables for
this subsection only. Because of the very poor performance of OP-FE reported
in the previous sections of results, it will be omitted from the following pre-
sentation.

Rejection Rates in S1 The results for S1 are considered first. In addition to
the estimators under investigation in the previous sections, four variants for
testing the mean effect size in the framework of the HS approach are included.
The several variants correspond to four possibilities to compute the standard
error of the mean effect size. The reader is referred to Section 5.3 for a reca-
pitulation of the several forms of standard errors proposed in this approach.
Furthermore, the DSL approach is also added to examine its performance in
the homogeneous case. As a criterion for the evaluation of the approaches,
whether they show higher rates than nominal α will be assessed. Values lower
than α are interpreted as indicating good performance since the null hypothe-
sis is true.

Table 8.7 shows the rejection rates of the tests aggregated over all combi-
nations of k and n. Readers interested in the results for specific combinations
of the design variables may consult Table C.1 in the appendix where detailed
results for α = .05 are provided.

The first line for each approach in Table 8.7 provides the results for tests at
α = .05 and the second line those for α = .01. As can be seen, the approaches
that perform best are DSL and HOT. Despite both approaches having slightly
higher standard deviations in comparison to HOr, which more closely attains
nominal α, they also show mean rejection rates below α in this situation. At
least for DSL — a random effects approach — it is suspected that this more
conservative behavior comes at the cost of a loss in power. The downward
correction of the mean Fisher-z based effect size by HOT effectively leads to
smaller rejection rates in comparison to HOr. Note that the same standard
errors were applied for HOr and HOT. Hence, apparently small differences in
bias between these approaches indeed transfer to differences in test results.

For the present purpose of testing the null hypothesis, there are small pro-
cedural differences between HOr and RR, which were omitted until now. The
only difference between RR and HOr lies in the weights employed where RR
uses degrees of freedom instead of standard error based weights. This ob-



SIGNIFICANCE TESTS FOR THE MEAN EFFECT SIZE 139

Table 8.7 Rejection Rates for Testing the Mean Effect Size in S1, µρ = 0

Statistic

Approach Max. Mean Median Min. SD

HOr .0547 .0501 .0504 .0437 .0022
.0119 .0100 .0099 .0077 .0009

HOT .0535 .0458 .0472 .0313 .0054
.0110 .0086 .0090 .0044 .0017

HOd .0702 .0554 .0530 .0476 .0059
.0190 .0119 .0111 .0078 .0025

RR .0688 .0543 .0523 .0475 .0052
.0170 .0114 .0110 .0078 .0020

HS1 .0695 .0519 .0511 .0460 .0041
.0250 .0111 .0104 .0077 .0027

HS2 .0866 .0591 .0547 .0480 .0104
.0316 .0141 .0120 .0078 .0054

HS3 .1291 .0705 .0577 .0475 .0257
.0741 .0247 .0140 .0096 .0205

HS4 .1256 .0645 .0539 .0330 .0261
.0701 .0219 .0123 .0050 .0196

OP .0853 .0560 .0531 .0475 .0079
.0341 .0129 .0115 .0078 .0046

OP-RE .2224 .0849 .0582 .0433 .0491
.1392 .0320 .0139 .0066 .0347

DSL .0503 .0430 .0434 .0356 .0036
.0101 .0079 .0080 .0057 .0011

Note. The total number of values described by these statistics is 42. Proportion for
tests at α = .05 are given in the first row of each approach and for tests at α = .01 in
the second row.

viously leads to slightly higher rejection rates in comparison to the nominal
α-level.

Amongst the HS variants two groups can be identified: HS1 and HS2 versus
HS3 and HS4. This corresponds to standard errors proposed for homogeneous
(HS1 and HS2) and heterogeneous (HS3 and HS4) situations. Since HS3 is
assumed to be adequate both for homogeneous and heterogeneous situations
(Osburn & Callender, 1992), special attention may be paid to the results of this
particular variant. The results in Table 8.7 show that, for the group of HS-
variants proposed for homogeneous situations such as the present one, HS1 is
closest on the α-levels whereas HS2 overshoots. Usage of the tests from the sec-
ond group leads to rejection rates being too high overall. This predominantly
occurs in cases where a low number of studies are aggregated.

OP performs as well (or bad) as RR and HOd whereas the random effects
approaches behave quite differently. DSL performs as expected from theory,
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Table 8.8 Rejection Rates for Testing the Mean Effect Size in S1, µρ 6= 0, α = .05

µρ

Approach .10 .20 .30 .40 .50 .60 .70 .80 .90

HOr .7856 .9228 .9690 .9875 .9958 .9990 .9999 1 1
HOT .7761 .9162 .9650 .9852 .9946 .9986 .9998 1 1
HOd .7965 .9300 .9732 .9897 .9966 .9992 .9999 1 1
RR .7945 .9287 .9724 .9894 .9965 .9992 .9999 1 1
HS1 .7907 .9275 .9724 .9895 .9966 .9992 .9999 1 1
HS2 .8035 .9348 .9762 .9913 .9974 .9995 1 1 1
HS3 .8094 .9357 .9753 .9901 .9965 .9989 .9998 1 1
HS4 .7978 .9291 .9718 .9884 .9958 .9987 .9997 .9999 1
OP .7985 .9325 .9751 .9908 .9972 .9994 .9999 1 1
OP-RE .8162 .9385 .9765 .9904 .9965 .9989 .9997 .9999 1
DSL .7680 .9122 .9625 .9836 .9937 .9980 .9996 .9999 1
Note. The total number of values described by these statistics is 42 for each µρ.

showing rejection rates below the nominal α due to overestimates of random
effects variance in this situation (see also Section 8.5). OP-RE in contrast, shows
very high rejection rates, a fact that would not be expected for random effects
approaches. The reason for this finding is the bad performance of OP-RE in
cases of n < 64. A combination of small n and high k exacerbate this malper-
formance. Again, bad results from estimation of the mean effect size transfer
to bad results in significance testing.

The case of µρ 6= 0 can be considered to enable an examination of the test
results with regard to their power.3 That is, rejection rates for the null hypoth-
esis are presented when it is actually false. Hence, they should be interpreted
as rate estimates of correctly rejecting the null hypothesis. Table 8.8 provides
an overview of the results for increasing µρ and α = .05.

As can be seen in the table, all the tests seem to rapidly attain satisfactory4

levels of .80 when aggregated across k and n. Of course, approaches showing
higher rejection rates when the null hypothesis is true generally perform better
in this context. Results for the rejection rates when α = .01 are not presented.
They show a similar performance for the approaches as compared to those in
the presented case.

As would be expected from theory, rejection rates are larger for higher lev-
els of n and k. Satisfactory power levels are rapidly reached even for modest
values of k = 32, for example. The general trends are illustrated in Figure 8.12.

3This term is used somewhat loosely in the present context because no alternative hypotheses
are explicitly considered. The values to be presented for the rejection rates may nevertheless
be regarded as some approximation to the power function of the tests (cf. Barnett, 1981).
4According to Cohen (1988, 1992).
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Figure 8.12 Rejection rates for testing the mean effect size in S1, µρ 6= 0, α = .05,
HOr approach.

Here, the results for only one approach (HOr) are depicted since the trends
are the same for all approaches and the surfaces would not be discriminable.
In general, differences between approaches are not very large in testing the
null hypothesis in S1. HOr exhibits a performance closest to nominal α-levels
when the null hypothesis is true and all approaches reach satisfactory levels
for power rather quickly.

Nonetheless, the three panels in Figure 8.12 also point to cases for which
power might not be satisfactorily high. An additional table is provided in the
appendix (Table C.2) which is especially informative to qualify the results in
Table 8.8 with respect to k and n. It shows rejection rates for selected levels of
design variables supposed to be of highest interest with respect to regions in
the figure where power is not very high. The results basically underscore the
general impression gained from the figure. Power can be low for small effect
sizes in the universe (ρ = .10), especially when n and k are very low. Even
when n is at a level presumably considered as moderate or sufficient by many
researchers (n = 126) and which can be observed quite often in correlational
studies in the behavioral sciences, detection of a small universe effect size can
be conducted without reaching satisfactorily high levels of power. For exam-
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Table 8.9 Rejection Rates for Testing the Mean Effect Size in S2 for Selected
µρ 6= 0, α = .05

µρ

Approach .05 .10 .15 .20 .30 .40 .50 .60

HOr .5815 .7889 .8787 .9270 .9730 .9915 .9978 .9995
HOT .5703 .7792 .8707 .9205 .9691 .9896 .9971 .9993
HOd .5936 .7976 .8856 .9313 .9739 .9900 .9961 .9990
RR .5910 .7957 .8840 .9301 .9736 .9908 .9973 .9994
HS1 .5847 .7917 .8818 .9290 .9735 .9910 .9974 .9994
HS2 .6025 .8066 .8930 .9381 .9790 .9939 .9986 .9997
HS3 .5875 .7669 .8679 .9083 .9563 .9768 .9914 .9978
HS4 .5725 .7544 .8582 .9004 .9512 .9738 .9899 .9974
OP .5944 .7995 .8879 .9335 .9758 .9918 .9976 .9995
OP-RE .6145 .7891 .8792 .9165 .9542 .9609 .9817 .9963
DSL .5444 .7309 .8366 .8822 .9385 .9653 .9872 .9966
Note. The total number of values described by these statistics varies between 42 and
168 for each µρ due to some differences occurring more often than others for the com-
bination of design variable levels. For the omitted values of µρ ≥ .70 all values are
practically equal to 1.

ple, power is lower than .80 for all approaches in cases where k = 4, n = 128,
and ρ = .10. Overall, the approaches do not vary greatly in behavior with
respect to power in S1. Although some approaches (e.g., DSL) show lower
rejections rates than others (e.g., OP), differences are small in comparison.

Rejection Rates in S2 Next, we turn to the test results in S2. The null
hypothesis µρ is always false in S2 because at least one ρ 6= 0. Accordingly, the
results of the Monte Carlo study only reflect the power of the tests. In Table 8.9
the mean rejection rates are presented for varying values of µρ.

Once more, rejection rates show only small differences between approaches.
The overall trends as presented in Table 8.9 are similar in comparison to the re-
sults in S1. As far as general trends across the design variables are concerned,
only a selection of figures is presented here to illustrate the largest differences
between the approaches.

The series of graphs in Figure 8.13 depict the dependencies of rejection rates
on the design variables n, k, and µρ for the approaches HOr and DSL. All other
approaches show a performance “in between” the ones presented. As can be
seen by comparison of the left and right panels, the random effects approach
leads to more conservative test results especially for small k and intermediate
µρ. This is due to incorporation of heterogeneity variances in the standard er-
rors of the tests making them more conservative than fixed effects approaches.
This difference occurs for DSL and also OP-RE not shown in the figure. In
comparison to the homogeneous situation S1 the tests are not as powerful
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Figure 8.13 Rejection rates for testing for the mean effect size in S2, µρ 6= 0, α = .05,
HOr and DSL approach.

for small effects (e.g., ρ = .10). The lower panels in Figure 8.13 in particular
point to the result of inadequate power for the approaches for the boundary
regions of the design. The interested reader might wish to consult Tables C.3
and C.4 where detailed results for these boundary regions are presented. In
short, even when the study sample size seems reasonable for the aggregated
studies in a meta-analysis (n = 128) and a number of studies — rather typ-
ical for some meta-analyses and considered by some as “large” — of k = 32
is available, small effects of µρ = .05 are not detectable with a power of .80
by any of the approaches. However, the power raises very quickly for all ap-
proaches for higher effects in the universe of studies. In sum, performance of
the approaches in testing the generally adopted null hypothesis µρ = 0 in S2
is very similar. In cases where power problems seem to prevail, none of the
approaches seem to offer a considerable advantage over the others.

Rejection Rates in S3 The last part of results for significance tests is pre-
sented for S3, where two cases are distinguished. As in S1, results for µρ = 0
will first be given followed by the results for µρ 6= 0. Table 8.10 provides a con-
densed overview of the results for the case when the null hypothesis is true.
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Table 8.10 Rejection Rates for Testing the Mean Effect Size in S3, µρ = 0

Statistic

Approach Max. Mean Median Min. SD

HOr .3599 .1410 .1026 .0472 .0880
.3046 .0775 .0364 .0089 .0795

HOT .3596 .1360 .0994 .0338 .0912
.3044 .0749 .0349 .0054 .0806

HOd .3539 .1427 .1043 .0576 .0828
.2946 .0769 .0369 .0127 .0754

RR .3519 .1408 .1013 .0562 .0828
.2928 .0753 .0359 .0119 .0751

HS1 .3518 .1381 .1003 .0485 .0845
.2926 .0747 .0358 .0095 .0754

HS2 .3603 .1510 .1145 .0595 .0821
.3043 .0837 .0449 .0144 .0766

HS3 .1347 .0698 .0583 .0465 .0250
.0760 .0246 .0144 .0079 .0201

HS4 .1289 .0639 .0541 .0318 .0255
.0743 .0220 .0131 .0040 .0195

OP .3519 .1425 .1041 .0566 .0818
.2928 .0773 .0391 .0129 .0743

OP-RE .2139 .0906 .0814 .0499 .0335
.1336 .0351 .0260 .0094 .0236

DSL .1005 .0551 .0527 .0349 .0111
.0494 .0143 .0114 .0055 .0079

Note. The total number of values described by these statistics is 210. Proportion for
tests at α = .05 are given in the first row of each approach and for tests at α = .01 in
the second row.

As can be seen from the results in Table 8.10, the performance of the ap-
proaches can roughly be categorized in two groups. On the one hand, fixed
effects approaches like HOr, HOd, HS1, and OP, for example, show relatively
large inflated mean Type I error rates. These approaches show adequate rejec-
tion rates only in minimum and also have relatively high standard deviations.
On the other hand, random effects approaches like OP-RE and especially DSL
perform adequately overall in this situation. The HS variants HS3 and HS4
perform like the random effects approaches though not as well as DSL, for ex-
ample. Hence, the violation of basic assumptions of the fixed effects approach
in S3 leads to differences in rejection rates. This was not as clear in S2, though
this is a heterogeneous situation too.

Apart from the overall performance, it should be mentioned that the results
markedly differ across levels of the design variables. The results for varying
levels of these variables are therefore presented next. In Figure 8.14, a selection
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Figure 8.14 Rejection rates for testing the mean effects size in S3 by n and k, µρ = 0,
α = .05.

of approaches is depicted that represents prototypical trends of the results for
rejection rates in S3 when the null hypothesis is true.

The upper left panel shows that the DSL approach leads to rejection rates
corresponding to the nominal α for most of the values of k and n, the only
exception is a slight elevation of rejection rates for k less than 16. Nonethe-
less, the rejection rates for DSL are not very high in any region of the n and k
combinations under investigation. The lower left panel shows that HS3 (and
HS4 which performs equally well) yields inflated rejection rates for small k
invariably across values of n. Notwithstanding these elevated Type I errors,
the overall performance of this approach seems acceptable here. OP-RE in the
lower right panel shows too high rejection rates for a small number of studies
and also for values of small k. Although this approach suffers from inade-
quate performance in estimating the mean effect size, the rejection rates in this
situation do not seem unacceptable for moderate values of n and k.

In marked contrast to these results, all other other approaches (HOr, HOT,
HOd, RR, HS1, HS2, and OP), for which HOr is depicted in the upper right
panel as a representative, show a totally different trend across values of n. The
rejection rates steadily increase with higher values of n but show no variation
across values of k. In effect, the performance of these tests in S3 becomes worse
the higher the n of the studies. This demonstrates that the standard errors of
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Figure 8.15 Rejection rates for testing the mean effects size in S3 by n and σ2
ρ , µρ = 0,

α = .05.

these approaches are too small in this heterogeneous situation, not reflecting
variation with respect to σ2

ρ .
In addition to the rejection rates getting higher with n, Figure 8.15 shows

that rejection rates are also higher for larger values of σ2
ρ — at least for HOr and

the other fixed effects approaches. The variation of the rejection rates across
values of n and σ2

ρ is depicted in Figure 8.15.
For comparison, the rejection rates for the DSL approach are shown in the

left panel and the results for the fixed effects approaches as represented by
HOr in the right panel. Evidently, the rejection rates of the HOr approach
quickly become far too large even for moderate values of n and σ2

ρ . Because this
approach did not show remarkable bias across levels of the design variables,
this can be interpreted as an effect of the standard error estimates. In marked
contrast, DSL shows a very good performance across values of σ2

ρ . There are
no elevations of the rejection rate surface in the left panel of Figure 8.15. Taking
further into account that DSL also showed rejection rates close to nominal α,
apart from in cases of very low n, it is certainly the best approach of those
under consideration for testing the mean effect size in S3-type situations.

Next, the results for the case µρ 6= 0 will be presented to assess the power of
the approaches in S3. The main findings are illustrated in an array of graphs
in Figure 8.16.

In this figure, only two approaches are depicted that illustrate the different
results for fixed versus random effects approaches. The shaded surface in the
three panels portrays the slightly more powerful rejection rates for the fixed
effects approaches (e.g., HOr). However, the differences to the random effects
approach (e.g., DSL) — shown as a white surface lying underneath but close to
the one of the FE approaches — are quite small across all design dimensions.
Altogether, the figures show only minor differences in power between the ap-
proaches. With regard to the levels of the design variables, it is noteworthy that
different variances in the universe of studies σ2

ρ do not have a strong effect on
testing the mean effect size. Although there is indeed a drop in rejection rates
in the upper right panel of Figure 8.16, the effect is not strong for both types of
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Figure 8.16 Rejection rates for testing the mean effect size in S3, µρ 6= 0, α = .05.

approaches. In contrast, low levels of k, n and small effects are predictors for
low levels of power in S3 as well.

With reference to the absolute values shown in the figures, it must again
be emphasized that the results shown are always aggregates across the other
design dimensions. For example, the DSL approach does not always attain a
rejection rate of at least .65 as the array of graphics may suggest at first glance.
In a worst-case-scenario of n = 8, k = 4, µρ = .10, and σ2

ρ = .0625 the estimator
only shows a minimum rejection rate for the levels of the design variables of
.1353, thereby highlighting the point that the figures are intended for compar-
ison of approaches only, as outlined in the introduction of this chapter.

In sum, the results of the tests for the approaches are best when their basic
model assumptions with respect to the fixed versus random effects model of
meta-analysis are met (see also Hedges & Vevea, 1998). Differences in S1 and
S2 do not seem to be very large between the approaches, but in S3 — when
µρ is zero — there are tremendous differences in rejection rates. Hence, in a
state of ignorance about the true situation, the potential loss in power caused
by applying a random effects approach seems to be justifiable. In light of the
errors potentially committed by applying fixed effects models in S3 it seems
advisable to accept slightly lower power levels.



148 Results

8.4 CONFIDENCE INTERVALS

Confidence intervals for the approaches will be evaluated with respect to the
rate to which they cover the universe parameter the estimators are supposed to
estimate. These rates will be labeled as coverage rates in the following. They are
often considered as a rather important aspect of the quality of meta-analytical
approaches. This is evidenced, for example, by the fact that Brockwell and
Gordon (2001) based their empirical comparison of approaches (fixed-effects
method for log odds ratios, DSL, and a conditionally random effects proce-
dure) almost exclusively on the results for coverage rates and interval widths.
Since high coverage rates may be achieved by unduly large confidence interval
widths, the mean interval widths will also be presented along with the cover-
age rates to establish a better foundation for evaluation. The coverage rates
were computed as proportions over 10,000 iterations. The confidence limits
are also aggregates over iterations so that they need not be exactly symmetri-
cal about the mean effect sizes. Information given for the widths of intervals
was computed from these confidence limits. In all cases, only 95%-confidence
limits were investigated.

Coverage Rates and Interval Widths in S1 Overall statistics for the cov-
erage rates and 95%-confidence interval widths in S1 are presented in Table
8.11. They will again be complemented by some graphical representations of
the approaches’ performance across levels of design variables, after a short
discussion of the overall findings.

Of all the approaches, HOT reaches the highest coverage rates for a 95%-
confidence interval. All other approaches show coverage rates lower than the
standard of .95. In comparison to the overall interval widths of the other ap-
proaches, however, HOT also shows larger values. Hence, the high coverage
rates may be obtained by virtue of larger interval widths. A second approach
with rather good performance is OP. In this case however, relatively good cov-
erage rates are not coupled with high interval widths.

The overall coverage rates for HS3, HS4, and OP-RE, for example, shown
in Table 8.11 are too low to be acceptable. Interval widths are not simultane-
ously very small and minimum coverages show that these approaches show
unacceptable performance at least in same regions of the design.

There are several determinants of the coverage rates of the approaches, so
that differences between approaches are not easily interpretable. One possible
reason for coverage rates being lower than expected is the bias of the estima-
tors. For example, HOr and HOT are subject to exactly the same procedures
for construction of the intervals, the only difference between these estimators
is the correction of the estimator proposed by Hotelling (1953). This makes it
possible to trace the reason for the lower coverage rates of HOr back to the
bias in the estimator because the corrected version HOT shows appropriate
rates. An analogous comparison is also possible for HS1 and OP. The standard
errors are computed for OP the same way as for HS1 (compare Equations 5.7
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Table 8.11 Coverage Rates and Confidence Interval Widths in S1

Statistic

Approach Max. Mean Median Min. SD

HOr .9552 .9225 .9467 .1714 .0820
.8244 .1208 .0702 .0029 .1383

HOT .9715 .9548 .9530 .9449 .0059
.8244 .1228 .0726 .0029 .1404

HOd .9534 .8911 .9276 .0187 .1118
.6830 .1070 .0617 .0023 .1182

HS1 .9545 .9202 .9446 .1877 .0801
.7136 .1142 .0700 .0029 .1242

HS2 .9549 .9174 .9407 .2892 .0732
.6436 .1105 .0707 .0029 .1159

HS3 .9521 .8941 .9214 .3035 .0713
.6005 .1056 .0689 .0029 .1086

HS4 .9706 .8946 .9227 .1961 .0799
.6657 .1090 .0677 .0029 .1166

OP .9539 .9360 .9438 .8363 .0198
.7095 .1125 .0667 .0029 .1223

OP-RE .9584 .6525 .7786 .0001 .3113
.8574 .1270 .0766 .0030 .1440

DSL .9674 .9317 .9550 .1742 .0823
.9098 .1301 .0729 .0030 .1523

Note. The total number of values described by these statistics is 420. Statistics for
coverage rates are given in the first row of each approach and statistics for the widths
of the confidence intervals in the second row.

and 5.11) but estimators differ. Hence, the benefit of an estimator’s small bias
is recognizable in the given context too.

In addition to the potential bias of an estimator, differences in standard er-
ror computations also contribute to the differences in rates and widths of the
intervals. However, standard errors are not readily comparable between all
estimators, except for the case of HS1 to HS4. Here, the mean effect size is
exactly the same for all variants but standard errors differ. Amongst the HS
variants, HS1 and HS2 show better performance than HS3 and HS4 in S1.
Recall again that HS3 was proposed to show good performance both in ho-
mogeneous and heterogeneous situations. The comparison between HOT and
DSL shows that smaller interval widths do not necessarily lead to lower cover-
age rates, though this is a strong tendency in the results. The reason for better
performance of HOT on both accounts is its smaller bias. This fact again un-
derscores the importance of small bias in estimators, even when differences in
accuracy between estimators appeared to be relatively small. The considera-
tion of the minima of coverage rates also strongly emphasizes the importance
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Figure 8.17 Coverage rates and confidence interval widths in S1 by k and n.

of small biases. Remarkably, the estimators having shown the smallest bias
exhibit, even in minimum across all situations considered in the design, very
good (HOT) or fairly good (OP) coverage rates.

To illustrate the constellations of levels of design variables leading to poor
performance of some approaches, a series of graphs is presented in Figure 8.17.
They depict the dependencies of coverages and interval widths on n and k.

The first set of graphs in Figure 8.17 (upper left and both lower panels)
shows the coverage rates for a selection of approaches and a separate graph for
the interval widths (upper right panel). As in the figures presented in previous
sections, approaches are omitted that show very similar surfaces in compari-
son to the ones depicted and might not be discriminated even when included
in the graphs. The selection of approaches is chosen to illustrate the main
trends: HOr also represents HS1 to HS4, RR, and DSL. HOT, HOd, OP, and
OP-RE are depicted separately. Although HS3 and HS4 show smaller coverage
rates as shown in Table 8.11, they can also be subsumed under HOr because of
their similarity in trends. For the confidence interval widths only one graph is
shown because all approaches nearly have the same surfaces. Interestingly, in-
terval widths do not depend differently on levels of n and k for all approaches.
Interval widths grow large for all approaches only in cases of both small sam-
ple sizes and a small number of studies. The shrinkage in widths seems to be
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Figure 8.18 Coverage rates and confidence interval widths in S1 by k and µρ.

approximately the same when holding n constant and focusing on a growing
number of studies and vice versa.

As is evident from Figure 8.17, small n in combination with large k leads to
diminishing coverage rates for all approaches except OP and HOT. This again
suggest that biases are the cause for poor performance because standard errors
are smallest for large k — as is also evidenced by the smaller interval widths
— and biases are largest with small n (see Section 8.2.1.1). Cautions are raised
by this finding against the use confidence intervals of most procedures to con-
struct confidence intervals in S1 when n is small and k is large. Nevertheless,
the excellent coverage rates for HOT and OP as evidenced by their flat sur-
face in Figure 8.17 makes them first choice in S1 not only for the purpose of
estimating the mean effect size but also for the construction of confidence in-
tervals.

For further insight into the dependencies of coverage rates and interval
widths on levels of design variables, Figure 8.18 provides the results for lev-
els of k and µρ. It can again be expected that the results of the coverage rates
mirror performance of the estimators’ bias.

As before, interval widths as shown in the upper right panel in Figure 8.18
do not markedly differ between approaches. Hence, one graph seems to suf-
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fice to portray all relevant information for a comparison of approaches. The
gradient of the confidence interval width surface is again in agreement with
expectations from statistical theory. Intervals are smaller for large k and —
for the case of correlation coefficients as effect sizes — widths become smaller
with larger µρ. It might be surprising that this should also be the case for
Fisher-z based approaches because it was highlighted in several sections that
the standard errors of the mean effect size estimators for these approaches do
not depend on the parameter itself (see, e.g., Equation 5.2 on page 58). This
is true, however, in z-space and the results depicted in the figures are all in
r-space. A certain interval width of .09 in z-space — which approximately re-
sults for the case n = 32 and k = 16 — corresponds to an interval width of
approximately .04 at a mean effect size level of .90 and to a width of .12 at the
level of .60. Hence, the change of spaces from z to r in the present case makes
the shape of the surface appear reasonable also for Fisher-z based approaches.

The upper left and lower panels in Figure 8.18 depict the coverage rates for
the approaches. As can be seen for most approaches, lower coverage rates re-
sult for combinations of vary large µρ and high k. For OP-RE this phenomenon
is certainly due to its large bias but for HOr and HOd biases were shown to
be quite small. Especially for HOd rather low coverage rates are shown in the
critical design region.

The performance of OP and HOT again stands in marked contrast to those
of other approaches. The coverage rates of both approaches is again depicted
as a surface at the level of approximately .95. Almost the same picture emerges
in the final set of graphs in Figure 8.19. As in the previous figures, the coverage
rates and interval widths are shown for combinations of n and µρ in three
panels and the upper right one shows the interval widths.

The interval widths basically show the same trends for all approaches and a
surface is shown in Figure 8.19 which very much resembles that in the previous
figure, only shown from a different angle of view. The widths of confidence
intervals are largest for all approaches in combinations of small n and small
µρ, as would be expected. The coverage rates decline for combinations of very
large µρ and rather small n. This shows again the deleterious effect of small
interval widths and large biases.

Coverage Rates and Interval Widths in S2 Next, the heterogeneous situa-
tion with two different values in the universe of studies is treated. First of all,
it should again be noted that the coverages are evaluated with respect to the
parameters the estimators are supposed to estimate, just as in Section 8.2.1.2.
This is important for a comparative evaluation of approaches in this context.
That is, the universe values to be covered by the confidence limits are different
for the Fisher-z based and r-based approaches with differences in universe pa-
rameters (µρ vs. µρz) being larger, the higher the difference is between the two
universe values of ρ (i.e., ∆ρ). Furthermore, as in Section 8.2.1.2, the coverage
rates for HOd in S2 were evaluated with respect to µρ and not to µρd. For an
explanation as to why this is the case, see Section 5.5.
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Figure 8.19 Coverage rates and confidence interval widths in S1 by n and µρ.

The overall results on coverage rates and confidence interval widths for
95%-Intervals are first presented. Table 8.12 shows descriptive statistics for
a comparative evaluation of the approaches.

The values presented in Table 8.12 suggest that the interval widths are con-
siderably larger for all approaches, not only random effects approaches. Nev-
ertheless, for the latter the intervals are approximately twice as wide as for the
fixed effects approaches. In the extreme, this leads to intervals larger than one
and to coverage rates of up to one in maximum (e.g., DSL).

The results shown in Table 8.12 again demonstrate that OP and particularly
HOT approximately attain the desired coverage rates without having exces-
sively large interval widths. Additionally, even the minimum values for the
coverage rates indicate a very good performance of the approaches in all cases
under investigation. In contrast, the minimum values for all other approaches
suggest that there are situations in which they perform very poorly. Other
fixed effects approaches like HS1 and HS2, however, also attain good mean
overall coverage rates without excessively large interval widths, but the min-
ima for these approaches indicate bad performance at least in some cases un-
der consideration. The highest mean coverages are shown for DSL, but this
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Table 8.12 Coverage Rates and Confidence Interval Widths in S2

Statistic

Approach Max. Mean Median Min. SD

HOr .9559 .9266 .9464 .2237 .0639
.8223 .1219 .0760 .0041 .1321

HOT .9714 .9544 .9529 .9247 .0057
.8226 .1244 .0776 .0041 .1353

HOd .9751 .8883 .9311 .0000 .1385
.6508 .1160 .0764 .0035 .1170

HS1 .9751 .9345 .9470 .2595 .0514
.7130 .1213 .0790 .0043 .1229

HS2 .9555 .9238 .9410 .3468 .0510
.6415 .1144 .0758 .0044 .1120

HS3 1 .9718 .9958 .4515 .0486
.9494 .2060 .1500 .0131 .1690

HS4 1 .9738 .9961 .3653 .0479
.9993 .2104 .1514 .0130 .1745

OP .9743 .9407 .9457 .8303 .0200
.7088 .1198 .0785 .0043 .1209

OP-RE 1 .8627 .9714 .0012 .2249
1.2930 .2538 .1780 .0149 .2219

DSL 1 .9784 .9971 .2611 .0516
1.1109 .2280 .1556 .0127 .2034

Note. The total number of values described by these statistics is 1890. Statistics for 95%
confidence intervals are given in the first row of each approach and statistics for the
width of the confidence intervals in the second row.

is easily explained by the fact that the interval widths are unduly large and
should therefore not lead to an overly positive evaluation.

The set of graphs provided in Figure 8.20 illustrates the trends of the cov-
erages and interval widths in S2. Again, only a small selection of approaches
is depicted to show overall trends in cases where some classes of approaches
do not differ markedly in performance. As representatives, DSL and HOr are
given. DSL stands for the random effects approaches as well as HS3 and HS4,
whereas HOr roughly represents all other approaches except for OP and HOT.
The latter two both show flat surfaces at a height of approximately .95 across
all levels of design variables for the coverage rates and interval width surfaces
similar to those of HOr shown in Figure 8.20. Hence, these two approaches
perform uniformly best in all cases but, again, it should be noted that HOT
does so with respect to µρz and OP with respect to µρ. Taking this into account,
OP seems to be the approach of choice in the present context.

The upper panels in Figure 8.20 show coverage rates and interval widths by
n and k. As expected, DSL shows larger widths of intervals than HOr and also
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Figure 8.20 Coverage rates and confidence interval widths in S2.

higher coverage rates. The coverage rates for DSL actually approach a value
of one even for small values of n and k. Thus, they are higher than can be
expected for the construction of 95% confidence intervals. This also stands in
contrast to the coverages of HOr attaining a value of .95 in limit. However, the
effect of bias emerges again in extreme combinations of high k and small n for
both approaches. As can be seen in the mid- and lower panels, DSL does re-
act to different values of ∆ρ in contrast to HOr which performs almost equally
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Table 8.13 Coverage Rates and Confidence Interval Widths in S3

Statistic

Approach Max. Mean Median Min. SD

HOd .9418 .7014 .7628 .0320 .2039
.6942 .1179 .0773 .0024 .1223

HS1 .9507 .7215 .7842 .1897 .1944
.7140 .1235 .0805 .0029 .1272

HS2 .9361 .7106 .7731 .1992 .1876
.6429 .1174 .0783 .0032 .1166

HS3 .9532 .9044 .9262 .4588 .0542
.6863 .1700 .1299 .0127 .1280

HS4 .9707 .9082 .9322 .4002 .0566
.7573 .1747 .1327 .0126 .1355

OP .9425 .7246 .7915 .1913 .1922
.7100 .1221 .0800 .0029 .1254

OP-RE .9970 .8059 .8696 .0024 .1953
.9283 .2041 .1522 .0150 .1637

Note. The total number of values described by these statistics is 1848. Statistics for
coverage rates are given in the first row of each approach and statistics for the widths
of the confidence intervals in the second row.

across all levels of ∆ρ. As a fixed effects approach, HOr therefore does not
reflect the additional variability introduced by larger universe parameter dif-
ferences. However, the results also suggest that DSL does overreact on these
differences in the sense of overestimating the heterogeneity variance. An ex-
amination of this impression will not be presented here but postponed to an
in-depth assessment of the estimators of heterogeneity variance in Section 8.6.

Coverage Rates and Interval Widths in S3 For a full evaluation of all ap-
proaches in S3 it would have been necessary to implement expected values of
the beta distribution in z-space (i.e., µζ) as a standard for comparison for the
approaches that use the Fisher-z transformation. As already noted, this was
considered not to be feasible. Accordingly, the following presentation has to
be restricted to approaches for which µρ can be used as a standard for com-
parison. As before, a table of overall results is presented for a comparison of
the performance of the approaches. Table 8.13 gives descriptive results for the
available approaches in this situation.

First, it is noted that none of the approaches yields the desired coverage
rate of .95 in mean or median. Somewhat surprisingly, HS3 and HS4 stand
out here with best performance amongst the approaches under consideration.
Although these approaches also show higher interval widths in relation to the
fixed effects approaches, they attain better coverage rates than OP-RE with
smaller mean confidence intervals. In contrast to the previous situations, OP
does not show acceptable performance. Mean and median coverage rates are
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Figure 8.21 Coverage rates and confidence interval widths in S3.

too small and the minimum coverage rate also shows that there are cases of
very bad performance for this approach. This is astonishing given the estima-
tor’s brilliant performance with respect to mean effect size estimation. Hence,
the additional variability in the universe of effect sizes is not adequately re-
flected in the computation of the standard errors in this FE approach, leading
to unacceptable performance in the construction of confidence intervals.
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The information presented in Table 8.13 shows that there are conditions for
all approaches in which they perform rather poorly. The series of graphs in
Figure 8.21 shows the results for some combinations of the design variables.

It can be gathered from the graphs in Figure 8.21 that HS3 generally retains
its coverage rates across the levels of the design variables whereas the results
for HS1 vary strongly. Here, HS3 also represents the results for HS4, and HS1
is depicted to stand for all other approaches available. The reason for this find-
ing lies in the adjustment of interval widths in HS3 for high values of σ2

ρ . As
can be seen in the lower right panel, for example, interval widths are becom-
ing larger the higher the heterogeneity variance (σ2

ρ ) is. This adequately reflects
additional uncertainty in estimating the limits of an interval which covers the
parameter of interest with a probability of .95. In contrast, HS1 (and all other
FE approaches) evidences much more stable confidence interval widths for all
values of σ2

ρ . The minimum values for coverage rates of about .40 are only at-
tained by HS3 and HS4 in very extreme cases of n = 8, k = 256 and large µρ in
combination with large σ2

ρ . The coverage rates rapidly increase with growing
n in this case and already show a value of .75 for n = 16 in the same case.

In summing up the results on coverage rates and interval widths, it can be
stated that in situations S1, S2, and S3 both HOT and OP showed very good
performance in absolute terms and in comparison to other approaches. Since
HOT is a Fisher-z based approach, OP should be preferred at least in situa-
tions of type S2. The picture of results is different in S3. Although HOT is not
available for a comparative evaluation, as an FE approach it is not suspected
to show good performance, especially not when furthermore taking the use of
the Fisher-z transformation in this approach into account. OP showed disap-
pointing performance in S3. The only well performing approaches emerged to
be HS3 and HS4. Although they did not reach coverage rates as prescribed by
the 1− α level of the confidence intervals, they appeared to be best amongst
the approaches under consideration. Hence, for different situations varying
recommendations can be given for the purpose of constructing confidence in-
tervals.

8.5 HOMOGENEITY TESTS

Tests of the homogeneity of effect sizes play a central role in meta-analysis and
are conducted for various purposes (see Chapter 4). The present section is de-
voted to an evaluation of these tests in the three situations of the Monte Carlo
study. Note that not all approaches and refinements provide distinct tests so
that only tests based on the Q-statistic as described in Chapter 5 are available.
The subsections are divided into standard methods, that is, the Q-test for the
various approaches on the one hand, and the HS methods on the other. Since
Hunter and Schmidt (1990; Hunter et al., 1982) also provide a standard Q-test
in addition to the tests unique to their approach, HS appears in both sections.
The special tests that Hunter and Schmidt provide are only widespread in I/O
psychology and have a completely different statistical rationale than the Q-
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Table 8.14 Rejection Rates for the Q-Test in S1

Statistic

Approach Max. Mean Median Min. SD

HOr .0623 .0492 .0499 .0095 .0058
.0175 .0105 .0104 .0011 .0019

HOd 1 .3572 .2191 .0512 .3162
1 .2357 .0808 .0098 .3080

HS .9412 .0878 .0535 .0190 .1105
.8853 .0337 .0115 .0011 .0873

OP-FE 1 .2018 .0859 .0005 .2524
1 .1319 .0266 .0001 .2430

Note. The total number of values described by these statistics is 420. Proportion for
tests at α = .05 are given in the first row of each approach and for tests at α = .01 in
the second row.

test. For this reason and for greater focus on the peculiarities of results for
these distinct procedures they will be separated from the Q-tests.

8.5.1 Homogeneity Tests Based on the Q-Statistic

For the results on the homogeneity tests, situations S1 versus S2 and S3 pro-
vide the two most relevant classes of situations. S1 is the homogeneous case
and S2 as well as S3 both represent different heterogeneous cases. The follow-
ing subsections are structured in correspondence with this distinction, where
S1 is used to investigate Type I error rates and the heterogeneous situations
are relevant to examine the power of the tests based on the Q-statistic.

8.5.1.1 Homogeneous Situation S1: Type I Errors The first examination
of results is concerned with overall performance of the proposed tests. The
results for tests both on a significance level α = .05 as well as α = .01 are
presented in Table 8.14.

As is shown in Table 8.14, only HOr and with strong reservations also HS
approximately reach the desired significance levels. All other approaches show
unacceptably large Type I error rates. Although HS performs better than HOd
and OP-FE, the minima, maxima, and standard deviations indicate very large
variability of test results in comparison to the Fisher-z-based approach HOr.
To investigate this variability, the rejection rates are depicted in the following
series of graphs by combinations of design variables. Figure 8.22 permits an
inspection of the different surfaces across all the dimensions of the design.

Approaches are again clustered for better visibility of the surfaces. OP-FE
is omitted for its general poor performance. The upper left panel illustrates
that excessive rejection rates occur for combinations of large k and small n for
HOd. HS also shows its largest values in this case. In marked contrast to these
findings, the upper right panel with a rescaled vertical axis indicates that HOr
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Figure 8.22 Rejection rates for the Q-test in S1, α = .05.

performs very well in S1. Although HOr deviates from the nominal α in the
same cases where HOd and HS perform worst, it actually shows low rejection
rates indicating good performance when the null hypothesis is true as is the
case in S1.

The mid-panels in Figure 8.22 show a similar picture. Excessive rejection
rates for HOd occur for large k and µρ. HS also performs poorly in such cases,
but HOr performs adequately in most situations. The same relative perfor-
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mance is observed in the lower panels for the three approaches depicted. A
worst-case scenario is given in the lower left panel for a combination of low
sample sizes coupled with a high value for the universe parameter. Hence, it
becomes clear that HOd performs most poorly overall for high values of µρ

when results are aggregated across values of k, small n seems to even exacer-
bate this problem.

The question arises how the distinct results of the approaches can be ex-
plained. In a Monte Carlo study based comparison of the HS and HOr ap-
proach, Alexander et al. (1989) showed similar differences between these ap-
proaches. They actually used a slightly different HS-estimator for µρ in com-
puting the Q-statistic that is equivalent to the one used in the present context
with constant n for all studies. As an aside, in contrast to the present study they
used different n for each study simulated. The fact that the results presented
here agree with those reported by Alexander et al. lends support to the claim
that a constant n for all studies does not lead to limitations in interpretation
in the given context. The same is true in comparison to Field’s study (2001),
which also used varying n within studies and reported similar results. With
reference to Snedecor and Cochran (1967), Alexander et al. (1989) attributed
the observed differences to the nonnormal distribution of the correlation coef-
ficients. Applying this explanation to the present results can explain the high
rates of HS for large values of µρ, but does not readily explain the values re-
ported for HOd being even more deviant from the nominal α-level. As pointed
out in Sections 3.3 and 5.5, it is the transformation of r to d that may be the
cause for intensification of the variability of the d values about the estimated
mean effect size. Additionally, the weights used to compute Q also vary with
d. They are smaller for higher d and thereby also introduce a further compo-
nent that amplifies variability in values to be summed to the Q-statistic. All
in all, the transformation of r to d results in homogeneity tests not suitable for
application.

8.5.1.2 Heterogeneous Situations S2 and S3: Power The first heteroge-
neous situation in which rejection rates of the homogeneity tests will be exam-
ined is S2. Results for the rejection rates by values of k and selected ∆ρ are
presented in Table 8.15.

The results in Table 8.15 show relatively low rejection rates when ∆ρ is small
for all approaches. As expected, rejection rates rise for higher values of k and
∆ρ. From the findings in the previous subsection, it is expected that HOd will
also show higher rejection rates in S2. This is indeed the case but the high Type
I error rates in S1 should be kept in mind when evaluating the performance of
HOd. A notable result shown in Table 8.15 is the relatively low power to detect
small differences between ρ1 and ρ2. Even in a meta-analysis of 256 studies,
the power to detect such effects is not impressively high. Moderate differences
between universe effect sizes of .30 are also only detected with an appreciable
number of studies (more than 16) for approaches with acceptable Type I error
rates in the homogeneous situation. In a situation with a very small number of
studies — potentially occurring in a meta-analysis when subgroups of studies
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Table 8.15 Rejection Rates for the Q-Test by k and ∆ρ in S2

k ∆ρ HOr HOd HS OP-FE

.1 .2112 .2972 .2089 .2242

.3 .5964 .6738 .5897 .6068
4 .5 .7858 .8539 .7766 .7911

.7 .8994 .9485 .8890 .8910

.9 .9736 .9930 .9628 .9442

.1 .2560 .3781 .2606 .3021

.3 .6667 .7655 .6655 .7141
8 .5 .8451 .9193 .8402 .8779

.7 .9445 .9832 .9389 .9517

.9 .9949 .9999 .9920 .9841

.1 .3190 .4878 .3337 .4133

.3 .7372 .8566 .7427 .8279
16 .5 .8999 .9695 .8993 .9505

.7 .9775 .9978 .9766 .9897

.9 .9999 1 .9997 .9992

.1 .3922 .6167 .4199 .5473

.3 .8025 .9335 .8136 .9230
32 .5 .9436 .9940 .9459 .9897

.7 .9950 1 .9953 .9996

.9 1 1 1 1

.1 .4685 .7491 .5134 .6882

.3 .8591 .9824 .8742 .9788
64 .5 .9743 .9998 .9775 .9996

.7 .9998 1 .9999 1

.9 1 1 1 1

.1 .5426 .8639 .6055 .8239

.3 .9055 .9984 .9227 .9973
128 .5 .9935 1 .9952 1

.7 1 1 1 1

.9 1 1 1 1

.1 .6096 .9425 .6910 .9293

.3 .9424 1 .9587 1
256 .5 .9995 1 .9998 1

.7 1 1 1 1

.9 1 1 1 1

Note. Proportion for tests at α = .05.

are examined — the power is only acceptable for large differences between the
universe parameters. This is the case for all of the approaches in Table 8.15.
Nevertheless, the results shown in this table indicate a very similar overall
performance of the approaches in S2.
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Figure 8.23 Rejection rates for the Q-test in S2, α = .05.

These results have to be qualified, however, by including the additional de-
sign variable n. The lower panels in Figure 8.23 show rejection rates across
different values of n. The upper panels depict the results of Table 8.15 but val-
ues omitted from the table are added to the graphs. The lower panels indicate
that rejection rates also depend on n. In general, the shapes of the surfaces are
again quite similar, not favoring any of the approaches in particular. The re-
sults in S2 show that medium effects sensu Cohen (1988, 1992) of .30 are only
detected with acceptable power when n and k are at least 32. Whereas this
may be considered a customary condition for n in most fields of correlational
research, this is not the case for k. Small effects (.10) are hardly detected by the
Q-test unless n and/or k are quite large.

In sum, for some constellations of the design variables’ levels the probability
to detect differences between universe parameters can be quite low. Although
including many studies in a meta-analysis raises power, even a large num-
ber does not guarantee sufficient power. The present case can be interpreted
as a situation arising from an unobserved dichotomous explanatory variable.
Since it is not always the case that such variables can be observed, indications
of their existence are of great interest to the meta-analyst. Because the use of
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explanatory models is sometimes conditioned upon the results of homogene-
ity tests, the results point to cases in which such conditional procedures are
problematic. Of course, the present examination is restricted to a two-point
distribution in the universe of studies, and different results may emerge for
more unobserved classes. The more general case of the homogeneity test per-
formance with a continuous mixing distribution is therefore also of interest.

The rejection rates for the approaches in S3 are shown in Table 8.16 for vary-
ing values of k and σ2

ρ , and also in an array of graphs in Figure 8.24.
As was the case in S2, rejection rates generally rise for higher values of k

and σ2
ρ . In contrast to S2, a continuous distribution is given in the universe

of studies and homogeneity tests are supposed to indicate variances of this
distribution different from zero. As the results in Table 8.16 show, this universe
variance in effect sizes is detected by the approaches only with acceptable rates
when k is at least 16 and variances are large. Small variances are likely to go
unrecognized even in meta-analyses with large k. Though HOd shows the
highest power among the approaches under investigation, this comes at the
cost of excessive rejection rates in S1. Figure 8.24 provides an overview of
changes in rejection rates for varying values of σ2

ρ , n, and k.

The upper panels in 8.24 show that for k and σ2
ρ the rejection rates are only

satisfactory when both values are relatively high. The mid-panels also indicate
decreasing rejection rates for very small n and the lower panels show that these
trends do not strongly depend on values of µρ. Hence, almost irrespective of
the size of µρ in the universe of studies, an appreciable number of studies is
needed to detect even moderate heterogeneity at a power level convention-
ally considered as acceptable. In sum, all tests show somewhat unsatisfactory
rejection rates in S3 and cannot safely be taken as indicants of heterogeneity
under all configurations of the design variables.

Again, this result is quite important if the Q-test is considered as a decision-
making device for the choice between fixed and random effects models as in
the so-called conditional random effects model. The results of the Q-test may
lead researchers to an unwarranted application of the random effects model
in S1 especially when using HOd. As a consequence, a loss of power for sig-
nificance testing would result. Alternatively, the application of the Q-test may
lead to the application of fixed effects models in heterogeneous situations like
S2 and S3. In the latter case, tests and confidence intervals would result in
unduly small widths for intervals and overpowered tests for most approaches.

8.5.2 The Hunter-Schmidt Approach to the Test of Homogeneity: The
75%- and 90%-rule

In Section 5.3, the 75%-rule by Hunter and Schmidt (1990) was introduced. In
short form, it states that if 75% of the observed variance of effect sizes can be
explained by artifacts — especially sampling error of the estimator — then the
rest of the variance in observed effect sizes can be attributed to unobserved
artifacts and homogeneity is therefore given. As the indicant of homogeneity
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Table 8.16 Rejection Rates for the Q-Test by k and σ2
ρ in S3

k σ2
ρ HOr HOd HS OP-FE

.0025 .1873 .2720 .1844 .1988
.01 .3220 .3988 .3162 .3416

4 .0225 .4712 .5452 .4614 .4888
.04 .5528 .6214 .5421 .5818

.0625 .6473 .7120 .6331 .6720

.0025 .2515 .3709 .2547 .2960
.01 .4409 .5462 .4378 .5031

8 .0225 .6087 .7008 .5999 .6690
.04 .6949 .7794 .6828 .7684

.0625 .7824 .8552 .7661 .8458

.0025 .3221 .4846 .3348 .4153
.01 .5483 .6839 .5513 .6652

16 .0225 .7111 .8210 .7064 .8189
.04 .7916 .8884 .7812 .9016

.0625 .8675 .9406 .8534 .9510

.0025 .4002 .6132 .4253 .5535
.01 .6361 .8063 .6478 .8091

32 .0225 .7885 .9143 .7887 .9292
.04 .8628 .9603 .8556 .9755

.0625 .9264 .9859 .9160 .9933

.0025 .4806 .7441 .5198 .6969
.01 .7119 .9084 .7327 .9200

64 .0225 .8501 .9745 .8550 .9848
.04 .9164 .9936 .9123 .9977

.0625 .9650 .9989 .9584 .9998

.0025 .5548 .8574 .6095 .8297
.01 .7782 .9736 .8051 .9810

128 .0225 .8997 .9973 .9067 .9988
.04 .9555 .9998 .9536 1

.0625 .9892 1 .9857 1

.0025 .6228 .9389 .6927 .9341
.01 .8327 .9970 .8639 .9980

256 .0225 .9382 1 .9457 1
.04 .9831 1 .9817 1

.0625 .9989 1 .9983 1

Note. Proportion for tests at α = .05.

in this procedure, the ratio of the estimated sampling error over the observed
variance of effect sizes is considered. The ratios are compared to a value of
.75 for the 75%-rule and to .90 for the 90%-rule, respectively. The 90%-rule is
usually considered to be more suitable for Monte Carlo studies like the present
one, where no artifacts are part of the design (see Cornwell & Ladd, 1993; Sack-
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Figure 8.24 Rejection rates for the Q-test in S3, α = .05.

ett et al., 1986), and for this reason is also included in the results. If the ratios
are larger than or equal to the mentioned values, homogeneity is assumed to
prevail. In analogy to the hypothesis tests for homogeneity already presented,
the rates of rejecting the hypothesis of homogeneity by using these rules are
assessed. Since no artifacts are present in the Monte Carlo study, the situations
correspond to cases in which all possible artifacts have been corrected for.
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Table 8.17 Rejection Rates for 75%- and 90%-Rule in S1

Statistic

Max. Mean Median Min. SD

HS-75% .7339 .1035 .1101 0 0.0916
HS-90% .9637 .2687 .2622 .0660 0.1194
HS-ratio 6.0165 1.5040 1.0859 .6759 0.9538
Note. The total number of values described by these statistics is 420. HS-75% = Pro-
portion of meta-analyses indicating heterogeneity according to 75%-rule, HS-90% =
Proportion of meta-analyses indicating heterogeneity according to 90%-rule, HS-ratio
= Ratio of estimated variance due to sampling error (σ̂2

e ) over observed variance of
effect sizes (σ̂2

r ).

The rejection rates in S1 for applying both rules along with descriptive
statistics for the values of the ratio are provided in Table 8.17.

Since the 75%- and 90%-rule are not tests in a formal statistical sense it is not
clear what the standards of comparison are. Adopting the procedures applied
in previous Monte Carlo studies on the subject (e.g., Cornwell & Ladd, 1993;
Sackett et al., 1986; Sagie & Koslowsky, 1993), the tests are expected to falsely
indicate heterogeneity only in 5% of the cases in analogy to standard statistical
tests. By applying this criterion to the results in S1 in Table 8.17 it is recognized
that neither of the rules attains a value of 5% and both rules indicate hetero-
geneity in a homogeneous situation far too often. Although the mean value
of the HS-ratio is clearly larger than one, this does not necessarily mean that
only a small portion of the ratios reaches values smaller than the criteria. As is
evident from the standard deviation, there is also high variability among the
ratios leading to the relatively high rejection rates. Results not shown here in-
dicate that the minima reported in Table 8.17 only occur in cases of maximum
k and n (both 256). Because the value in the denominator of the ratio is simply
the observed variance of the effect sizes and this variance actually is sampling
error in S1, the results point to underestimates of the sampling error variance
by the term in the numerator.

Additional information on the changes in the rejection rates across values of
n and µρ in S1 can be seen in Figure 8.25. Both rules are depicted in this graph
and represented by different surfaces.

The tendency for very large rejection rates to occur for large effects and
small n is clearly visible. Moreover, both surfaces maintain a height that in-
dicates rejection rates generally too high for both rules, though the 75%-rule
performs better in S1, — a fact that is trivial — it does not perform satisfac-
torily. This is rather surprising at first glance since an assumption that about
75% of observed variance can simply be ignored and attributed to some unob-
served causes of data turbulences seems quite liberal and favoring homogene-
ity. Ironically then, the seemingly liberal rules lead to a false rejection of the
hypothesis of homogeneity far too often.
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Figure 8.25 Rejection rates for the 75%- and 90%-rule in S1 by n and µρ.

Table 8.18 Rejection Rates for 75%- and 90%-Rule in S2

Statistic

Max. Mean Median Min. SD

HS-75% 1 .7814 .9995 0 .3219
HS-90% 1 .8635 1 .0838 .2284
HS-ratio 6.9055 .5447 .3944 .0122 .5962
Note. The total number of values described by these statistics is 1890. HS-75% = Pro-
portion of meta-analyses indicating heterogeneity according to 75%-rule, HS-90% =
Proportion of meta-analyses indicating heterogeneity according to 90%-rule, HS-ratio
= Ratio of estimated variance due to sampling error (σ̂2

e ) to observed variance of effect
sizes (σ̂2

r ).

None of the rules therefore seems to represent a viable alternative to the Q-
test in S1. A trivial consequence of the high rejection rates in S1 is a better
performance in heterogeneous situations. Hence, it should again be kept in
mind that these “tests” do not perform well in S1 when inspecting the results
for other cases.

The results for the next two situations, S2 and S3 are shown in Tables
8.18 and 8.19, respectively. The results for S2 shown in Table 8.18 indicate
a smaller mean ratio and high rates of rejecting the assumption of homogene-
ity, as would be expected in a heterogeneous situation and by the high baseline
of rejection rates in S1.

If the conventional level of 80% rejection rates is considered satisfactory for
such a “test” and applied to evaluate the results, both rules approximately
reach this criterion overall. The results for S3 in Table 8.19 lead to the same
conclusion based on the mean values of rejection rates.

However, minimum values and standard deviations also indicate that there
are considerable differences across levels of the design variables. In contrast
to S1, the ratios increase for larger values of n, k, and µρ, reaching their maxi-
mum when all design variables take on their highest values. Examples for the
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Table 8.19 Rejection Rates for 75%- and 90%-Rule in S3

Statistic

Max. Mean Median Min. SD

HS-75% 1 .7076 .9035 0 .3391
HS-90% 1 .8130 .9719 .0795 .2479
HS-ratio 5.0551 .6991 .5736 .0163 .6650
Note. The total number of values described by these statistics is 1848. HS-75% = Pro-
portion of meta-analyses indicating heterogeneity according to 75%-rule, HS-90% =
Proportion of meta-analyses indicating heterogeneity according to 90%-rule, HS-ratio
= Ratio of estimated variance due to sampling error (σ̂2

e ) to observed variance of effect
sizes (σ̂2

r ).
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Figure 8.26 Rejection rates for the 75%- and 90%-rule in S2 and S3.

change in rejection rates for both rules as they occur across levels of the design
variables are presented in Figure 8.26.

The general trends look similar to those reported for significance tests in
previous sections with smaller rejection rates for lower n, ∆ρ, and σ2

ρ , respec-
tively. The graphs in Figure 8.26 support the notion of some deficiencies for
both rules when the levels of design variables are not at least of medium value.

In sum, the 75%- and 90%-rule of Hunter and Schmidt do not perform much
better in all three situations in comparison to homogeneity tests presented in
preceding subsections. Results not provided here show that, in general, power
to detect heterogeneity can become quite low for combinations of low n, ∆ρ,
and σ2

ρ , respectively. Due to the very high rejection rates in S1 and low power
in many conditions in heterogeneous situations, the rules should be used with
caution. Especially when n and the assumed heterogeneity variance are rather
small, decisions about the application of random effects approaches or ex-
planatory models and conclusions concerning the generalizability of an effect
should not be solely based on the results of the 75%- or 90%-rule.
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8.6 ESTIMATION OF HETEROGENEITY VARIANCE

The estimation of the variance of effect sizes in the universe of studies is an im-
portant part of random effects models and also of the HS-type meta-analysis.
It is a parameter of interest in itself, like the expected value in the universe
of studies. It may, however, also be used in further computations in meta-
analysis. For example, heterogeneity variance is used to construct so-called
credibility intervals as proposed by Hunter and Schmidt (1990). Credibility in-
tervals are constructed analogously to confidence intervals but use the stan-
dard deviation of the heterogeneity variance instead of the standard error of
the estimator to arrive at estimates for the interval limits. Credibility intervals
are not part of the Monte Carlo study and are therefore not considered here.

The most prominent estimators of heterogeneity variance in applications of
meta-analysis in psychology, DSL and HS, will be evaluated in this section.
In addition, the estimator OP-RE presented in Subsection 5.4.2 will also be
evaluated to assess its performance in relation to the standard approaches.

As was the case in the context of estimating µρ, the estimated parameter in
the various situations will first be considered. In S1, there simply is no vari-
ance to be estimated, that is, it is zero. The behavior of the estimators will
be examined in two versions. First, the results for the truncated variance esti-
mator will be reported, and second, the results for the non-truncated version
thereafter. Recall from Section 5.4.1 that the truncated variance estimator in
the DSL approach is σ̂2

ζ+ = max{0, σ̂2
ζ }. That is, negative variance estimates

which may arise in practice are set to zero for the truncated estimator. The
non-truncated version does not set negative estimates to zero. Of course, an
analogue procedure is applied in r-space when HS and OP-RE are considered:
σ̂2

ρ+ = max{0, σ̂2
ρ}.

Since the DSL estimator of heterogeneity variance is based on Fisher-z trans-
formed correlation coefficients, the corresponding parameter is also in z-space.
This is mainly of importance for situations S2 and S3, where the universe vari-
ances have to be computed in order to assess biases. In S2, the variance of the
universe effect sizes is computed as follows:

σ2
ζ =

(
ζ1 − µζ

)2 +
(
ζ2 − µζ

)2

2
.

For S3, no simple form to compute the variance in z-space resulting from a
beta distributed variable P is available. Thus, variances have to be determined
via

σ2
ζ =

∫ 1

−1

(
tanh−1 r

)2
f (r)dr− µ2

ζ ,

where f (r) denotes the beta probability density function. µζ and σ2
ζ are in z-

space. Note that µζ is given by µζ =
∫ 1
−1 tanh−1(r) f (r)dr. The various values

as used in the Monte Carlo study can be found in Tables A.1 and A.2 in the
appendix.
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Table 8.20 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S1

Statistic

Max. Mean Median Min. SD

HS-nt .0110 .0014 .0001 −.0001 .0027
HS .0433 .0042 .0013 0 .0068
OP-RE-nt .1289 .0099 .0001 −.0144 .0249
OP-RE .1289 .0130 .0015 0 .0264
DSL-nt .0009 −.0013 −.0001 −.0164 .0031
DSL .0622 .0070 .0024 .0001 .0116
Note. The total number of values described by these statistics is 420. -nt designates
non-truncated estimators.

8.6.1 Homogeneous Situation S1

In the homogeneous situation, the estimators presented in Chapter 5 generally
overestimate the heterogeneity variance. This is due to the truncation of the re-
sulting estimates at a value of zero when values less than zero are encountered.
To assess whether the non-truncated versions actually estimate the universe
parameter precisely and how far off the truncated versions are from zero, both
versions are provided in the following presentation. The truncated versions
therefore correspond to the estimators used in practice and the non-truncated
versions are only given for comparison. The non-truncated estimators are la-
beled by the additional suffix -nt.

In Table 8.20 results for the biases of the estimators in S1 are presented.
The values are computed in analogy to the biases of the estimators of µρ (see
Section 8.2.1).

Unfortunately, the biases of variances in Table 8.20 and also those presented
in the following are not directly comparable because the values for HS and OP-
RE are given in r-space and those of DSL in the space of z. Nevertheless, in the
given situation one would expect the biases of DSL to be uniformly larger to a
certain degree than the variances of HS and OP-RE due to the characteristics
of the different spaces. Recall from Section 3.1 that the Fisher-z transformation
stretches the values of r particularly in the boundary regions (see also Figure
3.1) and therefore leads to larger variances in z-space as compared to r-space.
Trivially, the truncated values are always at least as large as their non-truncated
counterparts.

As evidenced by the minimum values in Table 8.20, some remarkable nega-
tive estimates indeed emerge in some cases. Interestingly, the maxima of both
versions for the estimators do not always agree. This is due to rare cases in
which very large variances occur for the estimates and a large portion of vari-
ance estimates is less than zero. The values reported in Table 8.20 indicate
some deficiencies associated with OP-RE in relation to DSL and HS. The OP-
RE estimator shows maximum values far too large to be acceptable. The mean
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Figure 8.27 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S1 by k and n.

and median values shown, however, indicate rather good performance of the
approaches overall.

To elucidate under which constellations of the design variables the estima-
tors perform better or worse, a series of graphs is presented in Figure 8.27.
Again, an array of graphs shows the estimators’ performance across combina-
tions of the design variable levels of k and n.

The estimators’ biases shown in Figure 8.27 are only given for the truncated
versions to focus on findings relevant for the application of the methods in
practice. In general, all panels indicate good performance of the estimators for
large values of the design variables. However, DSL obviously overestimates
σ2

ζ when n and k are very small and also retains a positive bias for all values
of k when n is very small. This is due to the truncation of the variances. The
same shape of surface emerges for HS in the upper right panel but the biases
for combinations of a small number of studies and very small sample sizes ap-
pear smaller than those of DSL. Since these two estimators operate in different
spaces (r vs. z), it is not perfectly clear which estimator actually shows larger
bias in comparison. The lower panel gives the results for OP-RE and indicates
a very poor performance of the estimator for small values of n across all values
of k. Only when n grows larger and reaches a value of approximately 64 does
the estimator show acceptable performance.
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Figure 8.28 Bias of σ̂2
ρ ((HS & OP-RE) and σ̂2

ζ (DSL) in S1 by k and µρ.

It is, of course, also of interest whether biases of the estimators vary across
values of the universe effect size. Figure 8.28 provides graphs for the design
dimensions k and µρ.

For DSL and HS, both upper panels in Figure 8.28 show an improved per-
formance for larger values of k. DSL shows a relatively stable performance
across all values of µρ, but it is acknowledge that the slope of the surface indi-
cates slightly better performance for larger values of µρ. The results depicted
in the figure suggest that at least a modest number of studies (approximately
32) have to be available when using this approach for a sufficiently precise es-
timation of the heterogeneity variance (i.e., very close to zero). HS, in contrast,
performs best when µρ is large. This tendency is most obvious for a small
number of studies. Unfortunately, for values of ρ suspected to occur often in
practice (around .40) the bias still seems non-negligible. Although the absolute
values seem small on the vertical axis, it should be remembered that a value of
.01 corresponds to a standard deviation of .10. Hence, there seems to be non-
trivial bias for the HS estimator for small values of k and moderate to low µρ

in the universe of studies. As is the case for DSL, when the number of studies
is 32 or larger, the bias seems negligible for HS.

Unlike these first two approaches, OP-RE strongly varies in biases across
levels of µρ, notwithstanding how many studies are aggregated, with a max-
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Figure 8.29 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S1 by n and µρ.

imum bias at a value of approximately µρ = .40. It is again suspected that
this phenomenon is caused by the weighting scheme of OP-RE. The region of
maximum bias falls near the point of µρ = .347 where the biggest change in the
variance of G occurs (see Section 3.1). A big change in variance transfers to big
differences in weights since the variance estimates are used in the weighting
scheme of the OP-RE approach. If this were true, then the bias should dimin-
ish for larger sample sizes. This is indeed the case as the lower panel in Figure
8.29 shows. This figure completes the results for the biases of σ̂2

ρ and σ̂2
ζ in S1.

Again, it can clearly be seen that for very low values of n none of the esti-
mators shows acceptable performance but performance quickly gets better and
reaches acceptable levels for sample sizes supposed to be encountered most of-
ten in practice (32 or larger). Poor performance for the approaches only occurs
for very small n. Though DSL in the upper left panel does not seem to reach
small biases for growing n as fast as HS, the reader is again cautioned against
such a comparative interpretation because of the different spaces in which DSL
and the other approaches operate. Overall, at least the estimators HS and DSL
seem to show acceptable performance in S1 when n and k are not very small.
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Table 8.21 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S2

Statistic

Max. Mean Median Min. SD

HS-nt .0665 .0034 .0009 −.0253 .0087
HS .0665 .0044 .0014 −.0253 .0096
OP-RE-nt .2739 .0440 .0184 −.0130 .0560
OP-RE .2739 .0452 .0189 −.0018 .0559
DSL-nt .2559 .0121 .0030 −.0115 .0254
DSL .2566 .0150 .0051 −.0099 .0262
Note. The total number of values described by these statistics is 1890. -nt designates
non-truncated estimators.

8.6.2 Heterogeneous Situations S2 and S3

The heterogeneity variance estimators become especially important in cases
where σ2

ρ 6= 0. In such cases, it can be evaluated whether the truncated versions
of the estimators still provide overestimates, as is the case for some combina-
tions of levels of design variables in S1. Additionally, the two situations S2
and S3 enable an evaluation of the estimators for a discrete distribution in the
universe of studies and for a continuous distribution. For the latter, it should
be kept in mind that the beta distribution strongly deviates from normality the
larger µρ is. This is considered to be more adequate for r-space in compari-
son to a truncated or otherwise distorted normal distribution, for example, as
was used in other Monte Carlo studies (e.g., Overton, 1998; and probably also
Field, 2001).

Table 8.21 provides overall results of the three estimators in both versions
available. As can be seen, differences between the truncated and non-truncated
versions of the estimators do not differ substantially. The focus will therefore
be exclusively laid on the truncated estimators.

All three approaches differ in biases. HS is close to the variances to be es-
timated amongst the approaches under consideration. Mean and median val-
ues indicate a good overall performance but minima and maxima also show
that there are conditions under which the estimator over- or underestimates
the universe variance of effect sizes. OP-RE, in contrast, generally overesti-
mates variances, in some cases to a very large degree. DSL shows a slight
tendency for overestimation as indicated by the values in the table but clearly
not as strong as OP-RE. The measures of central tendency for DSL close to
zero suggest a performance similar to HS. Yet, the maximum values for DSL
also suggest that the tendency for overestimation can be strong in some cases.
Unfortunately, this is no unequivocal indicator for strong overestimation be-
cause it is the bias computed in z-space. To elucidate conditions under which
the estimators do not perform very well, a series of graphs is provided once
more.
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Figure 8.30 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S2 by n and k.

The conditions for largest biases of DSL and HS, indicated by the upper
panels in Figure 8.30, are again cases of low n and especially k. The combina-
tion of both low n and k represents the worst case in terms of bias. Unlike the
results presented for S1, the biases for these approaches are generally high for
k less than 16, irrespective of n. Absolute values for biases are also different for
each of these estimators in comparison to the results in S1.

A very different shape of surface emerges again for the bias of OP-RE. Re-
sults for this estimator indicate a poor performance for low n whereas biases
decline for larger n, irrespective of k. The surfaces of DSL and OP-RE do not
approximate a value of zero bias for larger k and n, respectively. Note that
this is actually the case for HS, which can be regarded as performing best in
this respect. The biases of DSL and OP-RE instead converge to some nonzero
positive value. This is due to the fact that for both estimators biases also very
strongly vary for different values of ∆ρ. This is illustrated in Figure 8.31 where
the estimators operating in r-space are shown in one panel. The upper panels
provide biases for ∆ρ by n and the lower two for ∆ρ by k.

Both panels illustrate the rising bias both for DSL and OP-RE for larger val-
ues of ∆ρ. The results explain why the values to which these approaches con-
verge (as shown in Figure 8.30) are larger than zero. The larger the difference
between universe values in S2, the larger are the biases of DSL and OP-RE.
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Figure 8.31 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S2 by n and ∆ρ as well as k
and ∆ρ.

In the case of OP-RE this is suspected to be caused by the weighting scheme,
whereas in the case of DSL — though biases are not directly comparable in
absolute terms — this is proposed to be a result of transformation into z-space.
In contrast to the performance of these two approaches, HS shows a very good
performance in S2 and seems to be the approach of choice amongst the ones
available in this situation. Cautions against the use of the HS estimator appear
reasonable in cases of small k (i.e., k < 16), especially when large differences
between effect sizes in the universe if studies are suspected.

Finally, the results for biases in S3 are presented, the situation with a contin-
uous distribution in the universe of studies. Table 8.22 provides overall results
first.

The results in Table 8.22 seem to indicate a much better overall performance
of DSL as compared to the previous situation. However, due to difficulties in
directly comparing variances in situations of type S2 and S3 as well as com-
plications arising from interpreting absolute values for biases in z-space, the
indication of a better performance are not strong. HS shows very small mean
bias whereas OP-RE again strongly overestimates universe variances of effects
sizes. Again, maximum and minimum values indicate varying performance of



178 Results

Table 8.22 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S3

Statistic

Max. Mean Median Min. SD

HS-nt .0121 −.0001 −.0001 −.0193 .0036
HS .0433 .0014 0 −.0193 .0059
OP-RE-nt .2161 .0237 .0062 −.0162 .0373
OP-RE .2161 .0255 .0074 −.0147 .0376
DSL-nt .0243 .0008 .0003 −.0154 .0029
DSL .0648 .0047 .0010 −.0129 .0099
Note. Valid values for all entries are 1848. -nt designates non-truncated estimators.
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Figure 8.32 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S3 by n and σ2
ρ .

the approaches across levels of the design variables. Interestingly, the maxima
for the truncated versions of the HS and DSL estimators occur in cases sim-
ilar to S1, that is, for smallest values of k, n, and σ2

ρ . In all other cases both
approaches show smaller biases.

Graphs are finally presented to assess the performance of the approaches in
various design regions. Figure 8.32 illustrates the results for n and σ2

ρ .
The left panel in this figure shows that overestimation is larger for DSL only

for very small n. With sample sizes larger than 16, the bias seems negligible.
In the right panel of Figure 8.32, both HS and OP-RE are depicted. The high
biases of OP-RE for small n are clearly visible. Since OP-RE is r-based and
does not use the Fisher-z transformation, the absolute values for biases can be
deemed extremely large. Furthermore, biases strongly raise for OP-RE with
increasing values of σ2

ρ . This is neither true for DSL nor HS. The results for
HS indicate that biases are only elevated for small n and small σ2

ρ , a case that
approaches homogeneity. This is however, not visible in the right panel of Fig-
ure 8.32 since the surface of OP-RE covers this region. As was highlighted in
the context of presenting the results in S1, the biases for HS can be considered
as non-negligible in some extreme cases in this design region. Nevertheless,
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Figure 8.33 Bias of σ̂2
ρ (HS & OP-RE) and σ̂2

ζ (DSL) in S3 by k and σ2
ρ .

biases are generally relatively small for the HS approach in S3. Although DSL
also shows a rather good performance in S3, HS appears as the most recom-
mendable approach of the three approaches under examination for this situa-
tion, since it shows the smallest biases and provides estimates in the space of
r.

The next two panels in Figure 8.33 give a very similar impression of the
relative performance of the approaches across values of k and σ2

ρ . For high
universe variances, biases of DSL and OP-RE are rather large. On the other
hand, HS shows small biases in most cases, albeit the values evidently also
vary across levels of k and σ2

ρ . The trend of larger biases across values of σ2
ρ is

the opposite as compared to the other two approaches. High variances seem
to be estimated with appreciable precisions whereas low variances are over-
estimated. This is due to the truncation in the HS estimator. Results for the
non-truncated version, not shown here, indicate almost zero bias in all regions
of the design, in particular also those for which values are slightly elevated in
Figure 8.33.

The last graphs provided to assess biases are given in Figure 8.34. They
underscore the generally good performance of HS, as is evident in the upper
right panel. Although biases are not zero across all levels of the design vari-
ables, the absolute values are very small. DSL is depicted in the upper left
panel and does not show a clear trend of bias across levels of σ2

ρ and µρ. Nev-
ertheless, absolute biases are also small in absolute value for this approach.
OP-RE again shows some variation in biases across levels of the design vari-
ables with largest biases occurring for combinations of large µρ and large σ2

ρ .
Due to the large biases shown in all design level combinations in S3, it is cer-
tainly no interesting alternative to the other two estimators.

In sum, despite small overestimation of the truncated version of the HS es-
timator in S1, it seems to provide the best estimator of heterogeneity variance
amongst the three approaches examined. The cases where HS shows overes-
timation of heterogeneity variance are not likely to be encountered often in
practice, but are of interest to find the boundary values for levels of design
variables in order to caution against potential problems in estimation. The bias
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of DSL was only examined in z-space, so some reservations with respect to a
negative evaluation are in order. The performance of this estimator nonethe-
less showed variation in the Monte Carlo study that does not let it appear as
a promising alternative in comparison to the simple HS estimator. Further-
more, there is no option available to date to transform the results of the DSL
estimator into r-space. Hence, variance estimates are in z-space and hard to
interpret. This is another limitation of this approach which makes its use in
practical applications of meta-analysis unattractive.



Part IV

Putting It All Together





9
Synopsis of Statistical Methods and

Monte Carlo Study Results

The statistical methods for meta-analysis of correlations were outlined in this
book and classified with respect to a series of characteristics. The main relevant
characteristics for the comparison of approaches were identified to be a) the ef-
fect size measure used, b) the weighting scheme used, and c) the underlying
statistical model. Although these classificatory aspects are not mutually ex-
clusive, they are nevertheless useful to differentiate between approaches with
reference to characteristics that cause differences in results.

Effect Size Used in the Approaches The coefficients under examination were

• the untransformed correlation coefficient r,

• the Fisher-z transformed correlation z,

• a bias-corrected mean Fisher-z transformed correlation zHot,

• a bias-corrected untransformed correlation coefficient G, and

• the r-to-d transformed d.

For the untransformed correlation r it was shown that it is biased with re-
spect to ρ and that the variance of the estimator depends on ρ. Fisher-z trans-
formed correlations are biased as well but they have the desirable property
that their variance only depends on the sample size and not on the popula-
tion parameter. Hotelling (1953) has analyzed the bias both of r and z and
proposed several corrections which were presented in Part II. Of these correc-
tions, a bias-correction for mean z was considered to be especially attractive
for use in meta-analysis and was incorporated as an independent approach in
the subsequent comparison of approaches. The UMVU estimator presented by
Olkin and Pratt (1958) was also considered and it was shown that its variance
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does also depends on the population parameter. Finally, the transformation of
r to d was also included because of its high relevance for practical applications
meta-analysis. This offered the opportunity to examine whether the transfor-
mation leads to different meta-analytic results when computations are based
on the transformed d instead of r or z. Some of these effect sizes are used in
well-known and often applied meta-analytic approaches (r, z, and d) whereas
others (bias-corrected zHot and G) — interestingly those with desirable prop-
erties with respect to bias — are not widely known and used.

Many of these effect sizes involve what can be called a “change of space”.
That is, there is a change from r-space to z-space by application of the Fisher-
z transformation and a change from r-space to d-space by the corresponding
conversion formula. In more mathematical parlance, this is called change of
variable. The initial motivation for the former change of space was to circum-
vent problems with the rather untractable probability density function of R.
The motivation for the latter is simply the need to bring available research
findings into a common space to carry out the meta-analytic computations of
an approach. Hence, both kinds of transformations are justified in the meta-
analytic context. The change of space, basically designating the use of a non-
linear transformation of the correlation coefficient r to either z or d, was hy-
pothesized to be a cause for differences in results between approaches. When
meta-analytic computations are carried out in the “transformed space” (z or
d) and computational results are transformed back into r-space subsequently,
then differences to results from computations based on r can be expected.

Weighting Schemes The weighting scheme used in aggregating effect sizes
of k studies was pointed out to be another important characteristic. There are
basically two variants of weights in meta-analysis of (transformed) correla-
tions: sample size and reciprocals of the estimator’s variance. The former has
the rather simple rationale of giving those studies higher weight that provide
“more evidence”. Of course, larger studies are simultaneously also thought to
provide more precise estimates of the parameter in question (assuming consis-
tency). Weighting by the reciprocals of the estimator’s variance has a clearer
statistical rationale as these weights are optimal in the sense that they provide
a pooled estimator with minimum variance. Furthermore, it can be shown that
under certain assumptions these weights are also those of the maximum like-
lihood estimator for the universe parameter in a fixed effects situation (for a
proof, see Böhning, 2000, pp. 101–102). Hence, weighting by the reciprocal of
the estimator’s variance has very desirable statistical properties.

However, it was repeatedly argued in this book that under certain circum-
stances the optimal weights become suboptimal. The first reason leading to
bias in the pooled estimator in the present context is lack of knowledge about
the variance, and hence the need to plug in estimates in the weights. The above
mentioned dependency of some estimators’ variance on the universe parame-
ter and small sample sizes making the individual estimates highly variable ex-
acerbate the problem. This already points to the second cause for bias, namely,
the dependency of the variance on the universe parameter. These two causes
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together produce the undesirable effect of bias in some estimators. It becomes
particularly problematic when the fixed effects model is used instead of the
random effects model (see below) in a situation where the latter is appropri-
ate. In this case, this dependency leads to bias even when n grows large.

Meta-Analytic Models The presented models were the fixed effects model,
the random effects model, mixture models, and hierarchical linear models. The
two models of highest relevance for the classification of approaches are the FE
and RE model. The difference between the FE and RE model is the conceptu-
alization of the universe of studies as characterized either by a single constant
parameter (ρ; FE; homogeneous case) or by a random variable (P; RE; hetero-
geneous case). In the RE model, the variance of P (heterogeneity variance) is
always some positive value, whereas in the FE model it is zero by definition.
Hence, approaches categorized as using the FE model do not include estima-
tors for heterogeneity variance whereas in approaches using the RE model they
are an integral part. In addition to estimating the heterogeneity variance, it is
also used in the weights in approaches using the RE model.

As examples of more general models for meta-analysis, mixture models and
HLM were introduced. In the latter case, it was shown that the FE and RE
model are special cases, thereby revealing in what respect these two models are
special or limited. In contrast to HLM, mixture models include latent variables
as causes for heterogeneity of effects. These models were used to conceptualize
three situations to which the approaches under examination may be applied.

Situations The first situation (S1) represented the homogeneous case for
which FE model approaches are appropriate. The second situation (S2) was
a heterogeneous situation characterized by a discrete distribution in the uni-
verse of studies. The examination in this book was limited to a dichotomous
latent variable where categories have equal weights, hence a two-point uni-
form distribution. The third situation (S3) was characterized by a continuous
latent variable, thus also qualifying as a heterogeneous case, and the subse-
quent presentation focused on the beta distribution. For both S2 and S3, RE
model approaches are appropriate.

Approaches The specific approaches for meta-analysis of correlations in com-
mon use in the social sciences were outlined in Part II and details on the com-
putational procedures were given. In addition, refinements were also pre-
sented that have not yet been widely applied. A concise overview of the ap-
proaches that provides their classification according to the above mentioned
characteristics and also specifies the homogeneity test and whether hetero-
geneity variance is estimated, is given in Table 9.1.

There are several things to note with regard to the entries in Table 9.1. Firstly,
although HOT is characterized by the effect size z, the defining characteristic of
this approach is actually a correction of the mean z resulting from aggregation
as done in the HOr approach. Secondly, the weights are given as used in the
approaches but it can be easily identified which of them are solely based on
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Table 9.1 Overview of Approaches

Effect Size Weight Model Homog. Heterog.
Approach Test Variance

HOr z n− 3 FE Q No
HOT z n− 3 FE – No
HOd d σ̂−2

D FE Q No
RR z n FE – No
HS r n RE? 75% & Q Yes
DSL z ( 1

n−3 + σ̂2
ζ )−1 RE – Yes

OP G n FE – No
OP-FE G σ̂−2

G FE Q No
OP-RE G (σ̂2

G + σ̂2
ρ )−1 RE – Yes

Note. – = redundant to other approaches or not included in Monte Carlo study.

n and which incorporate estimated variances. Thirdly, although the weights
of the HOr approach, for example, are only based on n, these are the optimal
weights in the above mentioned sense. This is due to the fact that in the case of
Fisher-z transformed correlations the variances are (n− 3)−1. Hence, such ap-
proaches use the optimal weights but do not suffer from the above mentioned
problems. Fourthly, apart from a minor difference in testing procedures, RR
is basically identical to HOr. The weight as given in Table 9.1 for the RR ap-
proach could have also been the same as for HOr according to the proponents
of the RR approach. Fifthly, the classification of the HS approach as belong-
ing to the RE model class is not entirely clear. This is indicated by a question
mark but it is also recognized that the HS approach is mostly an RE approach
in conceptualization. Lastly, for some of the approaches there is no entry in
the column labeled “Homog. Test” because first, the test would be identical to
others (e.g., HOr, HOT, RR), second, a plausible test is not included in the sub-
sequent Monte Carlo study (OP), or such a test would simply make no sense
(DSL, OP-RE).

Estimated Parameters in the Universe of Studies It was shown that dif-
ferences between approaches in the effect size used are very important with
respect to the estimated universe parameter. Whereas µρ, the first moment of
the distribution of universe effect sizes, is the estimated parameter for r- or
G-based approaches (HS, OP, OP-FE, OP-RE), the parameters are different for
Fisher-z-based (µρz) and d-based (µρd) approaches in heterogeneous situations.
For the latter approach, however, it was shown that the weighting scheme
leads to results for estimates of mean effect sizes to be closer to µρ than µρd.
Hence, µρ was considered to be the more sensible standard of comparison in
the Monte Carlo study for HOd. Since µρ is considered to be the parameter of
interest for most meta-analysts when pooling correlation coefficients, cautions
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were raised about the use of approaches that do not use r in heterogeneous
situations.

Monte Carlo Study In addition to the theoretical analyses of the second part,
the results of a comprehensive Monte Carlo study were presented. This was
done to comparatively evaluate the outcomes of the various approaches — in-
cluding those not well-known and examined in previous Monte Carlo studies
— in several situations (S1 to S3). The design was specified to include levels
of several design variables (n, k, µρ, σ2

ρ ) likely to arise in practice as well as lev-
els (small n and k) to study and evaluate the performance of the approaches at
boundary values. This seemed reasonable as properties of the estimators and
tests are known theoretically only in approximation (for n and/or k approach-
ing infinity).

For the design and conducting of the Monte Carlo study, several candidates
for the simulation procedures were considered for generating the database of
correlation coefficients. The candidates under consideration were a series of
approximations to the distribution of R that were examined and evaluated in
comparison to the exact density of R. None of the approximations were con-
sidered sufficiently good as to be used to generate correlation coefficients in a
simulation study. The simulation procedures used in the Monte Carlo study
were therefore specified in a computationally rather expensive form. Several
predictions for the performance of the approaches mainly based on the previ-
ously mentioned differences between approaches (e.g., consequences of differ-
ent effect sizes used) were explicated and largely confirmed.

An overview of results is presented in Table 9.2. The table provides the re-
sults in the form of recommendations for applications of meta-analysis to cor-
relational data. The recommendations in Table 9.2 only apply to applications of
the approaches to correlation coefficients and may not be used for other effect
size data. Of course, some of the cut-off values listed in the recommendations
might seem arbitrarily chosen as it is naturally the case with most cut-off val-
ues in the methodological context. Nevertheless, the values have been chosen
to reflect the results of the present study as closely as possible.

The table is structured according to the tasks to be performed in a meta-
analysis and the situation given. Of course, the situation is something a meta-
analyst does ordinarily not know in advance. The statements in the tables
have thus to be interpreted as summaries of the performance of the various
approaches in the Monte Carlo study and to give an indication which proce-
dure is recommended when a certain situation is given.

As can be seen in the table, there is no single approach performing best
for all tasks under all conditions. Instead, approaches seem to perform best
overall when their basic model assumptions are met. For some of the tasks in
meta-analysis specified in the table nearly all, and for some others none, of the
approaches performs at an acceptable level according to conventional criteria.
This indicates tasks and conditions for which the approaches evaluated here
do not provide adequate statistical tools. This is the case, for example, for the
homogeneity test Q in heterogeneous situations.
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Table 9.2 Recommendations for Meta-Analysis of Correlational Data

Task S Recommendation

Estimation of
µρ

S1 All estimators, except OP-FE and OP-RE, are usable
when n > 16. However, OP shows no bias notwith-
standing which n, k, or µρ is given. OP is therefore rec-
ommended. HOT performs almost as well as OP and
is more efficient when µρ is small (µρ < .10). It can thus
be considered as a good alternative in this situation.

S2 Only good r-based estimators should be used (OP and
HS) to provide estimates of µρ. Among these estima-
tors OP shows no bias notwithstanding which n, k, or
µρ is given. OP-FE and OP-RE are not good choices. HS
seems to be a good alternative to OP when n > 32. The
estimate of µρ should, however, be interpreted with
caution when vastly different universe effect sizes are
suspected. To determine whether this may be the case,
a homogeneity test might be considered.

S3 Only good r-based estimators should be used (OP and
HS) to provide estimates of µρ. All estimators, except
OP-FE and OP-RE are usable when n > 32. OP is
preferable to all other estimators.

Significance
tests for
µρ = 0

S1 DSL and HOT perform best by showing mean rejection
rates below α. HOr shows rejection rates closest to α
when the null hypothesis is true. Except for HS3, HS4
and OP-RE, all rejection rates are quite close to α, so
the choice of test does not make a big difference. When
the null hypothesis is false, all tests reach satisfactory
power levels very quickly. The choice of a test does not
make a substantial difference here as well.

S2 No substantial differences in power between ap-
proaches prevail. Random effects approaches are
generally more conservative, though differences are
marginal.

S3 When the null hypothesis is true, only random effects
approaches (especially DSL) perform adequately. All
other approaches show rejection rates far too high,
even for moderate n (64) and σ2

ρ (.01), and should not
be used here. When the null hypothesis is false, there
are only small disadvantages in power by using ran-
dom effects approaches. Thus, DSL is recommended,
deliberately accepting a disadvantage in power.

table continues
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continued table
Task S Results and Recommendations

Confidence
intervals
for µρ

S1 HOT and OP reach the desired coverage rates most
closely, and show a very stable performance across
all levels of the design variables. Thus, both are rec-
ommended though with some reservations because of
much larger interval widths when n and k are very
small (i.e., less than 16). All other approaches, except
OP-RE, HOd, HS3, and HS4 also show mean coverage
values of about .93 for 95% confidence intervals and
may also be useful when bearing this in mind.

S2 HOT and OP reach the desired coverage rates most
closely and show a very stable performance across all
levels of the design variables. Since only OP estimates
µρ, it is recommended.

S3 All approaches show at least some deficiencies and
none can be recommended without reservations (note
that only r-based estimators were evaluated). Amongst
the evaluated approaches, HS3 and HS4 performed
best.

Homogeneity
test: Q

S1 HOr and, with some reservations when n < 32, also
HS are usable. The transformation of r to d leads to ex-
cessive rejection rates which strongly cautions against
the use of the HOd approach here.

S2 All approaches show deficiencies in detecting small to
medium effects, especially when n or k are small. Thus,
reliance on the Q-test for a decision on the conduct of
HLM-type procedures or for the choice of model (FE
vs. RE) can be a risky business.

S3 None of the approaches show satisfactory power in de-
tecting small to medium variances (.0025 to .0225), es-
pecially when n or k are small. Unless k > 32, tests are
not reliable indicators of heterogeneity.

Homogeneity
test: 75%- and
90%-rule

S1 Both the 75%- and 90%-rule are not viable alternatives
to the Q-test (see above). Rejection rates are generally
too high in this situation.

S2 Both the 75%- and 90%-rule are not viable alternatives
to the Q-test (see above). Rejection rates are too low
unless n > 64 and heterogeneity variance is at least
medium.

table continues
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continued table
Task S Results and Recommendations

S3 Basically the same results as in S2 emerged. Hence the
same recommendations also apply here.

Estimation of
σ2

ρ

S1 For very low k and n below 32 all estimators show
strong overestimation. OP-RE is unusable for n < 16 in
all cases. All estimators provide acceptable estimates
for n > 32 and k not less than 32.

S2 For very low k and n below 32 DSL and OP-RE show
high biases. For even modest ∆ρ both OP-RE and DSL
should not be used. In general, HS performs best in
S2 though it should be used with some caution when
k < 16.

S3 OP-RE performs generally poorly and should not be
used in this situation. HS and DSL both perform well,
but HS performs best.

Note. S1 to S3 = Assumed situation in meta-analysis.

Overall, the good performance of OP in various situations and for various
purposes is remarkable. For estimating the mean effect size, for example, it
can be recommended without reservations. However, Table 9.2 also indicates
when it should used with strong reservations at best (construction of confi-
dence intervals in S3).

For the tasks of testing µρ = 0 and homogeneity tests, approaches do not
differ markedly. In the former case they show equally good performance and
in the latter they all perform equally badly. For homogeneity tests, the pro-
cedures unique to the HS approach are not interesting alternatives. For the
purpose of estimating the heterogeneity variance, however, HS emerged as the
best approach, though it should be added that DSL is hard to compare because
computations and results are in z-space.

Finally, a caveat seems indicated. Note that it is not recommended in gen-
eral to employ any of the methods in S2 and to abstain from using HLM pro-
cedures. Since appropriate predictors are not always available to the meta-
analyst, the methods of meta-analysis as described in this book are the only
available option. Hence, an evaluation of their performance as provided here
is of vital importance.
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Discussion and Conclusions

Reviews of meta-analytical methods have generally been very positive, at least
in the social sciences (e.g., Kavale, 1995). The ongoing debate about its useful-
ness as a scientific research tool (cf. Hunter & Schmidt, 1996; Feinstein, 1995)
has not hampered its growth in the literature or the willingness to adopt it as a
useful tool by researchers. Most critics argue not on purely statistical grounds
but attack the application of meta-analytical methods for reasons founded in
the philosophy of science or on conceptual grounds from the specific field
of application. Some of these lines of criticism seem legitimate, indeed, and
meta-analysis is certainly not free of conceptual problems and ambiguities in
application. For example, it was pointed out in the introductory chapter that
meta-analysis is not a strictly standardized technique for which clearly articu-
lated rules of conduct are available at any step of the whole process. Reviews
have shown that meta-analyses on the same issue do not provide nearly iden-
tical results but are quite different and variable (e.g., Steiner, Lane, Dobbins,
Schnur, & McDonnell, 1991). Moreover, doubts have been raised regarding
the reliability of implementing meta-analysis in practice (Zakzanis, 1998). As
was pointed out by Wanous, Sullivan, and Malinak (1989), judgement calls are
important and seem to influence the results and conclusions drawn in meta-
analyses on the same topic. Thus, problems pertaining to the application of
meta-analysis seem to mainly result because meta-analysis is more than just
estimating parameters (see, e.g., Bailar, 1995).

The present examination focused on the statistical methods most common
for meta-analysis of correlations, that is, the analysis step. This step is probably
viewed by many as the immune core of meta-analysis, hence regarded as the
step with the least problems or potential for subjective influences. A result of
this may be the seemingly generally adopted assumption that it makes no dif-
ference which of the available sets of statistical procedures is used. The choice
of an approach seems more a question of the field of research in which the
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methods are applied rather than a question of the statistical model assumed
for a research situation. However, it was shown that there are many impor-
tant implications for the results and therefore potentially also for the conclu-
sions drawn from a meta-analysis due to the choice of one of the available
approaches.

Interestingly, it is not an easy task to clearly answer the question of what
approaches are actually available, because ambiguities arise in exactly spec-
ifying the available ones. One possibility to do this would be to focus only
on major presentations of meta-analytic methods for correlations in the litera-
ture. This basically leads to three approaches (Hedges & Olkin, 1985; Hunter
& Schmidt, 1990; Rosenthal, 1991). In this book, these three major approaches
were complemented by further approaches which are partly already included
in the treatment by Hedges and Olkin (1985) or represent sometimes minor
but consequential differences in statistical procedures. It seems legitimate to
call into question such a concept of approaches or the meaningfulness of the
very concept of approaches. A good example for not classifying approaches
according to author groups or major treatments in the literature is given by
comparison of HOr and RR.

The reason to classify RR differently in comparison to HOr is, in fact, a mi-
nor one at best, concentrated on a single aspect of significance testing for the
mean effect size (compare procedures on page 60 and page 62). This is not re-
garded as a compelling reason to differentiate between HOr and RR. With the
same reasoning it might be argued that HOT, for example, is also not an inde-
pendent approach but represents only a minor change in the HOr procedures.
Indeed, this is true. However, this argument extends to other approaches as
well. It is argued that criteria to differentiate or classify statistical approaches
in meta-analysis should better be based more on classes of statistical models
and effect size measures, for example, rather than authors, books, or any other
historical and seemingly arbitrary reason. This was done in the present book.
A slightly extended list of classification aspects includes:

• effect size measure used,
• weighting scheme used,
• FE versus RE models, including conditional RE approaches,
• explanatory (e.g., HLM) versus non-explanatory models, and
• use of observed and/or latent variables (HLM vs. mixture analysis).

These aspects may even be extended by some models not presented in this
book, for example, (empirical) Bayes models (see, e.g., Raudenbush & Bryk,
2002). Although such classification aspects are partly overlapping, they enable
a distinction between meta-analytic procedures more in line with common sta-
tistical distinctions. These aspects also show that there is a wealth of models
and procedures for the meta-analysis of correlations that let statements like
“. . . there is only one dominant approach for conducting meta-analysis of cor-
relation research and that is the Hunter and Schmidt (1990) approach” (Huff-
cutt, 2002, p. 209) appear untenable. In retrospect then, the use of approaches in
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this book is only a vehicle to differentiate between statistical procedures and
does not necessarily designate fundamentally different routes to meta-analysis
of correlations.

Of the classification aspects listed above, the choice of effect size measure
seems to be one accompanied by more fundamental consequences than previ-
ously thought. As has been pointed out, r-based approaches do not in principle
suffer from changes in estimated parameters in heterogeneous situations. The
change in spaces by the Fisher-z or r to d transformation of the original correla-
tion has manifest consequences for interpretation many users of meta-analysis
may not be aware of. It was shown that the use of the Fisher-z transformation
leads to higher absolute estimates of µρz as compared to µρ in heterogeneous
situations. Interpreting estimates of µρz as estimates of µρ would simply be a
misinterpretation in heterogeneous situations.

It is difficult to assess the severity of this problem in previous practical appli-
cations of meta-analysis at least for two reasons. First, the difference between
the universe parameters µρ and µρz estimated in the approaches based on the
Fisher-z transformation versus r-based approaches depends on the unknown
heterogeneity in the universe of studies. To quantify the difference it would
be necessary to know exactly the categorical or continuous distribution in the
universe. Such knowledge is, of course, not available and it would be inter-
esting to reanalyze existing meta-analytic databases to examine the differences
arising in practice. Second, even if the difference could be quantified, severity
is a very subjective aspect. For example, in a situation with a beta distributed
random variable with µρ = .60 and σ2

ρ = .0625 in the universe of studies, a
corresponding µρz ≈ .67 is given. The difference of .07 would certainly be
judged by some researchers for a certain research question — for example in
the personnel selection context — as substantial and in the context of other re-
search questions it might not change interpretation of results and therefore be
inconsequential.

Hence, doubts are raised as to whether the Fisher-z transformation should
be applied to correlation coefficients in meta-analysis. Arguments put forward
in favor of its use often rest on highlighting the bias of r (e.g., Silver & Dunlap,
1987). As was shown in the current book, differences in bias favor r over z
but are minuscule in absolute value, anyway. Moreover, in light of the fact
that an UMVU estimator G is available, easily computed, and shows excellent
performance in terms of bias as reported in the Monte Carlo study, arguments
in favor of Fisher-z which are based on the bias of r are not convincing.

Another line of argument against the use of r draws on the dependency
of the variance of the estimators on the universe parameter (e.g., James et al.,
1986). This is indeed a serious issue not only for r but also for other estimators
in meta-analysis and therefore represents a general problem for pooled estima-
tors. The optimal weights require the correct variances of the estimators. Since
only estimates of these variances are available in practice and these estimates
are plugged in the weights in aggregation, a dependency of the variance on
the universe parameters, or more precisely on the estimator when estimates
are plugged in, induces a bias in the pooled estimator, especially when n is
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small. This was most clearly evident in the Monte Carlo study for OP-FE and
OP-RE, the UMVU estimator weighted by the inverse of its (estimated) vari-
ances. Note that the problem not only pertains to these estimators. Since this
problem does not arise with suboptimal weights that depend only on n, the use
of G weighted by the sample sizes of the studies is recommended here when
precise estimation of the universe parameter is of vital interest, as is nearly al-
ways the case in meta-analysis of correlations. As may be noted, the approach
proposed by Hunter and Schmidt (1990) is also an r-based approach with the
sample sizes as weights. The usage of this approach is thus also encouraged.
Nevertheless, a better choice than r is to use the UMVU estimator. The rec-
ommended approach based on the UMVU estimator is not without problems.
There are also certain tasks in meta-analysis for which the approach — as it was
specified — does not perform satisfactorily, for example, for testing µρ = 0 in
S3. In consequence, there is no single best approach amongst the set of exam-
ined approaches. Such an approach has yet to be developed. However, taking
into account the many possible situations, many tasks, and many boundary
conditions (e.g., with respect to n and k) in meta-analysis, it seems unlikely
that such a single approach will ever become available.

Problems in interpreting a mean effect size estimate in meta-analysis not
only arise in the context of transformations of the correlation coefficient. In-
terpretation also depends on whether heterogeneity in universe effect sizes is
present at all, detected, and modeled. In general, mean effect sizes have an
undisputable interpretation in homogeneous situations but not in heteroge-
neous situations. This does not mean, however, that they are not interpretable
in heterogeneous situations. As has been argued, the mean effect size gener-
ally has to be interpreted like the grand mean in ANOVA-type analyses. Of
course, if heterogeneity is suspected or detected by any of the available tests,
then models to explain heterogeneity (e.g., HLM) are certainly indicated to go
beyond grand mean interpretations.

In any case, the interpretation of results in meta-analysis has to be done
within the framework of a chosen model, another characteristic to differenti-
ate between approaches. Unfortunately, the choice of a model is often done
in practice just en passant. As has also been shown with other methods as
those used in this book (Hedges & Vevea, 1998) and in different contexts (Over-
ton, 1998), methods generally perform best when their model assumptions are
met. This conclusion seems trivial at first glance, but in light of the fact that
many of the statistical derivations of procedures used in meta-analysis rest on
large-sample theory, it is important to test by simulation methods whether the
properties of estimators, for example, also hold for constellations of design
characteristics likely to arise in practice. Unfortunately, this information is not
of great help for the meta-analyst, who wants to decide which model to adopt,
though it is certainly reassuring. A theoretically founded line of reasoning may
lead researchers to the choice of a model. Questions about the intended infer-
ence, theoretically expected heterogeneity, or simply the number and origin of
available studies help in deciding which model to adopt.
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Another possibility is to condition the choice of the model on the result of
the Q-test. As was shown in the Monte Carlo study as well as in the litera-
ture (e.g., Harwell, 1997), the Q-test to detect heterogeneity is not satisfactorily
powerful in many situations and heterogeneity may therefore remain unde-
tected. This test is thus not a very good guide for a model decision because it
leads to many wrong decisions. Hence, statements like “if the chi square is not
significant, this is strong evidence that there is no true variation across stud-
ies, but if it is significant, the variation may still be negligible in magnitude”
(Hunter & Schmidt, 1990, p. 112) are questionable (see also Harwell, 1997).
Proposed alternatives to this test, like the 75%- or 90%-rule do not represent vi-
able alternatives to the Q-test (see also Sánchez-Meca & Marín-Martínez, 1997).
Interestingly, the 75%-rule seems to be in widespread use, at least in I/O psy-
chology. Cortina (2003) reviewed 59 quantitative reviews containing not less
than 1,647 meta-analyses, of which all appeared in one of the most prestigious
journals of I/O psychology, the Journal of Applied Psychology. He found that
as many as 57% of the meta-analyses used the 75%-rule as a homogeneity test
and only 19% the Q-statistic. Thus, further theoretical developments as well as
their empirical evaluation to establish procedures that perform better for this
task of meta-analysis are needed. Hartung and Knapp (2003), for example,
recently proposed such an alternative test procedure for meta-analysis.

Yet another option would be to explore heterogeneity by application of mix-
ture models (Böhning, 2000; Schlattmann et al., 2003). These models provide a
statistically well-founded framework for meta-analysis that is not widely used
yet. Though early presentations of these techniques have been given in the
psychological literature (Thomas, 1989b; Thompson, 1989; Thomas, 1990b),
they have not been adopted very often. The reasons for this fact may lie in
unfamiliarity with these models or in perceived technical difficulties. Since
easy-to-use software for the application of these models has recently become
available (Böhning et al., 1992; Schlattmann et al., 2003), their use is encour-
aged because they address one of the central questions of meta-analysis quite
elegantly, the modeling of heterogeneity.

Apart from suggesting to condition the use of a model on the outcome of
a homogeneity test — a so-called conditional random effects procedure —
Hedges and Vevea (1998) have proposed to make a choice between the FE and
RE model on the basis of the intended inference. The intended inference is a
question about properties of the universe of studies to which results are gen-
eralized to. These properties may be restricted to characteristics like those of
the observed studies (FE model) or more general (RE model). The question
of intended inference is not always an easy question to answer since general-
ization not only depends on the desire of a researcher as Hunter and Schmidt
(2000) suggest, but also on a series of other aspects, like those Matt (2003) has
described, for example. The shift from applications of FE models to RE models
that is strongly encouraged in the literature (e.g., Erez et al., 1996) is not with-
out problems, as the presented Monte Carlo study results suggest. Especially
when the number of studies is small (k < 32), the most important aspect of
RE models, the heterogeneity variance, can not be estimated with acceptable
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precision. Note that a number of 32 studies is far from unusual in practice and
even in some Monte Carlo studies considered to be large (e.g., Field, 2001).

Another aspect addressed in the present Monte Carlo study with poten-
tially far-reaching implications is the conversion of correlations to standard-
ized mean differences d. Transformations of effect sizes are necessary in most
applications because of different designs and analysis methods used in the
primary studies to address the same research question. The implicit assump-
tion of applying the transformation is that computations based on the trans-
formed effect size (e.g., d from r) lead to equivalent results in comparison to
computations based on the untransformed effect size (e.g., r). In other words,
the transformation does not introduce any bias or distortion of results. If the
equivalence were given, then it would not matter whether meta-analytic com-
putations were carried out with r or d as an effect size, the results would be
the same. However, the r to d transformation leads to changes in results in
meta-analysis as reported in the Monte Carlo study. This clearly challenges
the assumption of an inconsequential application of this transformation. Since
the influences of weights that depend on the universe parameter are also in-
volved in explanations of results, the origin of the deviant results by using d
is not entirely clear. The derivation of the transformation formula, however,
rests on assumptions that seem questionable. Of course, as has repeatedly
been highlighted, there would be no need to apply the transformation to a
database consisting only of r in practice. Instead, this would be ordinarily nec-
essary only for a subset of studies. The results presented in this book suggest
that it is wise to at least conduct a sensitivity analysis to assess the effect of the
transformed effect sizes on the results.

To conclude, the choice of an approach to meta-analytically synthesize cor-
relation coefficients as presented in this book does make a difference. Some
approaches are better than others for various tasks but a single best set of pro-
cedures has yet to be established. The present book has nevertheless pointed
out some procedures that should be used with caution and others that seem
under-utilized and deserve more attention in methodological developments
and applications.



Nomenclature

B Complete Beta function, page 21

c Number of components in mixture analysis, page 43

d Standardized mean difference, page 29

δ Population standardized mean difference, page 28

∆ρ Difference between ρ1 and ρ2 in S2, page 125

DSL Approach proposed by DerSimonian and Laird (1986), page 71

2F1 Gaussian hypergeometric function, page 21

FE Fixed effects (model), page 35

G Unique minimum variance unbiased estimator of ρ, page 26

g Standard normal deviate, page 58

gα Critical value for a prespecified α-level from a standard normal distribu-
tion to construct two-sided confidence intervals, page 37

Γ Euler Gamma function, page 21

HLM Hierarchical linear models, page 45

HOd Approach proposed by Hedges and Olkin (1985) based on d as resulting
from an r to d transformation, page 59

HOr Approach proposed by Hedges and Olkin (1985) based on Fisher-z trans-
formed correlations, page 57

HOT Approach proposed by Hedges and Olkin (1985) based on a corrected
average z as suggested by Hotelling (1953), page 58

HS Approach proposed by Hunter and Schmidt (1990), page 62

HS1 HS approach employing version 1 of the estimator for the sampling vari-
ance of the mean effect size, page 65

HS2 HS approach employing version 2 of the estimator for the sampling vari-
ance of the mean effect size, page 65

HS3 HS approach employing version 3 of the estimator for the sampling vari-
ance of the mean effect size, page 66

HS4 HS approach employing version 4 of the estimator for the standard error
of the mean effect size, page 66

k Number of studies, page 35

λj Weight of the jth component in mixture analysis, page 43

MSE Mean squared error, page 134

µρ Expected value of the distribution in the universe of studies (in the space
of r), page 49
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µρd Expected value of the distribution in the universe of studies (in the space
of r) that results from the d to r transformation as given in Equation 3.11,
page 79

µρz Expected value of the distribution in the universe of studies (in the space
of r) that results from the inverse Fisher-z transformation µρz = tanh µζ ,
page 76

µΘ Expected value of the random variable Θ, page 39

µζ Expected value of the distribution in the universe of studies (in the space
of z), page 130

N N = ∑k
i=1 ni, page 58

n Number of observations per study, page 9

νi Variance of the effect size estimate Ti, page 36

νΘ̂ Variance of Θ̂, page 40

OP Approach based on the UMVU estimator proposed by Olkin and Pratt
(1958) with n as weights, page 73

OP-FE Approach based on the UMVU estimator proposed by Olkin and Pratt
(1958) with FE model weights, page 73

OP-RE Approach based on the UMVU estimator proposed by Olkin and Pratt
(1958) with RE model weights, page 74

P Probability, page 43

PDF Probability density function, page 21

Q Q-statistic, used in homogeneity tests, page 37

r Correlation coefficient, page 20

RE Random effects (model), page 39

P Correlation coefficient as a random variable in the universe of studies,
page 43

ρ Population correlation coefficient, page 21

RR Approach proposed by Rosenthal and Rubin (1979), page 61

S1 Class of discrete distributions in the universe of studies: one single ρ with
probability mass one, page 49

S2 Class of discrete distributions in the universe of studies: ρ1 6= ρ2 both
with equal probability mass, page 50

S3 Class of continuous distributions in the universe of studies: Almost ex-
clusively considered to be the family of beta distributions in this book,
page 53

σ2
R Variance of R, page 26

σ2
ρ Variance of the distribution in the universe of studies (in the space of r),

also called heterogeneity variance, page 49

σ2
Θ Variance of Θ, also called heterogeneity variance, page 39

σ2
Z Variance of Z (Fisher-z transformed correlation), page 23

σ2
ζ Variance of the distribution in the universe of studies (in the space of z),

also called heterogeneity variance, page 71
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Θ Random variable Θ used in the RE model to designate the effect size of
interest in the universe of studies, page 39

θ Effect size in the universe of studies, page 35

Θ̂ Mean effect size estimate in the RE model, page 39

θ̂ Mean effect size estimate in the FE model, page 36

Ti Effect size measure of the ith study, page 35

UMVU Unique minimum variance unbiased, page 26

wi Weights applied to the ith study in the FE model, page 36

w∗
i Weights applied to the ith study in the RE model, page 39

z Fisher-z transformed correlation coefficient, page 22

ζ Fisher-z transformed population correlation coefficient, page 22
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Appendices





A
Beta Distributions in

the Universe of Effect Sizes

The beta distribution was chosen in the Monte Carlo study as the distribution
of effect sizes ρ in the universe in S3. The following Tables A.1 and A.2 list all
values for the parameters p and q of the standard beta distribution as used in
the simulation study. For further details on the beta distribution the interested
reader is referred to Johnson, Kotz, and Balakrishnan (1995) and Section 4.5. In
addition to the parameters of the beta distribution, the expected values for the
Fisher-z transformed universe parameters along with the variances are given.
Note that the expected values µζ are in z-space and have to be transformed by
the inverse Fisher transformation to result in values in r-space. These values
(µρz) are given in the last column of Tables A.1 and A.2.

Moreover, a series of figures is presented that depict the resulting beta dis-
tributions for the given parameter values. Figures A.1 to A.5 illustrate how the
distributions of the universe parameters in the Monte Carlo study look like. It
can be seen in Figures A.2 to A.5 that large variances in combination with large
values of µρ tend to produce J-shaped distributions. These distribution forms
can also easily be identified by consulting Tables A.1 and A.2. All beta distri-
butions for which one of the parameters p or q is less than 1 show this type of
distribution form (Johnson, Kotz, & Balakrishnan, 1995). Because the present
study focuses on one half of the interval [−1, 1] as far as the µρ are concerned,
values less than one only occur for q.
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Table A.1 Parameter Values of the Beta-Distribution for µρ From 0 to .40 and
Different Variances σ2

ρ As Well As Corresponding Expected Values µζ (and µρz)
and Variances σ2

ζ

µρ σ2
ρ p q µζ σ2

ζ µρz

.00 .0025 199.5 199.5 .00 .00251256 .00

.00 .01 49.5 49.5 .00 .01020370 .00

.00 .0225 21.7222 21.7222 .00 .02355590 .00

.00 .04 12.0 12.0 .00 .04345090 .00

.00 .0625 7.5 7.5 .00 .07130790 .00

.10 .0025 217.25 177.75 .100592 .00256383 .100254

.10 .01 53.9 44.1 .101373 .01041520 .101027

.10 .0225 23.65 19.35 .102721 .02405700 .102361

.10 .04 13.0625 10.6875 .104709 .04441030 .104328

.10 .0625 8.162 6.678 .107450 .07296110 .107038

.20 .0025 229.8 153.2 .203277 .00272746 .200523

.20 .01 57.0 38.0 .204942 .01109090 .202120

.20 .0225 25.0 16.6667 .207815 .02566160 .204874

.20 .04 13.8 9.2 .212064 .04749230 .208941

.20 .0625 8.616 5.774 .215095 .07802670 .211838

.30 .0025 235.95 127.05 .310430 .00303729 .300828

.30 .01 58.5 31.5 .313212 .01237410 .303356

.30 .0225 25.6389 13.8056 .318031 .02872370 .307725

.30 .04 14.1375 7.6125 .325186 .05341550 .314189

.30 .0625 8.814 4.746 .335138 .08864550 .323130

.40 .0025 234.5 100.5 .425074 .00356835 .401196

.40 .01 58.1 24.9 .429441 .01458460 .404854

.40 .0225 25.4333 10.9 .437040 .03404540 .411188

.40 .04 14.0 6.0 .448400 .06384080 .420583

.40 .0625 8.708 3.732 .464350 .10717400 .433623
Note. The parameters p and q of the beta distribution were computed as described in
Section 4.5.
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Table A.2 Parameter Values of the Beta-Distribution for µρ From .50 to .90 and
Different Variances σ2

ρ As Well As Corresponding Expected Values µζ (and µρz)
and Variances σ2

ζ

µρ σ2
ρ p q µζ σ2

ζ µρz

.50 .0025 224.25 74.75 .551542 .00448427 .501675

.50 .01 55.5 18.5 .558423 .01843060 .506806

.50 .0225 24.25 8.0833 .570493 .04344450 .515721

.50 .04 13.3125 4.4375 .588735 .08266040 .528985

.50 .0625 8.25 2.75 .614742 .14160600 .547456

.60 .0025 204.0 51.0 .696839 .00617883 .602358

.60 .01 50.4 12.6 .708274 .02565930 .609593

.60 .0225 21.9556 5.4889 .728599 .06159560 .622207

.60 .04 12.0 3.0 .759939 .12045900 .641041

.60 .0625 7.392 1.848 .805730 .21436900 .667228

.70 .0025 172.55 30.45 .874105 .00979953 .703458

.70 .01 42.5 7.5 .895468 .04160610 .714084

.70 .0225 18.4167 3.25 .934436 .10389900 .732655

.70 .04 9.9875 1.7625 .996729 .21561100 .760217

.70 .0625 6.086 1.074 1.091630 .41545400 .797472

.80 .0025 128.7 14.3 1.114350 .02005810 .805595

.80 .01 31.5 3.5 1.165440 .09065330 .822805

.80 .0225 13.5 1.5 1.264350 .25292200 .852259

.80 .04 7.2 0.8 1.434020 .61211300 .892487

.80 .0625 4.284 0.476 1.710340 1.40785000 .936689

.90 .0025 71.25 3.75 1.538310 .07986850 .911836

.90 .01 17.1 0.9 1.782240 .49569100 .944936

.90 .0225 7.0722 0.3722 2.330410 2.10599000 .981260

.90 .04 3.5625 0.1875 3.380960 7.51357000 .997689

.90 .0625 1.938 0.102 5.303410 24.55440000 .999951
Note. The parameters p and q of the beta distribution were computed as described in
Section 4.5.
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Figure A.1 Beta distributions with parameters chosen to correspond to µρ = 0 to
µρ = .90 in increments of .01 and with constant σ2

ρ = .0025.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

8

9

ρ

D
en

si
ty

Figure A.2 Beta distributions with parameters chosen to correspond to µρ = 0 to
µρ = .90 in increments of .01 and with constant σ2

ρ = .01.
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Figure A.3 Beta distributions with parameters chosen to correspond to µρ = 0 to
µρ = .90 in increments of .01 and with constant σ2

ρ = .0225.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

8

9

ρ

D
en

si
ty

Figure A.4 Beta distributions with parameters chosen to correspond to µρ = 0 to
µρ = .90 in increments of .01 and with constant σ2

ρ = .04.
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Figure A.5 Beta distributions with parameters chosen to correspond to µρ = 0 to
µρ = .90 in increments of .01 and with constant σ2

ρ = .0625.



B
An Annotated MATHEMATICA Notebook for

a Comparison of Approximations to the
Exact Density of R

The following parts of code are annotated for better reproducibility of the re-
sults and potential adaptations where needed. The annotations are kept in
roman font type and should not be confused with the actual code presented
in typewriter font. The code reproduced is complete so that it can be tran-
scribed to instantly work with MATHEMATICA Version 4 or later. The actual
version used to produce the results reported in Section 7.5.2 was MATHEMAT-
ICA 4.0.1.0 on a windows platform but the code was also tested and works
with Version 3.0. For better comprehension, the code is sectioned in a general
part that comes first and then code pertaining to the single approximations.

General part. First, the degrees of freedom (as an example, 48 is used in the
code) and the value of ρ (as an example, ρ = .20 is used) for the comparisons
are fixed. Note that the degrees of freedom are df = n− 2 so that for a situation
with 50 persons, for example, a value of 48 has to be inserted. Also, in some
of the functions, the degrees of freedom appear as ν (or in typewriterfont as
nu). Of course, this symbol should not be confused with the standard error of
effect size estimators as introduced in the text.

As another preliminary step, the standard package for continuous statisti-
cal distributions is loaded and the density of the noncentral t distribution is
defined in the following code.
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df = 48

ActualRho = .2

<< Statistics‘ContinuousDistributions‘

DensityStudentT[x_, nu_] := PDF[StudentTDistribution[nu], x]

DensityNoncentralT[x_, nu_, delta_] :=
PDF[NoncentralStudentTDistribution[nu,delta],x]

Hotelling’s exact density. First, the code to specify the density of r as given
by Hotelling (1953) is presented (see also Equation 3.1).

TheoreticalRDensityHotelling[r_,nu_,rho_]:=
nu/Sqrt[2 Pi]Beta[nu + 1, 1/2]/Gamma[1/2]
(1 - rho^2)^(1/2(nu + 1))(1 - r^2)^(1/2 nu - 1)
(1 - rho r)^(1/2 - (nu + 1))
Hypergeometric2F1[1/2, 1/2,nu + 3/2, (1 + rho r)/2]

As can be seen, this is the exact density. It should be noted that the hy-
pergeometric function is at some points numerically somewhat fragile, that is,
it leads in the region of the singularity to unreliable values. For the present
situations very high values for ρ (e.g., ρ ≥ .90) in combination with large
values for the degrees of freedom (e.g., df ≥ 250) may cause computational
problems. Nevertheless, except for these borderline cases the specified func-
tion for the theoretical density given above works perfectly well. However,
to avoid numerical problems the value of the hypergeometric function can be
approximated to a very high and estimable degree. First, the approximation is
computed as a truncation of the Taylor series expansion at the seventh term

Normal[Series[Hypergeometric2F1[a, b, c, x], {x, 0, 7}]]

The result is very large in expression and is subsequently defined as

Hgf[a_, b_, c_, x_] := 1 + (abx)/c +
(a(1 + a)b(1 + b)x^2)/(2 c (1 + c)) + ...

which is truncated as given, indicated by “...” The rest of the result from the
step before has to be inserted instead of “...”. One may now wish to estimate
the error caused by this truncation. The error caused by truncating the series
at any stage is less than 2/ (1− ρr) times the last term used (Hotelling, 1953,
p. 200). For the proposed truncation the error can therefore be estimated by

LastTerm[a_, b_, c_, x_] := (a (1 + a) (2 + a) (3 + a) (4 + a) (5 + a)
(6 + a) b (1 + b) (2 + b) (3 + b) (4 + b) (5 + b) (6 + b) x^7)/
(5040 c (1 + c) (2 + c) (3 + c) (4 + c) (5 + c) (6 + c))

UpperBoundForErrorCausedByTruncation[r_, nu_, rho_] :=
2/(1 - rho r) LastTerm[1/2, 1/2, nu + 3/2, (1 + rho r)/2]
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In the present case this error is approximately 1.4151−11 for a value of r = 1
which is also the maximum of error. This can be easily seen by inspecting a
plot of the error for varying r, which produces for the present case Figure B.1.

Plot[UpperBoundForErrorCausedByTruncation[x, df, ActualRho],
{x, -1, 1}, PlotRange -> All, AxesOrigin -> {-1.01, 0}]
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2·10-12

4·10-12
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1.2·10-11

1.4·10-11

Figure B.1 Upper bounds of truncation error for the hypergeometric series used in
the computation of the exact density for varying r, df= 48, and ρ = .20.

The error is obviously very small for all values of r and has its maximum on
the interval [−1, 1] at 1 which is still very small in value. The truncation can
therefore safely be used. The modified density of r can now be defined as

RDensityHotelling[r_, nu_, rho_] :=
1/(Pi Sqrt[2])(1 - r^2)^((nu/2) - 1) nu
(1 - r rho)^(-nu - (1/2)) (1 - rho^2)^(1/2(nu + 1))
Beta[nu + 1, 1/2] Hgf[1/2, 1/2,nu + 3/2, (r rho + 1)/2]

where only the hypergeometric function is substituted by the truncated ver-
sion. Using this form for the density of r the expected values and variances
that are used as criteria values for all the following approximations are com-
puted by

ExpectationOfHotellingsR[nu_, rho_] :=
NIntegrate[x RDensityHotelling[x, nu, rho], {x, -0.99999, 0.99999}]

ExpectationOfHotellingsR[df, ActualRho]

SecondMomentOfHotellingsR[nu_, rho_] :=
NIntegrate[x^2 RDensityHotelling[x, nu, rho],
{x, -0.99999, 0.99999}]

VarOfHotellingsR[nu_, rho_] :=
SecondMomentOfHotellingsR[nu, rho] -
(ExpectationOfHotellingsR[nu, rho])^2

VarOfHotellingsR[df, ActualRho]

resulting in values of 0.198047 for the expected value and 0.0188894 for the
variance. Again, the density can be plotted for inspection by
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P2 = Plot[RDensityHotelling[x, df, ActualRho], {x, -1, 1},
PlotRange -> All, AxesOrigin -> {0, 0},
PlotStyle -> {RGBColor[0, 0, 0]}]

resulting in Figure B.2.
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Figure B.2 Density given by Hotelling for values of r = .40 and df = 48.

The Fisher approximation. Here and in the following parts the code begins
with the definition of the relationship between r and its transformation. In the
present case it is simply the Fisher-z transformation

FisherZFromR[r_] := 1/2Log[(1 + r)/(1 - r)]

Next, the derivative of Z with respect to r is computed with an additional
simplification of the expression for convenience. This step is presented here
for completeness and will be left out for the other approaches. The step is
helpful for the following change of variables.

FullSimplify[D[FisherZFromR[r], r]]

The above step results in 1
1−r2 which is inserted in the following expression

DerivativeOfFisherZFromR[r_] := 1/(1 - r^2)

Now the density of R that results from the application of the Fisher-z transfor-
mation is defined by a change of variables.

RDensityFisher[x_, nu_, rho_] :=
PDF[NormalDistribution[1/2Log[(1 + rho)/(1 - rho)],

1/(Sqrt[nu - 1])],FisherZFromR[x]]
DerivativeOfFisherZFromR[x]

Note, that the parameters of the normal distribution in MATHEMATICA are the
expected value and the standard deviation. To compute the expected value
and variance of this distribution, respectively, the following expressions are
used to integrate over the interval [-0.99999, 0.99999] using the density of R as
given above.
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ExpectationOfFishersR[nu_, rho_] :=
NIntegrate[x RDensityFisher[x, nu, rho], {x, -0.99999, 0.99999}]

With the following function call the expected value is computed for the values
defined in the general part.

ExpectationOfFishersR[df, ActualRho]

For the given example a value of 0.19607 will be returned. It is now interesting
to compare this value with the one resulting from using Hotelling’s density
for computation. The value for the latter distribution was 0.198047 so that
a simulation procedure employing the Fisher approximation will generate r
values that are too small in expected value!

Accordingly, the following two expressions can be used to compute the vari-
ance of the distribution.

SecondMomentOfFishersR[nu_, rho_] :=
NIntegrate[x^2 RDensityFisher[x, nu, rho], {x, -0.99999, 0.99999}]

VarOfFishersR[nu_, rho_] :=
SecondMomentOfFishersR[nu, rho] - (ExpectationOfFishersR[nu, rho])^2

The following function call returns a value of 0.0189376 for the variance of the
distribution which is larger than the value for Hotelling’s density which was
0.0188894.

VarOfFishersR[df, ActualRho]

The Harley approximation. The code for this and the following approxi-
mation is structurally identical to the Fisher approximation, so it will not be
annotated.

HarleysTFromR[r_, nu_, rho_] :=
(r Sqrt[-nu (-2 + rho^2)])/(Sqrt[2 - 2 r^2])

DerivativeOfHarleysTFromR[r_, nu_, rho_] :=
(Sqrt[nu - (nu rho^2)/ 2])/( (1 - r^2)^(3/2))

HarleyDelta[nu_, rho_] := Sqrt[(1 + 2 nu) rho^2/(2 - rho^2)]

RDensityHarley[x_, nu_, rho_] :=
DensityNoncentralT[HarleysTFromR[x, nu, rho], nu,
HarleyDelta[nu, rho]]DerivativeOfHarleysTFromR[x, nu, rho]

ExpectationOfHarleysR[nu_, rho_] :=
NIntegrate[x RDensityHarley[x, nu, rho], {x, -0.99999, 0.99999}]

ExpectationOfHarleysR[df, ActualRho]

SecondMomentOfHarleysR[nu_, rho_] :=
NIntegrate[x^2 RDensityHarley[x, nu, rho],
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{x, -0.99999, 0.99999}]

VarOfHarleysR[nu_, rho_] :=
SecondMomentOfHarleysR[nu, rho] -
(ExpectationOfHarleysR[nu, rho])^2

VarOfHarleysR[df, ActualRho]

The Samiuddin-Kraemer approximation.

KraemersTFromR[r_, nu_, rho_] :=
Sqrt[nu] (r - rho)/Sqrt[(1 - r^2) (1 - rho^2)]

DerivativeOfKraemersTFromR[r_, nu_, rho_] :=
(Sqrt[nu] (-1 + r rho) (-1 + rho^2))/
(((-1 + r^2) (-1 + rho^2))^(3/2))

RDensityKraemer[x_, nu_, rho_] :=
DensityStudentT[KraemersTFromR[x, nu, rho], nu]
DerivativeOfKraemersTFromR[x, nu, rho]

ExpectationOfKraemersR[nu_, rho_] :=
NIntegrate[x RDensityKraemer[x, nu, rho], {x, -0.99999, 0.99999}]

ExpectationOfKraemersR[df, ActualRho]

SecondMomentOfKraemersR[nu_, rho_] :=
NIntegrate[x^2 RDensityKraemer[x, nu, rho],
{x, -0.99999, 0.99999}]

VarOfKraemersR[nu_, rho_] :=
SecondMomentOfKraemersR[nu, rho] -
(ExpectationOfKraemersR[nu, rho])^2

VarOfKraemersR[df, ActualRho]



C
Tables of Results

On the following pages of the appendix supplementary tables of results are
presented. Some detailed tables not presented in the text are given to sup-
port the claims made and add further material for scrutiny. Of course, as
was done in the text presentation, data had to partly be condensed to fit in
the tables. In general, values are rounded off at the fourth digit. To obtain
more (detailed) results, the reader is invited to contact the author of the book
(rs@psy.uni-muenster.de).
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Table C.1 Rejection Rates for Testing the Mean Effect Size in S1, µρ = 0, α = .05

k n HOr HOT HOd RR HS1 HS3 OP OP-RE DSL

8 .0503 .0366 .0702 .0655 .0695 .1291 .0853 .1266 .0385
16 .0481 .0420 .0588 .0561 .0575 .1270 .0635 .0765 .0356
32 .0477 .0450 .0525 .0505 .0518 .1266 .0548 .0579 .03714
64 .0519 .0510 .0539 .0530 .0534 .1249 .0550 .0505 .0393

128 .0508 .0504 .0522 .0517 .0520 .1264 .0526 .0476 .0388
256 .0516 .0513 .0521 .0520 .0521 .1249 .0521 .0462 .0407

8 .0511 .0389 .0690 .0657 .0613 .0841 .0761 .1362 .0401
16 .0487 .0437 .0579 .0560 .0544 .0852 .0601 .0878 .0400
32 .0519 .0490 .0559 .0543 .0539 .0834 .0561 .0648 .04438
64 .0502 .0491 .0532 .0522 .0516 .0850 .0536 .0520 .0395

128 .0505 .0497 .0515 .0510 .0509 .0866 .0516 .0484 .0413
256 .0505 .0503 .0508 .0507 .0505 .0827 .0508 .0433 .0377

8 .0510 .0355 .0682 .0666 .0575 .0658 .0717 .1512 .0405
16 .0495 .0448 .0593 .0562 .0522 .0685 .0591 .1039 .0417
32 .0491 .0459 .0527 .0512 .0501 .0641 .0522 .0662 .040016
64 .0539 .0525 .0553 .0545 .0539 .0710 .0551 .0565 .0452

128 .0505 .0502 .0516 .0513 .0511 .0701 .0515 .0493 .0436
256 .0484 .0479 .0489 .0489 .0487 .0662 .0489 .0448 .0403

8 .0437 .0313 .0584 .0564 .0470 .0517 .0600 .1644 .0375
16 .0519 .0467 .0587 .0562 .0525 .0607 .0580 .1178 .0448
32 .0493 .0467 .0536 .0525 .0497 .0566 .0527 .0698 .043132
64 .0508 .0492 .0522 .0517 .0508 .0598 .0520 .0550 .0448

128 .0497 .0491 .0510 .0507 .0499 .0574 .0508 .0488 .0428
256 .0502 .0500 .0506 .0504 .0501 .0565 .0505 .0465 .0426

8 .0530 .0368 .0671 .0663 .0551 .0580 .0674 .1923 .0473
16 .0505 .0434 .0583 .0560 .0504 .0539 .0567 .1296 .0441
32 .0512 .0480 .0543 .0532 .0511 .0532 .0535 .0752 .045364
64 .0511 .0494 .0527 .0523 .0511 .0543 .0523 .0574 .0459

128 .0547 .0535 .0556 .0554 .0544 .0574 .0555 .0557 .0494
256 .0470 .0468 .0476 .0475 .0473 .0513 .0475 .0453 .0420

8 .0535 .0378 .0699 .0688 .0552 .0570 .0701 .2116 .0503
16 .0514 .0442 .0591 .0568 .0516 .0537 .0571 .1404 .0477
32 .0469 .0445 .0505 .0500 .0479 .0488 .0501 .0747 .0440128
64 .0488 .0471 .0504 .0497 .0486 .0516 .0497 .0577 .0452

128 .0490 .0481 .0501 .0495 .0489 .0523 .0496 .0522 .0453
256 .0503 .0503 .0511 .0510 .0507 .0529 .0511 .0500 .0464

8 .0442 .0323 .0592 .0564 .0460 .0475 .0579 .2224 .0421
16 .0512 .0445 .0583 .0562 .0512 .0515 .0564 .1491 .0484
32 .0481 .0445 .0520 .0509 .0481 .0500 .0510 .0769 .0447256
64 .0492 .0473 .0509 .0504 .0488 .0503 .0504 .0585 .0453

128 .0503 .0495 .0513 .0512 .0501 .0517 .0512 .0531 .0469
256 .0511 .0507 .0517 .0516 .0513 .0519 .0516 .0512 .0478

Note. Proportion for tests are given only at α = .05. HS2 and HS4 have been omitted
from the table simply for lack of space.
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Table C.2 Rejection Rates for Testing the Mean Effect Size in S1, µρ = .10 and
µρ = .20, α = .05

k n HOr HOT HOd RR HS1 HS3 OP OP-RE DSL

µρ = .10

32 .2864 .2778 .3048 .2986 .3015 .4307 .3109 .3119 .2372
4 64 .4674 .4624 .4748 .4729 .4738 .5876 .4789 .4557 .3947

128 .7271 .7253 .7313 .7297 .7306 .7940 .7321 .7026 .6532
32 .4635 .4529 .4794 .4733 .4702 .5287 .4809 .4977 .4083

8 64 .7244 .7191 .7311 .7292 .7279 .7569 .7320 .7181 .6676
128 .9404 .9396 .9416 .9413 .9411 .9445 .9417 .9297 .9155
32 .7075 .6985 .7224 .7179 .7121 .7277 .7215 .7460 .6693

16 64 .9347 .9334 .9373 .9364 .9350 .9383 .9371 .9354 .9189
128 .9984 .9984 .9984 .9984 .9984 .9980 .9984 .9982 .9973
32 .9253 .9219 .9300 .9283 .9254 .9281 .9289 .9397 .9146

32 64 .9977 .9974 .9976 .9976 .9976 .9972 .9976 .9972 .9966
128 1 1 1 1 1 1 1 1 1
32 .9973 .9967 .9974 .9974 .9973 .9969 .9974 .9983 .9966

64 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1

128 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1

µρ = .20

32 .7126 .7036 .7296 .7235 .7270 .7903 .7349 .7247 .6362
4 64 .9367 .9344 .9399 .9386 .9390 .9457 .9410 .9273 .8927

128 .9980 .9980 .9980 .9980 .9980 .9969 .9980 .9963 .9910
32 .9371 .9350 .9409 .9397 .9393 .9389 .9413 .9407 .9109

8 64 .9981 .9980 .9983 .9983 .9982 .9977 .9983 .9977 .9960
128 1 1 1 1 1 1 1 1 1
32 .9976 .9976 .9981 .9980 .9978 .9974 .9981 .9982 .9959

16 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1

32 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1

64 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1

128 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1

Note. Proportion for tests are given only at α = .05. Several design level combinations
are omitted from the table for lack of space. Almost all combinations with higher n or
k show power rates larger than .80.
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Table C.3 Rejection Rates for Testing the Mean Effect Size in S2, µρ = .05 and
µρ = .10, α = .05

k n HOr HOT HOd RR HS1 HS3 OP OP-RE DSL

µρ = .05

32 .1344 .1299 .1443 .1403 .1422 .2434 .1477 .1507 .1050
4 64 .1897 .1869 .1952 .1929 .1942 .2888 .1980 .1811 .1425

128 .2994 .2980 .3029 .3009 .3019 .3590 .3047 .2580 .2113
32 .1941 .1865 .2040 .1993 .1966 .2382 .2046 .2163 .1556

8 64 .2987 .2938 .3052 .3017 .3002 .3236 .3053 .2830 .2355
128 .4784 .4759 .4813 .4797 .4786 .4473 .4816 .4128 .3664
32 .3051 .2954 .3181 .3142 .3067 .3211 .3168 .3452 .2608

16 64 .4681 .4633 .4767 .4732 .4694 .4546 .4750 .4552 .3988
128 .7289 .7268 .7310 .7298 .7282 .6637 .7306 .6648 .6282
32 .4599 .4481 .4734 .4681 .4604 .4505 .4703 .5063 .4148

32 64 .7196 .7144 .7236 .7218 .7182 .6835 .7223 .7104 .6611
128 .9382 .9377 .9393 .9389 .9386 .9045 .9389 .9127 .8966
32 .7203 .7088 .7323 .7282 .7195 .7027 .7292 .7639 .6862

64 64 .9350 .9339 .9374 .9359 .9344 .9177 .9360 .9307 .9142
128 .9981 .9979 .9981 .9981 .9981 .9961 .9981 .9967 .9959
32 .9290 .9250 .9345 .9326 .9289 .9212 .9330 .9447 .9186

128 64 .9968 .9967 .9969 .9967 .9967 .9959 .9968 .9968 .9957
128 1 1 1 1 1 1 1 1 1

µρ = .10

32 .2958 .2859 .3076 .3011 .3049 .3556 .3112 .2885 .2076
4 64 .4900 .4845 .4929 .4885 .4902 .4386 .4944 .4003 .3119

128 .7362 .7336 .7363 .7331 .7341 .5114 .7364 .5139 .3927
32 .4789 .4677 .4885 .4834 .4796 .4495 .4880 .4683 .3680

8 64 .7313 .7268 .7336 .7295 .7278 .6065 .7326 .6266 .5455
128 .9444 .9436 .9441 .9437 .9434 .7713 .9440 .7894 .7236
32 .7171 .7085 .7254 .7213 .7152 .6517 .7236 .7112 .6202

16 64 .9395 .9379 .9404 .9395 .9386 .8617 .9399 .8827 .8476
128 .9976 .9976 .9975 .9975 .9974 .9764 .9975 .9799 .9726
32 .9289 .9249 .9314 .9299 .9268 .8910 .9300 .9252 .8843

32 64 .9984 .9982 .9984 .9983 .9983 .9910 .9984 .9932 .9902
128 1 1 1 1 1 .9999 1 .9999 .9999
32 .9975 .9973 .9979 .9977 .9974 .9947 .9979 .9976 .9946

64 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1
32 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999

128 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1

Note. Proportion for tests are given only at α = .05. Several design level combinations
are omitted).
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Table C.4 Rejection Rates for Testing the Mean Effect Size in S2, µρ = .15 and
µρ = .20, α = .05

k n HOr HOT HOd RR HS1 HS3 OP OP-RE DSL

µρ = .15

32 .5206 .5105 .5304 .5234 .5268 .5266 .5368 .4864 .3760
4 64 .7831 .7795 .7828 .7793 .7804 .6667 .7840 .6531 .5433

128 .9649 .9646 .9648 .9641 .9644 .7732 .9648 .7804 .6765
32 .7647 .7561 .7721 .7672 .7640 .7044 .7727 .7288 .6369

8 64 .9637 .9628 .9638 .9629 .9625 .8749 .9636 .8918 .8439
128 .9993 .9993 .9992 .9992 .9992 .9626 .9992 .9677 .9473
32 .9560 .9534 .9580 .9568 .9555 .9164 .9574 .9397 .9018

16 64 .9991 .9991 .9992 .9992 .9990 .9911 .9992 .9930 .9895
128 1 1 1 1 1 .9998 1 .9999 .9998
32 .9989 .9988 .9990 .9990 .9989 .9959 .9990 .9984 .9955

32 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1

64 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1

128 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1

µρ = .20

32 .7420 .7323 .7433 .7365 .7392 .6193 .7464 .6240 .4967
4 64 .9494 .9481 .9476 .9455 .9462 .7394 .9473 .7545 .6333

128 .9983 .9983 .9981 .9981 .9981 .8301 .9981 .8373 .7240
32 .9407 .9373 .9406 .9381 .9371 .8386 .9401 .8668 .8027

8 64 .9990 .9990 .9989 .9989 .9989 .9525 .9989 .9605 .9365
128 1 1 1 1 1 .9918 1 .9930 .9869
32 .9978 .9976 .9979 .9977 .9976 .9868 .9977 .9911 .9849

16 64 1 1 1 1 1 .9997 1 .9998 .9995
128 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1

32 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1

64 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1

128 64 1 1 1 1 1 1 1 1 1
128 1 1 1 1 1 1 1 1 1

Note. Proportion for tests are given only at α = .05. Several design level combinations
are omitted.
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